Persistent Heat Signature for Pose-oblivious Matching of Incomplete Models

Although understanding of shape features in the context of shape matching and retrieval has made considerable progress in recent years, the case for partial and incomplete models in presence of pose variations still begs a robust and efficient solution. A signature that encodes features at multi‐sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum Jg. 29; H. 5; S. 1545 - 1554
Hauptverfasser: Dey, T.K., Li, K., Luo, C., Ranjan, P., Safa, I., Wang, Y.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.07.2010
Schlagworte:
ISSN:0167-7055, 1467-8659
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although understanding of shape features in the context of shape matching and retrieval has made considerable progress in recent years, the case for partial and incomplete models in presence of pose variations still begs a robust and efficient solution. A signature that encodes features at multi‐scales in a pose invariant manner is more appropriate for this case. The Heat Kernel Signature function from spectral theory exhibits this multi‐scale property. We show how this concept can be merged with the persistent homology to design a novel efficient pose‐oblivious matching algorithm for all models, be they partial, incomplete, or complete. We make the algorithm scalable so that it can handle large data sets. Several test results show the robustness of our approach.
Bibliographie:istex:8BA5912E18AB2DA7A2F3834EF166429240368598
ark:/67375/WNG-TGMQWWS9-K
ArticleID:CGF1763
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0167-7055
1467-8659
DOI:10.1111/j.1467-8659.2010.01763.x