Changes in Extreme Rainfall Over India and China Attributed to Regional Aerosol‐Cloud Interaction During the Late 20th Century Rapid Industrialization
Both mean and extreme rainfall decreased over India and Northern China during 1979–2005 at a rate of 0.2%/decade. The aerosol dampening effects on rainfall has also been suggested as a main driver of mean rainfall shift in India and China. Conflicting views, however, exist on whether aerosols enhanc...
Saved in:
| Published in: | Geophysical research letters Vol. 45; no. 15; pp. 7857 - 7865 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
John Wiley & Sons, Inc
16.08.2018
|
| Subjects: | |
| ISSN: | 0094-8276, 1944-8007 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Both mean and extreme rainfall decreased over India and Northern China during 1979–2005 at a rate of 0.2%/decade. The aerosol dampening effects on rainfall has also been suggested as a main driver of mean rainfall shift in India and China. Conflicting views, however, exist on whether aerosols enhance or suppress hazardous extreme heavy rainfall. Using Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble, here we show that only a subset of models realistically reproduces the late‐20th‐century trend of extreme rainfall for the three major regions in Asia: drying in India and Northern China and wetting in Southern China, all consistent with mean rainfall change. As a common feature, this subset of models includes an explicit treatment of the complex physical processes of aerosol‐cloud interaction (i.e., both cloud‐albedo and cloud‐lifetime effects), while simulation performance deteriorates in models that include only aerosol direct effect or cloud‐albedo effect. The enhanced aerosol pollution during this rapid industrialization era is the leading cause of the spatially heterogeneous extreme rainfall change by dimming surface solar radiation, cooling adjacent ocean water, and weakening moisture transport into the continental region, while GHG warming or natural variability alone cannot explain the observed changes. Our results indicate that the projected intensification of regional extreme rainfall during the early‐to‐mid 21st‐century, in response to the anticipated aerosol reduction, may be underestimated in global climate models without detailed treatment of complex aerosol‐cloud interaction.
Plain Language Summary
Over Asia, a robust pattern of drying‐wetting‐drying trend over three most populated regions (India, South China, and North China, respectively) have been observed in the past few decades. Yet the cause of the 30‐year trend is rather unclear, with conflicting arguments on the importance of natural variability, the greenhouse gas, land cover, and aerosols. Most of the previous studies, however, fail to provide a holistic explanation for all three major regions simultaneously. The aerosol‐cloud interaction‐induced oceanic cooling, as we show here, provides a critical piece in reproducing the past trend. Only a fraction of climate models with complex treatment of aerosol‐cloud interaction capture the observed pattern; thus, unconstrained model data set provides biased outlook of extreme rainfall in this region.
Key Points
Drying‐wetting‐drying trend over India, Southern China, and Northern China is observed in the last few decades of the 20th century
Previous work failed to give a holistic explanation for three regions simultaneously, while this study attributes observed trend to aerosol
The CMIP5 models with more complex treatment of aerosol‐cloud interaction capture the observed pattern better |
|---|---|
| AbstractList | Both mean and extreme rainfall decreased over India and Northern China during 1979–2005 at a rate of 0.2%/decade. The aerosol dampening effects on rainfall has also been suggested as a main driver of mean rainfall shift in India and China. Conflicting views, however, exist on whether aerosols enhance or suppress hazardous extreme heavy rainfall. Using Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble, here we show that only a subset of models realistically reproduces the late‐20th‐century trend of extreme rainfall for the three major regions in Asia: drying in India and Northern China and wetting in Southern China, all consistent with mean rainfall change. As a common feature, this subset of models includes an explicit treatment of the complex physical processes of aerosol‐cloud interaction (i.e., both cloud‐albedo and cloud‐lifetime effects), while simulation performance deteriorates in models that include only aerosol direct effect or cloud‐albedo effect. The enhanced aerosol pollution during this rapid industrialization era is the leading cause of the spatially heterogeneous extreme rainfall change by dimming surface solar radiation, cooling adjacent ocean water, and weakening moisture transport into the continental region, while GHG warming or natural variability alone cannot explain the observed changes. Our results indicate that the projected intensification of regional extreme rainfall during the early‐to‐mid 21st‐century, in response to the anticipated aerosol reduction, may be underestimated in global climate models without detailed treatment of complex aerosol‐cloud interaction. Both mean and extreme rainfall decreased over India and Northern China during 1979–2005 at a rate of 0.2%/decade. The aerosol dampening effects on rainfall has also been suggested as a main driver of mean rainfall shift in India and China. Conflicting views, however, exist on whether aerosols enhance or suppress hazardous extreme heavy rainfall. Using Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble, here we show that only a subset of models realistically reproduces the late‐20th‐century trend of extreme rainfall for the three major regions in Asia: drying in India and Northern China and wetting in Southern China, all consistent with mean rainfall change. As a common feature, this subset of models includes an explicit treatment of the complex physical processes of aerosol‐cloud interaction (i.e., both cloud‐albedo and cloud‐lifetime effects), while simulation performance deteriorates in models that include only aerosol direct effect or cloud‐albedo effect. The enhanced aerosol pollution during this rapid industrialization era is the leading cause of the spatially heterogeneous extreme rainfall change by dimming surface solar radiation, cooling adjacent ocean water, and weakening moisture transport into the continental region, while GHG warming or natural variability alone cannot explain the observed changes. Our results indicate that the projected intensification of regional extreme rainfall during the early‐to‐mid 21st‐century, in response to the anticipated aerosol reduction, may be underestimated in global climate models without detailed treatment of complex aerosol‐cloud interaction. Over Asia, a robust pattern of drying‐wetting‐drying trend over three most populated regions (India, South China, and North China, respectively) have been observed in the past few decades. Yet the cause of the 30‐year trend is rather unclear, with conflicting arguments on the importance of natural variability, the greenhouse gas, land cover, and aerosols. Most of the previous studies, however, fail to provide a holistic explanation for all three major regions simultaneously. The aerosol‐cloud interaction‐induced oceanic cooling, as we show here, provides a critical piece in reproducing the past trend. Only a fraction of climate models with complex treatment of aerosol‐cloud interaction capture the observed pattern; thus, unconstrained model data set provides biased outlook of extreme rainfall in this region. Drying‐wetting‐drying trend over India, Southern China, and Northern China is observed in the last few decades of the 20th century Previous work failed to give a holistic explanation for three regions simultaneously, while this study attributes observed trend to aerosol The CMIP5 models with more complex treatment of aerosol‐cloud interaction capture the observed pattern better Both mean and extreme rainfall decreased over India and Northern China during 1979–2005 at a rate of 0.2%/decade. The aerosol dampening effects on rainfall has also been suggested as a main driver of mean rainfall shift in India and China. Conflicting views, however, exist on whether aerosols enhance or suppress hazardous extreme heavy rainfall. Using Coupled Model Intercomparison Project phase 5 (CMIP5) multimodel ensemble, here we show that only a subset of models realistically reproduces the late‐20th‐century trend of extreme rainfall for the three major regions in Asia: drying in India and Northern China and wetting in Southern China, all consistent with mean rainfall change. As a common feature, this subset of models includes an explicit treatment of the complex physical processes of aerosol‐cloud interaction (i.e., both cloud‐albedo and cloud‐lifetime effects), while simulation performance deteriorates in models that include only aerosol direct effect or cloud‐albedo effect. The enhanced aerosol pollution during this rapid industrialization era is the leading cause of the spatially heterogeneous extreme rainfall change by dimming surface solar radiation, cooling adjacent ocean water, and weakening moisture transport into the continental region, while GHG warming or natural variability alone cannot explain the observed changes. Our results indicate that the projected intensification of regional extreme rainfall during the early‐to‐mid 21st‐century, in response to the anticipated aerosol reduction, may be underestimated in global climate models without detailed treatment of complex aerosol‐cloud interaction. Plain Language Summary Over Asia, a robust pattern of drying‐wetting‐drying trend over three most populated regions (India, South China, and North China, respectively) have been observed in the past few decades. Yet the cause of the 30‐year trend is rather unclear, with conflicting arguments on the importance of natural variability, the greenhouse gas, land cover, and aerosols. Most of the previous studies, however, fail to provide a holistic explanation for all three major regions simultaneously. The aerosol‐cloud interaction‐induced oceanic cooling, as we show here, provides a critical piece in reproducing the past trend. Only a fraction of climate models with complex treatment of aerosol‐cloud interaction capture the observed pattern; thus, unconstrained model data set provides biased outlook of extreme rainfall in this region. Key Points Drying‐wetting‐drying trend over India, Southern China, and Northern China is observed in the last few decades of the 20th century Previous work failed to give a holistic explanation for three regions simultaneously, while this study attributes observed trend to aerosol The CMIP5 models with more complex treatment of aerosol‐cloud interaction capture the observed pattern better |
| Author | Xu, Yangyang Dong, Wenjie Lin, Lei Wang, Zhili Diao, Chenrui Xie, Shang‐Ping |
| Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-7946-4363 surname: Lin fullname: Lin, Lei organization: Sun Yat‐sen University – sequence: 2 givenname: Yangyang orcidid: 0000-0001-7173-7761 surname: Xu fullname: Xu, Yangyang email: yangyang.xu@tamu.edu organization: Texas A&M University – sequence: 3 givenname: Zhili surname: Wang fullname: Wang, Zhili organization: Chinese Academy of Meteorological Sciences – sequence: 4 givenname: Chenrui surname: Diao fullname: Diao, Chenrui organization: Texas A&M University – sequence: 5 givenname: Wenjie orcidid: 0000-0002-8871-693X surname: Dong fullname: Dong, Wenjie organization: Sun Yat‐sen University – sequence: 6 givenname: Shang‐Ping orcidid: 0000-0002-3676-1325 surname: Xie fullname: Xie, Shang‐Ping organization: University of California, San Diego |
| BookMark | eNqFkM9O3DAQxq0KpC7QWx_AUq_dduz8cXxcpXRBioS0gnPk2JNdo-AstgNsT30EjjwfT1Jv6aHiAKcZaX7fzHzfETlwo0NCPjP4xoDL7xxYtWxAVBlUH8iMyTyfVwDigMwAZOq5KD-SoxCuASCDjM3IU71Rbo2BWkdPH6LHG6QrZV2vhoFe3KGn585YRZUztN5Yp-giRm-7KaKhcaQrXNvRqYEu0I9hHJ5_P9bDOJkki-iVjmlKf0zeujWNG6SNikg5xA2t0cXJ79K1rd3jZgppsRrsL7UXnZDD9EPAT__qMbn6eXpZn82bi-V5vWjmOk-e50bpguUoTdVp3bFelFJkRakLrlTZ97yXjEmtQRhRlqA63mFWSi07YwSDPs-OyZeXvVs_3k4YYns9Tj45Ci0HWfJMFrlI1NcXSieXwWPfbr29UX7XMmj32bf_Z59w_grXNv61Fb2ywzuiezvg7s0D7XLVFEJInv0BbU6Z3g |
| CitedBy_id | crossref_primary_10_5194_acp_23_12801_2023 crossref_primary_10_1038_s41467_022_28537_9 crossref_primary_10_1002_joc_5985 crossref_primary_10_1038_s41612_020_00159_2 crossref_primary_10_1007_s11600_021_00688_1 crossref_primary_10_1029_2019JD031736 crossref_primary_10_1002_wcc_571 crossref_primary_10_1007_s00704_024_05001_w crossref_primary_10_1007_s00477_020_01948_0 crossref_primary_10_5194_acp_23_2499_2023 crossref_primary_10_1038_s41598_020_68356_w crossref_primary_10_1007_s40726_024_00296_9 crossref_primary_10_1002_joc_7370 crossref_primary_10_1029_2022EF003266 crossref_primary_10_5194_acp_20_9641_2020 crossref_primary_10_1002_joc_6887 crossref_primary_10_3389_fenvs_2022_911363 crossref_primary_10_1016_j_accre_2022_02_008 crossref_primary_10_1029_2018EF001052 crossref_primary_10_1029_2018GL081225 crossref_primary_10_1088_1748_9326_aaf2ec crossref_primary_10_1002_joc_8151 crossref_primary_10_1016_j_atmosres_2022_106070 crossref_primary_10_5194_acp_21_18499_2021 crossref_primary_10_1038_s43017_020_00128_6 crossref_primary_10_1007_s00376_022_1402_1 crossref_primary_10_1007_s11356_024_32314_0 crossref_primary_10_5194_acp_25_2167_2025 crossref_primary_10_1029_2024EF005555 crossref_primary_10_1007_s11430_019_9534_6 crossref_primary_10_1038_s41561_019_0424_5 crossref_primary_10_1007_s00382_019_04698_0 crossref_primary_10_1007_s00382_022_06453_4 crossref_primary_10_1016_j_scitotenv_2024_174927 crossref_primary_10_1029_2023JD039130 crossref_primary_10_1016_j_atmosenv_2021_118457 crossref_primary_10_1007_s00382_023_07016_x crossref_primary_10_1175_JCLI_D_18_0662_1 crossref_primary_10_3390_atmos11060565 crossref_primary_10_1007_s00382_020_05120_w crossref_primary_10_3354_cr01621 crossref_primary_10_1016_j_atmosres_2024_107307 crossref_primary_10_1007_s00382_022_06235_y crossref_primary_10_1007_s11629_019_5841_9 crossref_primary_10_1016_j_gloplacha_2020_103261 crossref_primary_10_1007_s00382_018_4512_9 crossref_primary_10_1029_2024GL113887 crossref_primary_10_3390_rs14153539 crossref_primary_10_1038_s41598_020_76936_z |
| Cites_doi | 10.1029/2012GL053043 10.1002/2015MS000489 10.1002/2016JD024845 10.1126/science.1075159 10.1002/2015GL066416 10.1073/pnas.0500656102 10.1038/srep32177 10.1126/science.255.5043.423 10.1029/2006GL027546 10.1175/BAMS-89-3-369 10.1175/JCLI-D-15-0011.1 10.5194/acp-11-1101-2011 10.1175/JCLI-D-14-00559.1 10.1029/2008JD011575 10.1126/science.1160606 10.1175/JAS-D-15-0361.1 10.5194/esd-8-827-2017 10.1038/nclimate2208 10.1073/pnas.1715386115 10.1002/2015JD023665 10.1002/2016GL069282 10.1038/ncomms8423 10.1002/2013GL058705 10.1038/nclimate1327 10.1038/nature09763 10.1007/s00382-008-0482-7 10.1002/2013JD020511 10.5194/acp-15-5827-2015 10.1088/1748-9326/aa5fb3 10.1002/2015GL064479 10.1029/2008JD010572 10.1126/sciadv.1501572 10.1038/ngeo2371 10.1002/2015RG000500 10.1002/2016GL070869 10.1007/s00376-015-5109-4 10.1007/s00382-016-3003-0 10.1126/science.1204994 10.1175/JAS-D-16-0037.1 |
| ContentType | Journal Article |
| Copyright | 2018. The Authors. 2018. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2018. The Authors. – notice: 2018. American Geophysical Union. All Rights Reserved. |
| DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| DOI | 10.1029/2018GL078308 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Aerospace Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | 7865 |
| ExternalDocumentID | 10_1029_2018GL078308 GRL57792 |
| Genre | article |
| GeographicLocations | Asia China India |
| GeographicLocations_xml | – name: China – name: Asia – name: India |
| GrantInformation_xml | – fundername: Key National Natural Science Foundation of China funderid: 91644225; 91644211 – fundername: National Key Research and Development Program of China funderid: 2016YFA0602701 – fundername: Fundamental Research Funds for the Central Universities funderid: 17lgpy32 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| ID | FETCH-LOGICAL-c4102-dac514e9d8bccb1f7697356c52aa6ff2f9119cc07d7660ab2be369c9bdd710f43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443129500070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Fri Jul 25 10:31:37 EDT 2025 Tue Nov 18 22:14:17 EST 2025 Sat Nov 29 02:57:31 EST 2025 Wed Aug 20 07:25:06 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4102-dac514e9d8bccb1f7697356c52aa6ff2f9119cc07d7660ab2be369c9bdd710f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7946-4363 0000-0002-3676-1325 0000-0002-8871-693X 0000-0001-7173-7761 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GL078308 |
| PQID | 2096239547 |
| PQPubID | 54723 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2096239547 crossref_primary_10_1029_2018GL078308 crossref_citationtrail_10_1029_2018GL078308 wiley_primary_10_1029_2018GL078308_GRL57792 |
| PublicationCentury | 2000 |
| PublicationDate | 16 August 2018 |
| PublicationDateYYYYMMDD | 2018-08-16 |
| PublicationDate_xml | – month: 08 year: 2018 text: 16 August 2018 day: 16 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2018 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2010; 34 2014; 119 2011; 334 2017; 7 2015; 15 2017; 8 2015; 6 2002; 297 2006; 33 2015; 120 2015; 32 2016; 54 2011; 11 2016; 73 2016; 121 2012; 39 2008; 321 2014; 41 2011; 470 2015; 8 2015; 7 2009; 114 2016; 6 2012; 2 2015; 28 2014; 4 2016; 2 2005; 102 1992; 255 2015; 42 2018; 115 2017; 12 2016; 43 2008; 89 2016; 47 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_31_1 Liu J. (e_1_2_5_18_1) 2017; 7 |
| References_xml | – volume: 11 start-page: 1101 issue: 3 year: 2011 end-page: 1116 article-title: Anthropogenic sulfur dioxide emissions: 1850–2005 publication-title: Atmospheric Chemistry and Physics – volume: 8 start-page: 181 issue: 3 year: 2015 end-page: 185 article-title: Declining uncertainty in transient climate response as CO forcing dominates future climate change publication-title: Nature Geoscience – volume: 47 start-page: 2885 issue: 9–10 year: 2016 end-page: 2899 article-title: The effect of future reduction in aerosol emissions on climate extremes in China publication-title: Climate Dynamics – volume: 73 start-page: 4221 issue: 11 year: 2016 end-page: 4252 article-title: Review of aerosol‐cloud interactions: Mechanisms, significance and challenges publication-title: Journal of the Atmospheric Sciences – volume: 54 start-page: 866 issue: 4 year: 2016 end-page: 929 article-title: Aerosol and monsoon climate interactions over Asia publication-title: Reviews of Geophysics – volume: 321 start-page: 1309 issue: 5894 year: 2008 end-page: 1313 article-title: Flood or drought: how do aerosols affect precipitation? publication-title: Science – volume: 470 start-page: 378 issue: 7334 year: 2011 end-page: 381 article-title: Human contribution to more‐intense precipitation extremes publication-title: Nature – volume: 2 start-page: 86 issue: 2 year: 2012 article-title: Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes publication-title: Nature Climate Change – volume: 115 start-page: 2016 issue: 9 year: 2018 end-page: 2021 article-title: Changing character of rainfall in eastern China, 1951–2007 publication-title: Proceedings of the National Academy of Sciences – volume: 102 start-page: 5326 issue: 15 year: 2005 end-page: 5333 article-title: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 year: 2015 article-title: Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land‐sea thermal gradient publication-title: Nature Communications – volume: 28 issue: 17 year: 2015 article-title: Observed changes in the distributions of daily precipitation frequency and amount over China from 1960 to 2013 publication-title: Journal of Climate – volume: 334 start-page: 502 issue: 6055 year: 2011 end-page: 505 article-title: Anthropogenic aerosols and the weakening of the South Asian summer monsoon publication-title: Science – volume: 33 year: 2006 article-title: Observational relationships between aerosol and Asian monsoon rainfall, and circulation publication-title: Geophysical Research Letters – volume: 43 start-page: 5295 year: 2016 end-page: 5301 article-title: Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 years in CMIP5 models publication-title: Geophysical Research Letters – volume: 114 year: 2009 article-title: Changes in the characteristics of rain events in India publication-title: Journal of Geophysical Research – volume: 42 start-page: 10,876 year: 2015 end-page: 10,884 article-title: Anthropogenic aerosols and the distribution of past large‐scale precipitation change publication-title: Geophysical Research Letters – volume: 73 start-page: 3681 issue: 9 year: 2016 end-page: 3700 article-title: Distinct impacts of aerosols on an evolving continental cloud complex during the RACORO field campaign publication-title: Journal of the Atmospheric Sciences – volume: 6 start-page: 32,177 issue: 1 year: 2016 article-title: Weakening of Indian summer monsoon rainfall due to changes in land use land cover publication-title: Scientific Reports – volume: 255 start-page: 423 issue: 5043 year: 1992 end-page: 430 article-title: Climate forcing by anthropogenic aerosols publication-title: Science – volume: 28 start-page: 4107 issue: 10 year: 2015 end-page: 4125 article-title: Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models publication-title: Journal of Climate – volume: 43 start-page: 9860 year: 2016 end-page: 9868 article-title: Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols publication-title: Geophysical Research Letters – volume: 34 start-page: 501 issue: 4 year: 2010 end-page: 514 article-title: Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000 publication-title: Climate Dynamics – volume: 39 year: 2012 article-title: Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols publication-title: Geophysical Research Letters – volume: 114 year: 2009 article-title: Heavy pollution suppresses light rain in China: Observations and modeling publication-title: Journal of Geophysical Research – volume: 41 start-page: 596 year: 2014 end-page: 603 article-title: Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models publication-title: Geophysical Research Letters – volume: 7 start-page: 1918 issue: 4 year: 2015 end-page: 1937 article-title: Large‐eddy simulation of the transient and near‐equilibrium behavior of precipitating shallow convection publication-title: Journal of Advances in Modeling Earth Systems – volume: 119 start-page: 817 year: 2014 end-page: 832 article-title: Do sophisticated parameterizations of aerosol‐cloud interactions in CMIP5 models improve the representation of recent observed temperature trends? publication-title: Journal of Geophysical Research: Atmospheres – volume: 120 start-page: 9625 year: 2015 end-page: 9641 article-title: Atmospheric responses to the redistribution of anthropogenic aerosols publication-title: Journal of Geophysical Research: Atmospheres – volume: 4 start-page: 456 issue: 6 year: 2014 end-page: 461 article-title: Observed changes in extreme wet and dry spells during the South Asian summer monsoon season publication-title: Nature Climate Change – volume: 7 start-page: 27 issue: 1–3 year: 2017 end-page: 2017 article-title: Aerosol‐weakened summer monsoons decrease lake fertilization on the chinese loess plateau publication-title: Nature Climate Change – volume: 2 issue: 6 year: 2016 article-title: Global warming without global mean precipitation increase? publication-title: Science Advances – volume: 89 start-page: 369 issue: 3 year: 2008 end-page: 384 article-title: The Joint Aerosol–Monsoon Experiment: A new challenge for monsoon climate research publication-title: Bulletin of the American Meteorological Society – volume: 121 start-page: 5878 year: 2016 end-page: 5887 article-title: Towards reconciling the influence of atmospheric aerosols and greenhouse gases on light precipitation changes in eastern China publication-title: Journal of Geophysical Research: Atmospheres – volume: 15 start-page: 5827 issue: 10 year: 2015 end-page: 5833 article-title: Ocean mediation of tropospheric response to reflecting and absorbing aerosols publication-title: Atmospheric Chemistry and Physics – volume: 297 start-page: 2250 issue: 5590 year: 2002 end-page: 2253 article-title: Climate effects of black carbon aerosols in China and India publication-title: Science – volume: 12 issue: 3 year: 2017 article-title: Aerosol forcing of extreme summer drought over North China publication-title: Environmental Research Letters – volume: 42 start-page: 6066 year: 2015 end-page: 6075 article-title: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China publication-title: Geophysical Research Letters – volume: 8 start-page: 827 year: 2017 end-page: 847 article-title: Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures publication-title: Earth System Dynamics – volume: 32 start-page: 1444 issue: 10 year: 2015 end-page: 1446 article-title: Air pollution or global warming: Attribution of extreme precipitation changes in eastern China—Comments on “Trends of extreme precipitation in Eastern China and their possible causes” publication-title: Advances in Atmospheric Sciences – ident: e_1_2_5_9_1 doi: 10.1029/2012GL053043 – ident: e_1_2_5_30_1 doi: 10.1002/2015MS000489 – ident: e_1_2_5_37_1 doi: 10.1002/2016JD024845 – ident: e_1_2_5_20_1 doi: 10.1126/science.1075159 – ident: e_1_2_5_34_1 doi: 10.1002/2015GL066416 – ident: e_1_2_5_25_1 doi: 10.1073/pnas.0500656102 – ident: e_1_2_5_23_1 doi: 10.1038/srep32177 – ident: e_1_2_5_3_1 doi: 10.1126/science.255.5043.423 – ident: e_1_2_5_11_1 doi: 10.1029/2006GL027546 – ident: e_1_2_5_12_1 doi: 10.1175/BAMS-89-3-369 – ident: e_1_2_5_19_1 doi: 10.1175/JCLI-D-15-0011.1 – ident: e_1_2_5_32_1 doi: 10.5194/acp-11-1101-2011 – volume: 7 start-page: 27 issue: 1 year: 2017 ident: e_1_2_5_18_1 article-title: Aerosol‐weakened summer monsoons decrease lake fertilization on the chinese loess plateau publication-title: Nature Climate Change – ident: e_1_2_5_14_1 doi: 10.1175/JCLI-D-14-00559.1 – ident: e_1_2_5_24_1 doi: 10.1029/2008JD011575 – ident: e_1_2_5_26_1 doi: 10.1126/science.1160606 – ident: e_1_2_5_17_1 doi: 10.1175/JAS-D-15-0361.1 – ident: e_1_2_5_29_1 doi: 10.5194/esd-8-827-2017 – ident: e_1_2_5_31_1 doi: 10.1038/nclimate2208 – ident: e_1_2_5_5_1 doi: 10.1073/pnas.1715386115 – ident: e_1_2_5_36_1 doi: 10.1002/2015JD023665 – ident: e_1_2_5_40_1 doi: 10.1002/2016GL069282 – ident: e_1_2_5_27_1 doi: 10.1038/ncomms8423 – ident: e_1_2_5_33_1 doi: 10.1002/2013GL058705 – ident: e_1_2_5_10_1 doi: 10.1038/nclimate1327 – ident: e_1_2_5_21_1 doi: 10.1038/nature09763 – ident: e_1_2_5_13_1 doi: 10.1007/s00382-008-0482-7 – ident: e_1_2_5_6_1 doi: 10.1002/2013JD020511 – ident: e_1_2_5_39_1 doi: 10.5194/acp-15-5827-2015 – ident: e_1_2_5_41_1 doi: 10.1088/1748-9326/aa5fb3 – ident: e_1_2_5_7_1 doi: 10.1002/2015GL064479 – ident: e_1_2_5_4_1 doi: 10.1029/2008JD010572 – ident: e_1_2_5_28_1 doi: 10.1126/sciadv.1501572 – ident: e_1_2_5_22_1 doi: 10.1038/ngeo2371 – ident: e_1_2_5_15_1 doi: 10.1002/2015RG000500 – ident: e_1_2_5_16_1 doi: 10.1002/2016GL070869 – ident: e_1_2_5_35_1 doi: 10.1007/s00376-015-5109-4 – ident: e_1_2_5_38_1 doi: 10.1007/s00382-016-3003-0 – ident: e_1_2_5_2_1 doi: 10.1126/science.1204994 – ident: e_1_2_5_8_1 doi: 10.1175/JAS-D-16-0037.1 |
| SSID | ssj0003031 |
| Score | 2.5103297 |
| Snippet | Both mean and extreme rainfall decreased over India and Northern China during 1979–2005 at a rate of 0.2%/decade. The aerosol dampening effects on rainfall has... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7857 |
| SubjectTerms | Aerosol effects Aerosol-cloud interactions Aerosols aerosol‐cloud interaction Air pollution Albedo Albedo (solar) Albedo effects Asia extreme rainfall Climate Climate models Cloud albedo Cloud interaction Cloud-climate relationships Clouds CMIP5 Computer simulation Cooling Deforestation Dimming Drying Extreme weather Global climate Global climate models Greenhouse effect Greenhouse gases Heavy rainfall Industrial development Industrialization Intercomparison Land cover Natural gas Natural variability precipitation extremes Rain Rainfall Regions Solar radiation Variability Water pollution Wetting |
| Title | Changes in Extreme Rainfall Over India and China Attributed to Regional Aerosol‐Cloud Interaction During the Late 20th Century Rapid Industrialization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018GL078308 https://www.proquest.com/docview/2096239547 |
| Volume | 45 |
| WOSCitedRecordID | wos000443129500070&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-8007 dateEnd: 20231214 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtswDBa2dgN6Wbs_tGtX8LCdBmOJbEvWMUibrECQFcGK9WbYlNQFMJyidov21kfYcc-3JxklK1l22IBiN9ugJcuiyI-USDL2LjNFyhPESApLBgqmJAel4lFsyxQtFzpJrC82IafT7PxcnQaHm4uF6fJDrBxubmV4ee0WeFE2IdmAy5FJmisbT9wulIv13XRxVWR8bR7NRmeTlSwmAd3VzFNJlHEpwtF3auHj-vt_KqXfSHMdr3qFM9r-30_dYc8C1IRBxxvP2SNTv2BPx76U7x1d-cOf2LxkP7oQgwbmNRzfts5jCG7fxxZVBZ-J1-GkJjaCotbg623DoO0KZRkN7QJm5sI7FGFgaHiL6uf992G1uNbg3Y1d5AQc-XhIILwJE8K3wHvtNxh2Ko96u5w78mUZkRAc-oqdjY6_DD9FoWJDhAmNNdIFEgAzSmclYtm3UigZpwJTXhTCWm5JtCrEntRSiF5R8tLEQqEqtSakY5P4NduoF7XZZcC57WmykvupJhOWzDzkpdCxIYTGY7S4xz4spyzHkM7cVdWocr-tzlW-_tf32PsV9WWXxuMvdAfL2c_DYm6IQBFIVGkiqVM_z_9sIx_PJqkkhn_zIOp9tuWeO391Xxywjfbq2rxlT_CmnTdXh-wxT04PA3vT3deT6S_R1vp4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQpWovhf6g0kI7h_ZURd11HDs-rhZYUNMtQlTiFiVjG1aKsogNiN76CD3yfDxJx0522R5aCfWWwziO4_HM57FnPsY-pLZIuECMlHS0QcGE7KDSPIpdmaDj0gjhAtmEGo_T01N91PGc-lyYtj7EIuDmV0aw136B-4B0V23AF8kk15WOMn8M5ZN9HwlyTP5OHxdHC1NM9rmlzNMiSrmS3c13av95ufWfPukeaC7D1eBv9tf_-0s32LMOasKg1Y3nbMXWL9jjUaDy_UFP4fInzl6y2zbFYAaTGvZuGh8xBH_u44qqgm-k63BYkxpBURsIfNswaFqiLGugmcKxPQsBRRhYGt-0uvv5a1hNrwyEcGObOQG7IR8SCG9CRvgWeK85h2Hr8qi3i4kXn9OIdMmhr9j3_b2T4UHUMTZEKGiskSmQAJjVJi0Ry75TUqs4kZjwopDOcUemVSP2lFFS9oqSlzaWGnVpDCEdJ-JNtlpPa_uaAeeuZ2iX3E8MbWFpm4e8lCa2hNB4jA632Kf5nOXYlTP3rBpVHo7Vuc6X__oW-7iQvmjLePxFbns-_Xm3mGckoAkk6kQo6jRM9D_fkY-Os0SRwr95kPR79uTg5GuWZ4fjL2_ZUy_jY9d9uc1Wm8sru8PW8LqZzC7fBR3_DW7H-uc |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQeYhLy1O0FJgDnNCKxOvH-hilTaiIQlSB1Ntqd2yXSKtN1GyrcuMncOT38UsYezdpOICEuO1hvF6vZ8afx575GHuduUJygZho5WmDgpL8oDY8SX0p0XNlhfCRbEJPp9nZmZl1PKchF6atD7EJuAXLiP46GLhbWt9VGwhFMmnpysaTcAwVkn1vC6mjZXIx27hi8s8tZZ4RSca16m6-U_t3261_X5NugOY2XI3rzWjvv7_0AdvtoCYMWt14yG65-hG7O45Uvl_pKV7-xNVj9qNNMVjBvIbj6yZEDCGc-_iiquAj6Tqc1KRGUNQWIt82DJqWKMtZaBZw6s5jQBEGjsa3qH5--z6sFpcWYrixzZyAo5gPCYQ3YUL4Fniv-QLDdsmj3pbzIL6mEemSQ5-wz6PjT8P3ScfYkKCgsSa2QAJgztisRCz7XiujU6lQ8qJQ3nNPrtUg9rTVSvWKkpcuVQZNaS0hHS_Sp2ynXtTuGQPOfc_SLrkvLW1haZuHvFQ2dYTQeIoe99nb9Zzl2JUzD6waVR6P1bnJt__6PnuzkV62ZTz-IHe4nv68M-YVCRgCiUYKTZ3Gif7rO_Lx6URqUviDf5J-xe7Njkb55GT64Tm7H0RC6LqvDtlOc3HpXrA7eNXMVxcvo4r_Av89-mI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changes+in+Extreme+Rainfall+Over+India+and+China+Attributed+to+Regional+Aerosol%E2%80%90Cloud+Interaction+During+the+Late+20th+Century+Rapid+Industrialization&rft.jtitle=Geophysical+research+letters&rft.au=Lin%2C+Lei&rft.au=Xu%2C+Yangyang&rft.au=Wang%2C+Zhili&rft.au=Diao%2C+Chenrui&rft.date=2018-08-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=45&rft.issue=15&rft.spage=7857&rft.epage=7865&rft_id=info:doi/10.1029%2F2018GL078308&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2018GL078308 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |