Meta Learning Strategies for Comparative and Efficient Adaptation to Financial Datasets

This research proposes a Meta learning framework for financial time series forecasting, designed to rapidly adapt to novel market conditions with minimal retraining. The framework operates in two stages: 1) pretraining on a diverse set of financial datasets, including stocks (e.g., MSFT, AAPL) and c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 24158 - 24170
Hlavní autoři: Noor, Kubra, Fatima, Ubaida
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.