Physics-informed neural networks for heterogeneous poroelastic media
This study presents a novel physics-informed neural network (PINN) framework for modeling poroelasticity in heterogeneous media with material interfaces. The approach introduces a composite neural network (CoNN) where separate neural networks predict displacement and pressure variables for each mate...
Saved in:
| Published in: | International journal of computational methods in engineering science and mechanics Vol. 26; no. 2; pp. 187 - 207 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Taylor & Francis
04.03.2025
|
| Subjects: | |
| ISSN: | 1550-2287, 1550-2295 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study presents a novel physics-informed neural network (PINN) framework for modeling poroelasticity in heterogeneous media with material interfaces. The approach introduces a composite neural network (CoNN) where separate neural networks predict displacement and pressure variables for each material. While sharing identical activation functions, these networks are independently trained for all other parameters. To address challenges posed by heterogeneous material interfaces, the CoNN is integrated with the Interface-PINNs (I-PINNs) framework (Sarma et al., Comput. Methods Appl. Mech. Eng. 429: 117135, 2024), allowing different activation functions across material interfaces. This ensures accurate approximation of discontinuous solution fields and gradients. Performance and accuracy of this combined architecture were evaluated against the conventional PINNs approach, a single neural network (SNN) architecture, and the eXtended PINNs (XPINNs) framework through two one-dimensional benchmark examples with discontinuous material properties. The results show that the proposed CoNN with I-PINNs architecture achieves an RMSE that is two orders of magnitude better than the conventional PINNs approach and is at least 40 times faster than the SNN framework. Compared to XPINNs, the proposed method achieves an RMSE at least one order of magnitude better and is 40% faster. |
|---|---|
| AbstractList | This study presents a novel physics-informed neural network (PINN) framework for modeling poroelasticity in heterogeneous media with material interfaces. The approach introduces a composite neural network (CoNN) where separate neural networks predict displacement and pressure variables for each material. While sharing identical activation functions, these networks are independently trained for all other parameters. To address challenges posed by heterogeneous material interfaces, the CoNN is integrated with the Interface-PINNs (I-PINNs) framework (Sarma et al., Comput. Methods Appl. Mech. Eng. 429: 117135, 2024), allowing different activation functions across material interfaces. This ensures accurate approximation of discontinuous solution fields and gradients. Performance and accuracy of this combined architecture were evaluated against the conventional PINNs approach, a single neural network (SNN) architecture, and the eXtended PINNs (XPINNs) framework through two one-dimensional benchmark examples with discontinuous material properties. The results show that the proposed CoNN with I-PINNs architecture achieves an RMSE that is two orders of magnitude better than the conventional PINNs approach and is at least 40 times faster than the SNN framework. Compared to XPINNs, the proposed method achieves an RMSE at least one order of magnitude better and is 40% faster. This study presents a novel physics-informed neural network (PINN) framework for modeling poroelasticity in heterogeneous media with material interfaces. The approach introduces a composite neural network (CoNN) where separate neural networks predict displacement and pressure variables for each material. While sharing identical activation functions, these networks are independently trained for all other parameters. To address challenges posed by heterogeneous material interfaces, the CoNN is integrated with the Interface-PINNs (I-PINNs) framework (Sarma et al., Comput. Methods Appl. Mech. Eng. 429: 117135, 2024), allowing different activation functions across material interfaces. Further, this ensures accurate approximation of discontinuous solution fields and gradients. Performance and accuracy of this combined architecture were evaluated against the conventional PINNs approach, a single neural network (SNN) architecture, and the eXtended PINNs (XPINNs) framework through two one-dimensional benchmark examples with discontinuous material properties. The results show that the proposed CoNN with I-PINNs architecture achieves an RMSE that is two orders of magnitude better than the conventional PINNs approach and is at least 40 times faster than the SNN framework. Compared to XPINNs, the proposed method achieves an RMSE at least one order of magnitude better and is 40% faster. |
| Author | Annavarapu, Chandrasekhar Roy, Pratanu Roy, Sumanta Valiveti, Dakshina M. |
| Author_xml | – sequence: 1 givenname: Sumanta surname: Roy fullname: Roy, Sumanta organization: Department of Civil Engineering, Indian Institute of Technology Madras – sequence: 2 givenname: Chandrasekhar surname: Annavarapu fullname: Annavarapu, Chandrasekhar organization: Department of Civil Engineering, Indian Institute of Technology Madras – sequence: 3 givenname: Pratanu surname: Roy fullname: Roy, Pratanu organization: Atmospheric, Earth and Energy Division, Lawrence Livermore National Laboratory – sequence: 4 givenname: Dakshina M. surname: Valiveti fullname: Valiveti, Dakshina M. organization: Engineering & Computational Physics, Energy Sciences & Research, ExxonMobil Technology and Engineering |
| BackLink | https://www.osti.gov/servlets/purl/2556941$$D View this record in Osti.gov |
| BookMark | eNqFkE1LAzEQhoMo2FZ_grB43zqb3Wy2eFHqJxT0oOeQzU5sdJuUJEX6703Z6sGDnmYY3ucdeMbk0DqLhJwVMC2ggYuCMaC04VMKtJrSqoKKwgEZ7e45pTN2-LM3_JiMQ3gHKGtaw4jcPC-3waiQG6udX2GXWdx42acRP53_CFk6Z0uM6N0bWnSbkK2dd9jLEI3KEmHkCTnSsg94up8T8np3-zJ_yBdP94_z60WuKpjFXMuacd1gW-oZkyWyppOKdryEline0rYrWqhlpaoOkYNuU16XnGuldKcBywk5H3pd-i2CMhHVUjlrUUVBGatnVZFCbAgp70LwqMXam5X0W1GA2PkS377EzpfY-0rc5S8u9ctonI1emv5f-mqgB48yues7EeW2d157aZUJovy74gsafYfS |
| CitedBy_id | crossref_primary_10_1016_j_finel_2025_104373 |
| Cites_doi | 10.1016/j.cam.2021.113995 10.1016/j.cma.2021.113741 10.48550/arXiv.2210.14795 10.1016/j.aej.2021.08.064 10.1002/nag.2154 10.1016/j.ijheatmasstransfer.2023.125089 10.1016/j.enpol.2013.11.034 10.56952/ARMA-2023-0760 10.1080/15502280802225234 10.1016/j.cma.2024.116813 10.1007/s10409-021-01148-1 10.1016/j.jcp.2018.11.039 10.1016/j.jngse.2017.10.012 10.1016/j.cma.2022.114909 10.48550/arXiv.1412.6980 10.1115/1.4050542 10.2172/964517 10.2118/50939-PA 10.1007/s10483-006-1001-z 10.1364/OE.384875 10.1007/978-1-4842-4470-8_7 10.48550/arXiv.2306.12749 10.4208/cicp.OA-2020-0164 10.1126/sciadv.abk0644 10.48550/arXiv.2308.08468 10.1080/15502287.2011.636789 10.1016/j.jcp.2018.10.045 10.1007/3-540-10861-0 10.1016/j.jcp.2021.110334 10.48550/arXiv.2210.12914 10.1016/j.jcp.2024.113299 10.1063/5.0116038 10.1080/15502280590923612 10.1080/15502280701252495 10.1016/j.cma.2022.115141 10.1016/j.cma.2020.113127 10.1016/j.cma.2024.117197 10.1016/j.cma.2024.117135 10.1109/TNN.2002.1000141 10.1007/BF02818935 10.48550/arXiv.2404.13909 10.1016/j.cam.2014.05.009 10.2110/pec.87.39.0321 10.1080/15502287.2023.2186974 10.48550/arXiv.2406.04626 10.1016/j.compfluid.2022.105583 10.48550/arXiv.2010.15426 |
| ContentType | Journal Article |
| Copyright | 2024 Taylor & Francis Group, LLC 2024 |
| Copyright_xml | – notice: 2024 Taylor & Francis Group, LLC 2024 |
| CorporateAuthor | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
| DBID | AAYXX CITATION OIOZB OTOTI |
| DOI | 10.1080/15502287.2024.2440420 |
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1550-2295 |
| EndPage | 207 |
| ExternalDocumentID | 2556941 10_1080_15502287_2024_2440420 2440420 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: ExxonMobil Corporation to the Subsurface Mechanics and Geo-Energy Laboratory grantid: SP22230020CEEXXU008957 – fundername: Ministry of Education, Government of India and IIT Madras grantid: SB20210856CEMHRD008957 – fundername: U.S. Department of Energy by Lawrence Livermore National Laboratory grantid: DE-AC52-07NA27344 |
| GroupedDBID | .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B FPAXQ GEVLZ GTTXZ H13 HF~ H~P J.P KYCEM LJTGL M4Z NA5 RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION OIOZB OTOTI |
| ID | FETCH-LOGICAL-c409t-fa657f8eb3f95a3e58dac2d730b5c7b2bd1b06a4c4dee70fba65f377fccfdf0e3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001383659200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1550-2287 |
| IngestDate | Mon Nov 03 02:25:53 EST 2025 Sat Nov 29 08:06:02 EST 2025 Tue Nov 18 21:38:08 EST 2025 Mon Oct 20 23:45:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-fa657f8eb3f95a3e58dac2d730b5c7b2bd1b06a4c4dee70fba65f377fccfdf0e3 |
| Notes | AC52-07NA27344 USDOE National Nuclear Security Administration (NNSA) LLNL--JRNL-860569 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/2556941 |
| PageCount | 21 |
| ParticipantIDs | crossref_primary_10_1080_15502287_2024_2440420 crossref_citationtrail_10_1080_15502287_2024_2440420 informaworld_taylorfrancis_310_1080_15502287_2024_2440420 osti_scitechconnect_2556941 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-04 |
| PublicationDateYYYYMMDD | 2025-03-04 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | International journal of computational methods in engineering science and mechanics |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | e_1_3_2_20_1 e_1_3_2_41_1 Liu S. (e_1_3_2_52_1) 2022; 35 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_10_1 Valiveti D. M. (e_1_3_2_12_1) 2023; 608 e_1_3_2_33_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_50_1 Williams C. K. (e_1_3_2_32_1) 2006 e_1_3_2_27_1 e_1_3_2_29_1 e_1_3_2_42_1 Glorot X. (e_1_3_2_49_1) 2010 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_25_1 e_1_3_2_48_1 Coussy O. (e_1_3_2_28_1) 2004 e_1_3_2_40_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_55_1 e_1_3_2_11_1 e_1_3_2_53_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_51_1 |
| References_xml | – volume-title: Poromechanics year: 2004 ident: e_1_3_2_28_1 – ident: e_1_3_2_8_1 doi: 10.1016/j.cam.2021.113995 – volume: 608 start-page: 730 issue: 11 year: 2023 ident: e_1_3_2_12_1 article-title: Grid modification during simulated fracture propagation publication-title: US Patent – ident: e_1_3_2_14_1 doi: 10.1016/j.cma.2021.113741 – ident: e_1_3_2_51_1 doi: 10.48550/arXiv.2210.14795 – ident: e_1_3_2_11_1 doi: 10.1016/j.aej.2021.08.064 – ident: e_1_3_2_30_1 doi: 10.1002/nag.2154 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: e_1_3_2_32_1 – ident: e_1_3_2_19_1 doi: 10.1016/j.ijheatmasstransfer.2023.125089 – ident: e_1_3_2_44_1 – ident: e_1_3_2_4_1 doi: 10.1016/j.enpol.2013.11.034 – ident: e_1_3_2_39_1 doi: 10.56952/ARMA-2023-0760 – ident: e_1_3_2_6_1 doi: 10.1080/15502280802225234 – ident: e_1_3_2_54_1 doi: 10.1016/j.cma.2024.116813 – ident: e_1_3_2_16_1 doi: 10.1007/s10409-021-01148-1 – ident: e_1_3_2_10_1 doi: 10.1016/j.jcp.2018.11.039 – ident: e_1_3_2_7_1 doi: 10.1016/j.jngse.2017.10.012 – ident: e_1_3_2_46_1 doi: 10.1016/j.cma.2022.114909 – ident: e_1_3_2_43_1 doi: 10.48550/arXiv.1412.6980 – ident: e_1_3_2_18_1 doi: 10.1115/1.4050542 – ident: e_1_3_2_3_1 doi: 10.2172/964517 – ident: e_1_3_2_5_1 doi: 10.2118/50939-PA – volume: 35 start-page: 20 year: 2022 ident: e_1_3_2_52_1 article-title: A unified hard-constraint framework for solving geometrically complex PDES publication-title: Advances Neural Inform. Processing Syst. – ident: e_1_3_2_29_1 doi: 10.1007/s10483-006-1001-z – ident: e_1_3_2_21_1 doi: 10.1364/OE.384875 – ident: e_1_3_2_45_1 doi: 10.1007/978-1-4842-4470-8_7 – ident: e_1_3_2_20_1 – start-page: 249 volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings year: 2010 ident: e_1_3_2_49_1 – ident: e_1_3_2_50_1 doi: 10.48550/arXiv.2306.12749 – ident: e_1_3_2_27_1 doi: 10.4208/cicp.OA-2020-0164 – ident: e_1_3_2_15_1 doi: 10.1126/sciadv.abk0644 – ident: e_1_3_2_48_1 doi: 10.48550/arXiv.2308.08468 – ident: e_1_3_2_35_1 doi: 10.1080/15502287.2011.636789 – ident: e_1_3_2_13_1 doi: 10.1016/j.jcp.2018.10.045 – ident: e_1_3_2_37_1 doi: 10.1007/3-540-10861-0 – ident: e_1_3_2_9_1 doi: 10.1016/j.jcp.2021.110334 – ident: e_1_3_2_42_1 doi: 10.48550/arXiv.2210.12914 – ident: e_1_3_2_25_1 doi: 10.1016/j.jcp.2024.113299 – ident: e_1_3_2_40_1 doi: 10.1063/5.0116038 – ident: e_1_3_2_34_1 doi: 10.1080/15502280590923612 – ident: e_1_3_2_33_1 doi: 10.1080/15502280701252495 – ident: e_1_3_2_22_1 doi: 10.1016/j.cma.2022.115141 – ident: e_1_3_2_17_1 doi: 10.1016/j.cma.2020.113127 – ident: e_1_3_2_55_1 doi: 10.1016/j.cma.2024.117197 – ident: e_1_3_2_26_1 doi: 10.1016/j.cma.2024.117135 – ident: e_1_3_2_38_1 doi: 10.1109/TNN.2002.1000141 – ident: e_1_3_2_36_1 doi: 10.1007/BF02818935 – ident: e_1_3_2_24_1 doi: 10.48550/arXiv.2404.13909 – ident: e_1_3_2_53_1 doi: 10.1016/j.cam.2014.05.009 – ident: e_1_3_2_2_1 doi: 10.2110/pec.87.39.0321 – ident: e_1_3_2_31_1 doi: 10.1080/15502287.2023.2186974 – ident: e_1_3_2_41_1 doi: 10.48550/arXiv.2406.04626 – ident: e_1_3_2_47_1 doi: 10.1016/j.compfluid.2022.105583 – ident: e_1_3_2_23_1 doi: 10.48550/arXiv.2010.15426 |
| SSID | ssj0036260 |
| Score | 2.3451724 |
| Snippet | This study presents a novel physics-informed neural network (PINN) framework for modeling poroelasticity in heterogeneous media with material interfaces. The... |
| SourceID | osti crossref informaworld |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 187 |
| SubjectTerms | coupled problems deep neural network ENGINEERING physics-constrained machine learning Physics-informed neural networks poromechanics scientific machine learning |
| Title | Physics-informed neural networks for heterogeneous poroelastic media |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15502287.2024.2440420 https://www.osti.gov/servlets/purl/2556941 |
| Volume | 26 |
| WOSCitedRecordID | wos001383659200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1550-2295 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036260 issn: 1550-2287 databaseCode: TFW dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcBCeYpSQB5YXRLHeY0IqJgqhiK6WfFLIKEENWl_P3eJg9oBdYA1yZ2ss8_-Lvr8HSG3sYtsIETOXJJzJpIiZ1A2K8ad4qEKVWR512winc2yxSJ_8WzC2tMqsYZ2nVBEu1djcheq7hlxd4iqOSB9qO64mHBUuONYtcPRj6k5n771ezFqrbRXIsGCoUl_h-c3L1un05Z2KWzZFSTdxuEzHf7DsI_IoUee9L5bKsdkz5YnZOhRKPU5Xp-Sx5YUqmvWjQveoeYlWJYdY7ym8Ji-I42mgtVnq1VNAcRXFnA4uKbtXZQz8jp9mj88M99rgWmo8BrmiiROXQaltcvjIrJxZgrNDeS_inWquDKhCpJCaGGsTQOn4HsXpanT2hkX2OicDMqqtBeEAuDIjMEOwCIVVuks0-BWcUBKhUrCZEREH2OpvRA59sP4lKHXK-0jJTFS0kdqRCY_Zl-dEscug3xzAmXT_gJxXb8SGe2wHeNsS4AhqKWrkXSkG4l6bbkIL__geUwOOLYQRhqbuCKDZrmy12Rfr5uPennTrt5v98rqbw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLYQIMGF8RRjPHrgmrGm6euIgGmIsdMQu0VNmggk1KK14_dj94G2A9oBrk1tRU7ifI7szwDXvvXMQIiY2SDmTARJzDBsVoxbxV3lKs_wutlEOJlEs1m8XAtDaZUUQ9uaKKLy1XS46TG6TYm7IVjNEepjeMdFnxPFHcewfcvHu5b486fD19YbE9tKVRSJIoxk2iqe39Ss3E8r7KXotHM8dkvXz7DzHxPfh70GfDq39W45gA2THUKnAaJOc8yLI7iv8kJ1weqJ4RjRXqJkVieNFw5-dt4okybHDWjyReEgjs8NQnFU7VTlKMfwMnyY3o1Y026BaQzySmaTwA9thNG1jf3EM36UJpqn6AKUr0PFVeqqQZAILVJjwoFV-L_1wtBqbVM7MN4JbGZ5Zk7BQcwRpSk1ARahMEpHkUa1iiNYSlTgBl0QrZGlbrjIqSXGh3QbytLWUpIsJRtLdaH_I_ZZk3GsE4iXV1CW1SuIrVuWSG-NbI-WWyISITpdTXlHupRE2RYL9-wPmq9gZzR9Hsvx4-SpB7ucOgpTVps4h81yvjAXsK2_yvdifllt5W_ecO6Z |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQQYiF8hSlPDKwujSO8xoRJQKBqg5FdLNixxZIKKmalN_PXeKgdkAdYE1yJ8s-n7-LPn9HyI1vPD3kPKYmiBnlQRpTKJslZUYyV7rS06xpNhGOx9FsFk8sm7C0tEqsoU0jFFHnatzc88y0jLhbRNUMkD5Ud4wPGCrcMajatwE6Bxjk0-StTcYotlLfiQQTijbtJZ7f3KwdT2vipZCzC9h1K6dP0v2HcR-QfQs9nbsmVg7Jls6PSNfCUMdu8vKYjGpWqCppMy54h6KXYJk3lPHSgcfOO_JoCgg_XSxLB1B8oQGIg2unvoxyQl6Th-n9I7XNFqiCEq-iJg380ERQW5vYTz3tR1mqWAYJQPoqlExmrhwGKVc80zocGgnfGy8MjVImM0PtnZJOXuT6jDiAOKIswxbAPORaqihS4FYygEqpDNygR3g7x0JZJXJsiPEpXCtY2s6UwJkSdqZ6ZPBjNm-kODYZxKsLKKr6H4hpGpYIb4NtH1dbAA5BMV2FrCNVCRRsi7l7_gfP12R3MkrEy9P4uU_2GLYTRkobvyCdarHUl2RHfVUf5eKqDuRvFjrtSw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+neural+networks+for+heterogeneous+poroelastic+media&rft.jtitle=International+journal+of+computational+methods+in+engineering+science+and+mechanics&rft.au=Roy%2C+Sumanta&rft.au=Annavarapu%2C+Chandrasekhar&rft.au=Roy%2C+Pratanu&rft.au=Valiveti%2C+Dakshina+M.&rft.date=2025-03-04&rft.issn=1550-2287&rft.eissn=1550-2295&rft.volume=26&rft.issue=2&rft.spage=187&rft.epage=207&rft_id=info:doi/10.1080%2F15502287.2024.2440420&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15502287_2024_2440420 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-2287&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-2287&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-2287&client=summon |