Integer programming models for mid-term production planning for high-tech low-volume supply chains
•Our model supports different production modes and semi-flexible capacity constraints.•Our first formulation assigns resources explicitly and extends existing literature.•Benders, decomposition results in a second formulation, which assigns resources implicitly.•A maximum flow problem finds feasibil...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 269; číslo 3; s. 984 - 997 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
16.09.2018
|
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Our model supports different production modes and semi-flexible capacity constraints.•Our first formulation assigns resources explicitly and extends existing literature.•Benders, decomposition results in a second formulation, which assigns resources implicitly.•A maximum flow problem finds feasibility cuts, which are added when needed.•Realistic test cases show that the second formulation solves faster than the first.
This paper studies the mid-term production planning of high-tech low-volume industries. Mid-term production planning (6 to 24 months) allocates the capacity of production resources to different products over time and coordinates the associated inventories and material inputs so that known or predicted demand is met in the best possible manner. High-tech low-volume industries can be characterized by the limited production quantities and the complexity of the supply chain. To model this, we introduce a mixed integer linear programming model that can handle general supply chains and production processes that require multiple resources. Furthermore, it supports semi-flexible capacity constraints and multiple production modes.
Because of the integer production variables, size of realistic instances and complexity of the model, this model is not easily solved by a commercial solver. Applying Benders’ decomposition results in alternative capacity constraints and a second formulation of the problem. Where the first formulation assigns resources explicitly to release orders, the second formulation assures that the available capacity in any subset of the planning horizon is sufficient. Since the number of alternative capacity constraints is exponential, we first solve the second formulation without capacity constraints. Each time an incumbent is found during the branch and bound process a maximum flow problem is used to find missing constraints. If a missing constraint is found it is added and the branch and bound process is restarted. Results from a realistic test case show that utilizing this algorithm to solve the second formulation is significantly faster than solving the first formulation. |
|---|---|
| AbstractList | •Our model supports different production modes and semi-flexible capacity constraints.•Our first formulation assigns resources explicitly and extends existing literature.•Benders, decomposition results in a second formulation, which assigns resources implicitly.•A maximum flow problem finds feasibility cuts, which are added when needed.•Realistic test cases show that the second formulation solves faster than the first.
This paper studies the mid-term production planning of high-tech low-volume industries. Mid-term production planning (6 to 24 months) allocates the capacity of production resources to different products over time and coordinates the associated inventories and material inputs so that known or predicted demand is met in the best possible manner. High-tech low-volume industries can be characterized by the limited production quantities and the complexity of the supply chain. To model this, we introduce a mixed integer linear programming model that can handle general supply chains and production processes that require multiple resources. Furthermore, it supports semi-flexible capacity constraints and multiple production modes.
Because of the integer production variables, size of realistic instances and complexity of the model, this model is not easily solved by a commercial solver. Applying Benders’ decomposition results in alternative capacity constraints and a second formulation of the problem. Where the first formulation assigns resources explicitly to release orders, the second formulation assures that the available capacity in any subset of the planning horizon is sufficient. Since the number of alternative capacity constraints is exponential, we first solve the second formulation without capacity constraints. Each time an incumbent is found during the branch and bound process a maximum flow problem is used to find missing constraints. If a missing constraint is found it is added and the branch and bound process is restarted. Results from a realistic test case show that utilizing this algorithm to solve the second formulation is significantly faster than solving the first formulation. |
| Author | de Kok, Ton G. Hurkens, Cor A.J. de Kruijff, Joost T. |
| Author_xml | – sequence: 1 givenname: Joost T. surname: de Kruijff fullname: de Kruijff, Joost T. email: j.t.d.kruijff@tue.nl organization: Eindhoven University of Technology, Department of Industrial Engineering and Innovation Sciences, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands – sequence: 2 givenname: Cor A.J. surname: Hurkens fullname: Hurkens, Cor A.J. email: c.a.j.hurkens@tue.nl organization: Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands – sequence: 3 givenname: Ton G. orcidid: 0000-0001-8622-8599 surname: de Kok fullname: de Kok, Ton G. email: a.g.d.kok@tue.nl organization: Eindhoven University of Technology, Department of Industrial Engineering and Innovation Sciences, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands |
| BookMark | eNp9kD1vgzAQQK0qlZqk_QOd-ANQ24DBUpcq6kekSF3a2TL2AUZgI5ukyr8vKJ06ZLrh3jvp3gatrLOA0CPBCcGEPXUJdM4nFJMywTTBGb9Ba1IWNGYlwyu0xmlRxJSS4g5tQugwxiQn-RpVeztBAz4avWu8HAZjm2hwGvoQ1c5Hg9HxBH5Y9vqoJuNsNPbS2oVbgNY07UyoNurdT3xy_XGAKBzHsT9HqpXGhnt0W8s-wMPf3KLvt9ev3Ud8-Hzf714Oscown-KaQ50xDRQ4p4xwzSWtMSt1DlWV8yIlVYZrIqnMVVFlssqylFdcAytozWSZbhG93FXeheChFqM3g_RnQbBYKolOLJXEUklgKuZKs1T-k5SZ5PLm5KXpr6vPF3VuBScDXgRlwCrQxoOahHbmmv4LHpaIGA |
| CitedBy_id | crossref_primary_10_1007_s12597_019_00435_7 crossref_primary_10_1007_s40819_021_00965_z crossref_primary_10_3390_designs7040084 crossref_primary_10_1016_j_knosys_2023_110980 crossref_primary_10_1016_j_jii_2021_100287 crossref_primary_10_1016_j_ejor_2019_08_017 crossref_primary_10_1080_24725854_2019_1670372 crossref_primary_10_3390_app132111741 crossref_primary_10_3390_su12072980 |
| Cites_doi | 10.1112/jlms/s1-10.37.26 10.1007/s00291-008-0150-7 10.1016/j.ejor.2004.03.001 10.1007/BF01386316 10.1016/j.ejor.2014.05.036 10.1137/S0097539799356265 10.1080/00207540600902262 10.1016/j.ejor.2004.01.019 10.1016/j.ejor.2016.12.005 10.1016/S0925-5273(99)00011-0 10.1080/00207540500270406 10.1016/S0927-0507(03)11012-2 10.1016/j.ejor.2010.03.037 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2018.02.049 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 997 |
| ExternalDocumentID | 10_1016_j_ejor_2018_02_049 S0377221718301826 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c409t-f9ef46de2e992619d9a2f068d5ebb59731b40f1a2a5c7b4ab4439b9de672f6a83 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432768700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sat Nov 29 05:34:35 EST 2025 Tue Nov 18 22:11:22 EST 2025 Fri Feb 23 02:27:40 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Integer programming Branch and bound Production |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c409t-f9ef46de2e992619d9a2f068d5ebb59731b40f1a2a5c7b4ab4439b9de672f6a83 |
| ORCID | 0000-0001-8622-8599 |
| OpenAccessLink | https://research.tue.nl/nl/publications/fcaf196f-9db7-4812-b112-bae0ff94a05b |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1016_j_ejor_2018_02_049 crossref_citationtrail_10_1016_j_ejor_2018_02_049 elsevier_sciencedirect_doi_10_1016_j_ejor_2018_02_049 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-16 |
| PublicationDateYYYYMMDD | 2018-09-16 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Silver, Pyke, Peterson (bib0018) 1998; Vol. 3 Spitter (bib0019) 2005 Voß, Woodruff (bib0023) 2006; vol. 240 Stadtler (bib0022) 2005; 163 Missbauer, Uzsoy (bib0015) 2011 Fleischmann, Meyr, Wagner (bib0006) 2015 Kolisch (bib0013) 2000; 68 Spitter, Hurkens, de Kok, Lenstra, Negenman (bib0020) 2005; 163 de Kruijff (bib0014) 2014 Stadtler (bib0021) 2005; 43 Weglarz, Jozefowska, Mika, Waligora (bib0024) 2011; 208 Chekuri, Khanna (bib0005) 2004; 33 Gort (bib0008) 2013 Ford Jr, Fulkerson (bib0007) 1955 Naber, Kolisch (bib0016) 2014; 239 Hall (bib0009) 1935; 10 Jansen (bib0011) 2012 de Kok, Fransoo (bib0012) 2003; 11 Jans, Degraeve (bib0010) 2008; 46 Albrecht, Rohde, Wagner (bib0001) 2015 Rahmaniani, Crainic, Gendreau, Rei (bib0017) 2017; 259 Benders (bib0002) 1962; 4 Bertrand, Wortmann, Wijngaard (bib0003) 1990 Buschkühl, Sahling, Helber, Tempelmeier (bib0004) 2010; 32 Jansen (10.1016/j.ejor.2018.02.049_bib0011) 2012 Naber (10.1016/j.ejor.2018.02.049_bib0016) 2014; 239 de Kruijff (10.1016/j.ejor.2018.02.049_bib0014) 2014 Ford Jr (10.1016/j.ejor.2018.02.049_bib0007) 1955 Stadtler (10.1016/j.ejor.2018.02.049_bib0022) 2005; 163 Jans (10.1016/j.ejor.2018.02.049_bib0010) 2008; 46 Rahmaniani (10.1016/j.ejor.2018.02.049_bib0017) 2017; 259 Silver (10.1016/j.ejor.2018.02.049_bib0018) 1998; Vol. 3 de Kok (10.1016/j.ejor.2018.02.049_bib0012) 2003; 11 Voß (10.1016/j.ejor.2018.02.049_bib0023) 2006; vol. 240 Chekuri (10.1016/j.ejor.2018.02.049_bib0005) 2004; 33 Spitter (10.1016/j.ejor.2018.02.049_bib0020) 2005; 163 Weglarz (10.1016/j.ejor.2018.02.049_bib0024) 2011; 208 Stadtler (10.1016/j.ejor.2018.02.049_bib0021) 2005; 43 Kolisch (10.1016/j.ejor.2018.02.049_bib0013) 2000; 68 Gort (10.1016/j.ejor.2018.02.049_bib0008) 2013 Missbauer (10.1016/j.ejor.2018.02.049_bib0015) 2011 Benders (10.1016/j.ejor.2018.02.049_bib0002) 1962; 4 Fleischmann (10.1016/j.ejor.2018.02.049_bib0006) 2015 Spitter (10.1016/j.ejor.2018.02.049_bib0019) 2005 Hall (10.1016/j.ejor.2018.02.049_bib0009) 1935; 10 Bertrand (10.1016/j.ejor.2018.02.049_bib0003) 1990 Buschkühl (10.1016/j.ejor.2018.02.049_bib0004) 2010; 32 Albrecht (10.1016/j.ejor.2018.02.049_bib0001) 2015 |
| References_xml | – year: 2005 ident: bib0019 publication-title: Rolling schedule approaches for supply chain operations planning – start-page: 155 year: 2015 end-page: 175 ident: bib0001 article-title: Master planning publication-title: Supply chain management and advanced planning – volume: 11 start-page: 597 year: 2003 end-page: 675 ident: bib0012 article-title: Planning supply chain operations: definition and comparison of planning concepts publication-title: Handbooks in operations research and management science – volume: 259 start-page: 801 year: 2017 end-page: 817 ident: bib0017 article-title: The benders decomposition algorithm: A literature review publication-title: European Journal of Operational Research – year: 1955 ident: bib0007 article-title: A simple algorithm for finding maximal network flows and an application to the Hitchcock problem publication-title: Technical Report – year: 1990 ident: bib0003 publication-title: Production control: a structural and design oriented approach – volume: vol. 240 year: 2006 ident: bib0023 article-title: Introduction to computational optimization models for production planning in a supply chain – volume: 32 start-page: 231 year: 2010 end-page: 261 ident: bib0004 article-title: Dynamic capacitated lot-sizing problems: a classification and review of solution approaches publication-title: Or Spectrum – year: 2013 ident: bib0008 publication-title: Extending the scop lp model with flexible and resource availability dependent planned lead times – volume: 208 start-page: 177 year: 2011 end-page: 205 ident: bib0024 article-title: Project scheduling with finite or infinite number of activity processing modes–a survey publication-title: European Journal of Operational Research – volume: 46 start-page: 1619 year: 2008 end-page: 1643 ident: bib0010 article-title: Modeling industrial lot sizing problems: a review publication-title: International Journal of Production Research – volume: 68 start-page: 287 year: 2000 end-page: 306 ident: bib0013 article-title: Integration of assembly and fabrication for make-to-order production publication-title: International Journal of Production Economics – start-page: 71 year: 2015 end-page: 95 ident: bib0006 article-title: Advanced planning publication-title: Supply chain management and advanced planning – volume: 33 start-page: 837 year: 2004 end-page: 851 ident: bib0005 article-title: On multidimensional packing problems publication-title: SIAM Journal on Computing – year: 2012 ident: bib0011 publication-title: Anticipation in supply chain operations planning – volume: Vol. 3 year: 1998 ident: bib0018 article-title: Inventory management and production planning and scheduling – volume: 4 start-page: 238 year: 1962 end-page: 252 ident: bib0002 article-title: Partitioning procedures for solving mixed-variables programming problems publication-title: Numerische Mathematik – volume: 43 start-page: 5253 year: 2005 end-page: 5270 ident: bib0021 article-title: Multilevel capacitated lot-sizing and resource-constrained project scheduling: An integrating perspective publication-title: International Journal of Production Research – volume: 239 start-page: 335 year: 2014 end-page: 348 ident: bib0016 article-title: Mip models for resource-constrained project scheduling with flexible resource profiles publication-title: European Journal of Operational Research – volume: 163 start-page: 706 year: 2005 end-page: 720 ident: bib0020 article-title: Linear programming models with planned lead times for supply chain operations planning publication-title: European Journal of Operational Research – volume: 163 start-page: 575 year: 2005 end-page: 588 ident: bib0022 article-title: Supply chain management and advanced planning–basics, overview and challenges publication-title: European Journal of Operational Research – start-page: 437 year: 2011 end-page: 507 ident: bib0015 article-title: Optimization models of production planning problems publication-title: Planning production and inventories in the extended enterprise – volume: 10 start-page: 26 year: 1935 end-page: 30 ident: bib0009 article-title: On representatives of subsets publication-title: Journal of the London Mathematical Society – year: 2014 ident: bib0014 publication-title: Speeding up supply chain planning at a high-tech company – year: 2012 ident: 10.1016/j.ejor.2018.02.049_bib0011 – start-page: 71 year: 2015 ident: 10.1016/j.ejor.2018.02.049_bib0006 article-title: Advanced planning – volume: Vol. 3 year: 1998 ident: 10.1016/j.ejor.2018.02.049_bib0018 – volume: 10 start-page: 26 issue: 1 year: 1935 ident: 10.1016/j.ejor.2018.02.049_bib0009 article-title: On representatives of subsets publication-title: Journal of the London Mathematical Society doi: 10.1112/jlms/s1-10.37.26 – volume: 32 start-page: 231 issue: 2 year: 2010 ident: 10.1016/j.ejor.2018.02.049_bib0004 article-title: Dynamic capacitated lot-sizing problems: a classification and review of solution approaches publication-title: Or Spectrum doi: 10.1007/s00291-008-0150-7 – volume: 163 start-page: 575 issue: 3 year: 2005 ident: 10.1016/j.ejor.2018.02.049_bib0022 article-title: Supply chain management and advanced planning–basics, overview and challenges publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.03.001 – year: 2014 ident: 10.1016/j.ejor.2018.02.049_bib0014 – volume: 4 start-page: 238 issue: 1 year: 1962 ident: 10.1016/j.ejor.2018.02.049_bib0002 article-title: Partitioning procedures for solving mixed-variables programming problems publication-title: Numerische Mathematik doi: 10.1007/BF01386316 – volume: 239 start-page: 335 issue: 2 year: 2014 ident: 10.1016/j.ejor.2018.02.049_bib0016 article-title: Mip models for resource-constrained project scheduling with flexible resource profiles publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2014.05.036 – volume: 33 start-page: 837 issue: 4 year: 2004 ident: 10.1016/j.ejor.2018.02.049_bib0005 article-title: On multidimensional packing problems publication-title: SIAM Journal on Computing doi: 10.1137/S0097539799356265 – volume: 46 start-page: 1619 issue: 6 year: 2008 ident: 10.1016/j.ejor.2018.02.049_bib0010 article-title: Modeling industrial lot sizing problems: a review publication-title: International Journal of Production Research doi: 10.1080/00207540600902262 – volume: 163 start-page: 706 issue: 3 year: 2005 ident: 10.1016/j.ejor.2018.02.049_bib0020 article-title: Linear programming models with planned lead times for supply chain operations planning publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2004.01.019 – volume: 259 start-page: 801 issue: 3 year: 2017 ident: 10.1016/j.ejor.2018.02.049_bib0017 article-title: The benders decomposition algorithm: A literature review publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.12.005 – volume: vol. 240 year: 2006 ident: 10.1016/j.ejor.2018.02.049_bib0023 – year: 2013 ident: 10.1016/j.ejor.2018.02.049_bib0008 – volume: 68 start-page: 287 issue: 3 year: 2000 ident: 10.1016/j.ejor.2018.02.049_bib0013 article-title: Integration of assembly and fabrication for make-to-order production publication-title: International Journal of Production Economics doi: 10.1016/S0925-5273(99)00011-0 – volume: 43 start-page: 5253 issue: 24 year: 2005 ident: 10.1016/j.ejor.2018.02.049_bib0021 article-title: Multilevel capacitated lot-sizing and resource-constrained project scheduling: An integrating perspective publication-title: International Journal of Production Research doi: 10.1080/00207540500270406 – start-page: 155 year: 2015 ident: 10.1016/j.ejor.2018.02.049_bib0001 article-title: Master planning – year: 2005 ident: 10.1016/j.ejor.2018.02.049_bib0019 – volume: 11 start-page: 597 year: 2003 ident: 10.1016/j.ejor.2018.02.049_bib0012 article-title: Planning supply chain operations: definition and comparison of planning concepts doi: 10.1016/S0927-0507(03)11012-2 – year: 1990 ident: 10.1016/j.ejor.2018.02.049_bib0003 – year: 1955 ident: 10.1016/j.ejor.2018.02.049_bib0007 article-title: A simple algorithm for finding maximal network flows and an application to the Hitchcock problem – volume: 208 start-page: 177 issue: 3 year: 2011 ident: 10.1016/j.ejor.2018.02.049_bib0024 article-title: Project scheduling with finite or infinite number of activity processing modes–a survey publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2010.03.037 – start-page: 437 year: 2011 ident: 10.1016/j.ejor.2018.02.049_bib0015 article-title: Optimization models of production planning problems |
| SSID | ssj0001515 |
| Score | 2.343262 |
| Snippet | •Our model supports different production modes and semi-flexible capacity constraints.•Our first formulation assigns resources explicitly and extends existing... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 984 |
| SubjectTerms | Branch and bound Integer programming Production |
| Title | Integer programming models for mid-term production planning for high-tech low-volume supply chains |
| URI | https://dx.doi.org/10.1016/j.ejor.2018.02.049 |
| Volume | 269 |
| WOSCitedRecordID | wos000432768700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFiE48BFALQW0B27WWvb6c49R1QpyqDgEKTfL611LCaldJWkpf4Vf2xnvrmNKqeiBixU5u2sn8zI7nsy8R8inVFVRUHNML0WKxbUqWal4wgItdBhWOuNp3YlNZGdn-Xwuvo5Gv1wvzNUqa5r8-lpc_FdTwzkwNrbOPsDc_aJwAl6D0eEIZofjPxkec3zYymsrr84xF9Dp3XTMC975QjF0x_i-MtSxKCXdKRd1A5DAmCG1q7dqfzDjvbwNin_-xDbhhU3v3ZXNt5EtnFi7HKMlE-qTzkqDX7lcLA0Z5LRtN1tv5u_Atf6uTWR_DLcy8af-cGJryrqRCMQfpivCrrbCdFO6Nq0sY5ybhk3ngrmRa7FYiwYOVRgBObs3C1PL-4fbNxmIpa-XLXK8hnnHw2q4UH_n2L619_UVia7YbVngGgWuUQS8gDUekX2eJQKc_v7ky8l82u_zGAp2_1HZD2Rbskz14O07uTvsGYQys5fkuX0GoRODnVdkpJsxeeJaIMbkhZP6oNbzj8mzAW_layItxugAY9RgjAKEqMMY3WGMOox1A3qM0R3GqMEYNRh7Q76dnsyOPzMr1sGqOBBbVgtdx6nSXAuBT-VKlLwO0lwlWsoEBdJkHNRhycukymRcyhhCYSmUTjNep2UevSV7TdvoA0IrCduwDCG2qiD4hAVzlQdRzmUkkW6xOiSh-y6LyjLZo6DKqvi7FQ-J18-5MDwu945OnIkKG4maCLMAxN0z792DrnJEnu5-Ie_J3nZ9qT-Qx9XVdrFZf7RwuwEJRa3m |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+programming+models+for+mid-term+production+planning+for+high-tech+low-volume+supply+chains&rft.jtitle=European+journal+of+operational+research&rft.au=de+Kruijff%2C+Joost+T.&rft.au=Hurkens%2C+Cor+A.J.&rft.au=de+Kok%2C+Ton+G.&rft.date=2018-09-16&rft.issn=0377-2217&rft.volume=269&rft.issue=3&rft.spage=984&rft.epage=997&rft_id=info:doi/10.1016%2Fj.ejor.2018.02.049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2018_02_049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |