Integer programming models for mid-term production planning for high-tech low-volume supply chains

•Our model supports different production modes and semi-flexible capacity constraints.•Our first formulation assigns resources explicitly and extends existing literature.•Benders, decomposition results in a second formulation, which assigns resources implicitly.•A maximum flow problem finds feasibil...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 269; číslo 3; s. 984 - 997
Hlavní autoři: de Kruijff, Joost T., Hurkens, Cor A.J., de Kok, Ton G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 16.09.2018
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Our model supports different production modes and semi-flexible capacity constraints.•Our first formulation assigns resources explicitly and extends existing literature.•Benders, decomposition results in a second formulation, which assigns resources implicitly.•A maximum flow problem finds feasibility cuts, which are added when needed.•Realistic test cases show that the second formulation solves faster than the first. This paper studies the mid-term production planning of high-tech low-volume industries. Mid-term production planning (6 to 24 months) allocates the capacity of production resources to different products over time and coordinates the associated inventories and material inputs so that known or predicted demand is met in the best possible manner. High-tech low-volume industries can be characterized by the limited production quantities and the complexity of the supply chain. To model this, we introduce a mixed integer linear programming model that can handle general supply chains and production processes that require multiple resources. Furthermore, it supports semi-flexible capacity constraints and multiple production modes. Because of the integer production variables, size of realistic instances and complexity of the model, this model is not easily solved by a commercial solver. Applying Benders’ decomposition results in alternative capacity constraints and a second formulation of the problem. Where the first formulation assigns resources explicitly to release orders, the second formulation assures that the available capacity in any subset of the planning horizon is sufficient. Since the number of alternative capacity constraints is exponential, we first solve the second formulation without capacity constraints. Each time an incumbent is found during the branch and bound process a maximum flow problem is used to find missing constraints. If a missing constraint is found it is added and the branch and bound process is restarted. Results from a realistic test case show that utilizing this algorithm to solve the second formulation is significantly faster than solving the first formulation.
AbstractList •Our model supports different production modes and semi-flexible capacity constraints.•Our first formulation assigns resources explicitly and extends existing literature.•Benders, decomposition results in a second formulation, which assigns resources implicitly.•A maximum flow problem finds feasibility cuts, which are added when needed.•Realistic test cases show that the second formulation solves faster than the first. This paper studies the mid-term production planning of high-tech low-volume industries. Mid-term production planning (6 to 24 months) allocates the capacity of production resources to different products over time and coordinates the associated inventories and material inputs so that known or predicted demand is met in the best possible manner. High-tech low-volume industries can be characterized by the limited production quantities and the complexity of the supply chain. To model this, we introduce a mixed integer linear programming model that can handle general supply chains and production processes that require multiple resources. Furthermore, it supports semi-flexible capacity constraints and multiple production modes. Because of the integer production variables, size of realistic instances and complexity of the model, this model is not easily solved by a commercial solver. Applying Benders’ decomposition results in alternative capacity constraints and a second formulation of the problem. Where the first formulation assigns resources explicitly to release orders, the second formulation assures that the available capacity in any subset of the planning horizon is sufficient. Since the number of alternative capacity constraints is exponential, we first solve the second formulation without capacity constraints. Each time an incumbent is found during the branch and bound process a maximum flow problem is used to find missing constraints. If a missing constraint is found it is added and the branch and bound process is restarted. Results from a realistic test case show that utilizing this algorithm to solve the second formulation is significantly faster than solving the first formulation.
Author de Kok, Ton G.
Hurkens, Cor A.J.
de Kruijff, Joost T.
Author_xml – sequence: 1
  givenname: Joost T.
  surname: de Kruijff
  fullname: de Kruijff, Joost T.
  email: j.t.d.kruijff@tue.nl
  organization: Eindhoven University of Technology, Department of Industrial Engineering and Innovation Sciences, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
– sequence: 2
  givenname: Cor A.J.
  surname: Hurkens
  fullname: Hurkens, Cor A.J.
  email: c.a.j.hurkens@tue.nl
  organization: Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
– sequence: 3
  givenname: Ton G.
  orcidid: 0000-0001-8622-8599
  surname: de Kok
  fullname: de Kok, Ton G.
  email: a.g.d.kok@tue.nl
  organization: Eindhoven University of Technology, Department of Industrial Engineering and Innovation Sciences, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
BookMark eNp9kD1vgzAQQK0qlZqk_QOd-ANQ24DBUpcq6kekSF3a2TL2AUZgI5ukyr8vKJ06ZLrh3jvp3gatrLOA0CPBCcGEPXUJdM4nFJMywTTBGb9Ba1IWNGYlwyu0xmlRxJSS4g5tQugwxiQn-RpVeztBAz4avWu8HAZjm2hwGvoQ1c5Hg9HxBH5Y9vqoJuNsNPbS2oVbgNY07UyoNurdT3xy_XGAKBzHsT9HqpXGhnt0W8s-wMPf3KLvt9ev3Ud8-Hzf714Oscown-KaQ50xDRQ4p4xwzSWtMSt1DlWV8yIlVYZrIqnMVVFlssqylFdcAytozWSZbhG93FXeheChFqM3g_RnQbBYKolOLJXEUklgKuZKs1T-k5SZ5PLm5KXpr6vPF3VuBScDXgRlwCrQxoOahHbmmv4LHpaIGA
CitedBy_id crossref_primary_10_1007_s12597_019_00435_7
crossref_primary_10_1007_s40819_021_00965_z
crossref_primary_10_3390_designs7040084
crossref_primary_10_1016_j_knosys_2023_110980
crossref_primary_10_1016_j_jii_2021_100287
crossref_primary_10_1016_j_ejor_2019_08_017
crossref_primary_10_1080_24725854_2019_1670372
crossref_primary_10_3390_app132111741
crossref_primary_10_3390_su12072980
Cites_doi 10.1112/jlms/s1-10.37.26
10.1007/s00291-008-0150-7
10.1016/j.ejor.2004.03.001
10.1007/BF01386316
10.1016/j.ejor.2014.05.036
10.1137/S0097539799356265
10.1080/00207540600902262
10.1016/j.ejor.2004.01.019
10.1016/j.ejor.2016.12.005
10.1016/S0925-5273(99)00011-0
10.1080/00207540500270406
10.1016/S0927-0507(03)11012-2
10.1016/j.ejor.2010.03.037
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2018.02.049
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 997
ExternalDocumentID 10_1016_j_ejor_2018_02_049
S0377221718301826
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
ID FETCH-LOGICAL-c409t-f9ef46de2e992619d9a2f068d5ebb59731b40f1a2a5c7b4ab4439b9de672f6a83
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432768700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 05:34:35 EST 2025
Tue Nov 18 22:11:22 EST 2025
Fri Feb 23 02:27:40 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Integer programming
Branch and bound
Production
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-f9ef46de2e992619d9a2f068d5ebb59731b40f1a2a5c7b4ab4439b9de672f6a83
ORCID 0000-0001-8622-8599
OpenAccessLink https://research.tue.nl/nl/publications/fcaf196f-9db7-4812-b112-bae0ff94a05b
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_ejor_2018_02_049
crossref_citationtrail_10_1016_j_ejor_2018_02_049
elsevier_sciencedirect_doi_10_1016_j_ejor_2018_02_049
PublicationCentury 2000
PublicationDate 2018-09-16
PublicationDateYYYYMMDD 2018-09-16
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-16
  day: 16
PublicationDecade 2010
PublicationTitle European journal of operational research
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Silver, Pyke, Peterson (bib0018) 1998; Vol. 3
Spitter (bib0019) 2005
Voß, Woodruff (bib0023) 2006; vol. 240
Stadtler (bib0022) 2005; 163
Missbauer, Uzsoy (bib0015) 2011
Fleischmann, Meyr, Wagner (bib0006) 2015
Kolisch (bib0013) 2000; 68
Spitter, Hurkens, de Kok, Lenstra, Negenman (bib0020) 2005; 163
de Kruijff (bib0014) 2014
Stadtler (bib0021) 2005; 43
Weglarz, Jozefowska, Mika, Waligora (bib0024) 2011; 208
Chekuri, Khanna (bib0005) 2004; 33
Gort (bib0008) 2013
Ford Jr, Fulkerson (bib0007) 1955
Naber, Kolisch (bib0016) 2014; 239
Hall (bib0009) 1935; 10
Jansen (bib0011) 2012
de Kok, Fransoo (bib0012) 2003; 11
Jans, Degraeve (bib0010) 2008; 46
Albrecht, Rohde, Wagner (bib0001) 2015
Rahmaniani, Crainic, Gendreau, Rei (bib0017) 2017; 259
Benders (bib0002) 1962; 4
Bertrand, Wortmann, Wijngaard (bib0003) 1990
Buschkühl, Sahling, Helber, Tempelmeier (bib0004) 2010; 32
Jansen (10.1016/j.ejor.2018.02.049_bib0011) 2012
Naber (10.1016/j.ejor.2018.02.049_bib0016) 2014; 239
de Kruijff (10.1016/j.ejor.2018.02.049_bib0014) 2014
Ford Jr (10.1016/j.ejor.2018.02.049_bib0007) 1955
Stadtler (10.1016/j.ejor.2018.02.049_bib0022) 2005; 163
Jans (10.1016/j.ejor.2018.02.049_bib0010) 2008; 46
Rahmaniani (10.1016/j.ejor.2018.02.049_bib0017) 2017; 259
Silver (10.1016/j.ejor.2018.02.049_bib0018) 1998; Vol. 3
de Kok (10.1016/j.ejor.2018.02.049_bib0012) 2003; 11
Voß (10.1016/j.ejor.2018.02.049_bib0023) 2006; vol. 240
Chekuri (10.1016/j.ejor.2018.02.049_bib0005) 2004; 33
Spitter (10.1016/j.ejor.2018.02.049_bib0020) 2005; 163
Weglarz (10.1016/j.ejor.2018.02.049_bib0024) 2011; 208
Stadtler (10.1016/j.ejor.2018.02.049_bib0021) 2005; 43
Kolisch (10.1016/j.ejor.2018.02.049_bib0013) 2000; 68
Gort (10.1016/j.ejor.2018.02.049_bib0008) 2013
Missbauer (10.1016/j.ejor.2018.02.049_bib0015) 2011
Benders (10.1016/j.ejor.2018.02.049_bib0002) 1962; 4
Fleischmann (10.1016/j.ejor.2018.02.049_bib0006) 2015
Spitter (10.1016/j.ejor.2018.02.049_bib0019) 2005
Hall (10.1016/j.ejor.2018.02.049_bib0009) 1935; 10
Bertrand (10.1016/j.ejor.2018.02.049_bib0003) 1990
Buschkühl (10.1016/j.ejor.2018.02.049_bib0004) 2010; 32
Albrecht (10.1016/j.ejor.2018.02.049_bib0001) 2015
References_xml – year: 2005
  ident: bib0019
  publication-title: Rolling schedule approaches for supply chain operations planning
– start-page: 155
  year: 2015
  end-page: 175
  ident: bib0001
  article-title: Master planning
  publication-title: Supply chain management and advanced planning
– volume: 11
  start-page: 597
  year: 2003
  end-page: 675
  ident: bib0012
  article-title: Planning supply chain operations: definition and comparison of planning concepts
  publication-title: Handbooks in operations research and management science
– volume: 259
  start-page: 801
  year: 2017
  end-page: 817
  ident: bib0017
  article-title: The benders decomposition algorithm: A literature review
  publication-title: European Journal of Operational Research
– year: 1955
  ident: bib0007
  article-title: A simple algorithm for finding maximal network flows and an application to the Hitchcock problem
  publication-title: Technical Report
– year: 1990
  ident: bib0003
  publication-title: Production control: a structural and design oriented approach
– volume: vol. 240
  year: 2006
  ident: bib0023
  article-title: Introduction to computational optimization models for production planning in a supply chain
– volume: 32
  start-page: 231
  year: 2010
  end-page: 261
  ident: bib0004
  article-title: Dynamic capacitated lot-sizing problems: a classification and review of solution approaches
  publication-title: Or Spectrum
– year: 2013
  ident: bib0008
  publication-title: Extending the scop lp model with flexible and resource availability dependent planned lead times
– volume: 208
  start-page: 177
  year: 2011
  end-page: 205
  ident: bib0024
  article-title: Project scheduling with finite or infinite number of activity processing modes–a survey
  publication-title: European Journal of Operational Research
– volume: 46
  start-page: 1619
  year: 2008
  end-page: 1643
  ident: bib0010
  article-title: Modeling industrial lot sizing problems: a review
  publication-title: International Journal of Production Research
– volume: 68
  start-page: 287
  year: 2000
  end-page: 306
  ident: bib0013
  article-title: Integration of assembly and fabrication for make-to-order production
  publication-title: International Journal of Production Economics
– start-page: 71
  year: 2015
  end-page: 95
  ident: bib0006
  article-title: Advanced planning
  publication-title: Supply chain management and advanced planning
– volume: 33
  start-page: 837
  year: 2004
  end-page: 851
  ident: bib0005
  article-title: On multidimensional packing problems
  publication-title: SIAM Journal on Computing
– year: 2012
  ident: bib0011
  publication-title: Anticipation in supply chain operations planning
– volume: Vol. 3
  year: 1998
  ident: bib0018
  article-title: Inventory management and production planning and scheduling
– volume: 4
  start-page: 238
  year: 1962
  end-page: 252
  ident: bib0002
  article-title: Partitioning procedures for solving mixed-variables programming problems
  publication-title: Numerische Mathematik
– volume: 43
  start-page: 5253
  year: 2005
  end-page: 5270
  ident: bib0021
  article-title: Multilevel capacitated lot-sizing and resource-constrained project scheduling: An integrating perspective
  publication-title: International Journal of Production Research
– volume: 239
  start-page: 335
  year: 2014
  end-page: 348
  ident: bib0016
  article-title: Mip models for resource-constrained project scheduling with flexible resource profiles
  publication-title: European Journal of Operational Research
– volume: 163
  start-page: 706
  year: 2005
  end-page: 720
  ident: bib0020
  article-title: Linear programming models with planned lead times for supply chain operations planning
  publication-title: European Journal of Operational Research
– volume: 163
  start-page: 575
  year: 2005
  end-page: 588
  ident: bib0022
  article-title: Supply chain management and advanced planning–basics, overview and challenges
  publication-title: European Journal of Operational Research
– start-page: 437
  year: 2011
  end-page: 507
  ident: bib0015
  article-title: Optimization models of production planning problems
  publication-title: Planning production and inventories in the extended enterprise
– volume: 10
  start-page: 26
  year: 1935
  end-page: 30
  ident: bib0009
  article-title: On representatives of subsets
  publication-title: Journal of the London Mathematical Society
– year: 2014
  ident: bib0014
  publication-title: Speeding up supply chain planning at a high-tech company
– year: 2012
  ident: 10.1016/j.ejor.2018.02.049_bib0011
– start-page: 71
  year: 2015
  ident: 10.1016/j.ejor.2018.02.049_bib0006
  article-title: Advanced planning
– volume: Vol. 3
  year: 1998
  ident: 10.1016/j.ejor.2018.02.049_bib0018
– volume: 10
  start-page: 26
  issue: 1
  year: 1935
  ident: 10.1016/j.ejor.2018.02.049_bib0009
  article-title: On representatives of subsets
  publication-title: Journal of the London Mathematical Society
  doi: 10.1112/jlms/s1-10.37.26
– volume: 32
  start-page: 231
  issue: 2
  year: 2010
  ident: 10.1016/j.ejor.2018.02.049_bib0004
  article-title: Dynamic capacitated lot-sizing problems: a classification and review of solution approaches
  publication-title: Or Spectrum
  doi: 10.1007/s00291-008-0150-7
– volume: 163
  start-page: 575
  issue: 3
  year: 2005
  ident: 10.1016/j.ejor.2018.02.049_bib0022
  article-title: Supply chain management and advanced planning–basics, overview and challenges
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.03.001
– year: 2014
  ident: 10.1016/j.ejor.2018.02.049_bib0014
– volume: 4
  start-page: 238
  issue: 1
  year: 1962
  ident: 10.1016/j.ejor.2018.02.049_bib0002
  article-title: Partitioning procedures for solving mixed-variables programming problems
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386316
– volume: 239
  start-page: 335
  issue: 2
  year: 2014
  ident: 10.1016/j.ejor.2018.02.049_bib0016
  article-title: Mip models for resource-constrained project scheduling with flexible resource profiles
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.05.036
– volume: 33
  start-page: 837
  issue: 4
  year: 2004
  ident: 10.1016/j.ejor.2018.02.049_bib0005
  article-title: On multidimensional packing problems
  publication-title: SIAM Journal on Computing
  doi: 10.1137/S0097539799356265
– volume: 46
  start-page: 1619
  issue: 6
  year: 2008
  ident: 10.1016/j.ejor.2018.02.049_bib0010
  article-title: Modeling industrial lot sizing problems: a review
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540600902262
– volume: 163
  start-page: 706
  issue: 3
  year: 2005
  ident: 10.1016/j.ejor.2018.02.049_bib0020
  article-title: Linear programming models with planned lead times for supply chain operations planning
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.01.019
– volume: 259
  start-page: 801
  issue: 3
  year: 2017
  ident: 10.1016/j.ejor.2018.02.049_bib0017
  article-title: The benders decomposition algorithm: A literature review
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.12.005
– volume: vol. 240
  year: 2006
  ident: 10.1016/j.ejor.2018.02.049_bib0023
– year: 2013
  ident: 10.1016/j.ejor.2018.02.049_bib0008
– volume: 68
  start-page: 287
  issue: 3
  year: 2000
  ident: 10.1016/j.ejor.2018.02.049_bib0013
  article-title: Integration of assembly and fabrication for make-to-order production
  publication-title: International Journal of Production Economics
  doi: 10.1016/S0925-5273(99)00011-0
– volume: 43
  start-page: 5253
  issue: 24
  year: 2005
  ident: 10.1016/j.ejor.2018.02.049_bib0021
  article-title: Multilevel capacitated lot-sizing and resource-constrained project scheduling: An integrating perspective
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540500270406
– start-page: 155
  year: 2015
  ident: 10.1016/j.ejor.2018.02.049_bib0001
  article-title: Master planning
– year: 2005
  ident: 10.1016/j.ejor.2018.02.049_bib0019
– volume: 11
  start-page: 597
  year: 2003
  ident: 10.1016/j.ejor.2018.02.049_bib0012
  article-title: Planning supply chain operations: definition and comparison of planning concepts
  doi: 10.1016/S0927-0507(03)11012-2
– year: 1990
  ident: 10.1016/j.ejor.2018.02.049_bib0003
– year: 1955
  ident: 10.1016/j.ejor.2018.02.049_bib0007
  article-title: A simple algorithm for finding maximal network flows and an application to the Hitchcock problem
– volume: 208
  start-page: 177
  issue: 3
  year: 2011
  ident: 10.1016/j.ejor.2018.02.049_bib0024
  article-title: Project scheduling with finite or infinite number of activity processing modes–a survey
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.03.037
– start-page: 437
  year: 2011
  ident: 10.1016/j.ejor.2018.02.049_bib0015
  article-title: Optimization models of production planning problems
SSID ssj0001515
Score 2.343262
Snippet •Our model supports different production modes and semi-flexible capacity constraints.•Our first formulation assigns resources explicitly and extends existing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 984
SubjectTerms Branch and bound
Integer programming
Production
Title Integer programming models for mid-term production planning for high-tech low-volume supply chains
URI https://dx.doi.org/10.1016/j.ejor.2018.02.049
Volume 269
WOSCitedRecordID wos000432768700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFiE48BFALQW0B27WWvb6c49R1QpyqDgEKTfL611LCaldJWkpf4Vf2xnvrmNKqeiBixU5u2sn8zI7nsy8R8inVFVRUHNML0WKxbUqWal4wgItdBhWOuNp3YlNZGdn-Xwuvo5Gv1wvzNUqa5r8-lpc_FdTwzkwNrbOPsDc_aJwAl6D0eEIZofjPxkec3zYymsrr84xF9Dp3XTMC975QjF0x_i-MtSxKCXdKRd1A5DAmCG1q7dqfzDjvbwNin_-xDbhhU3v3ZXNt5EtnFi7HKMlE-qTzkqDX7lcLA0Z5LRtN1tv5u_Atf6uTWR_DLcy8af-cGJryrqRCMQfpivCrrbCdFO6Nq0sY5ybhk3ngrmRa7FYiwYOVRgBObs3C1PL-4fbNxmIpa-XLXK8hnnHw2q4UH_n2L619_UVia7YbVngGgWuUQS8gDUekX2eJQKc_v7ky8l82u_zGAp2_1HZD2Rbskz14O07uTvsGYQys5fkuX0GoRODnVdkpJsxeeJaIMbkhZP6oNbzj8mzAW_layItxugAY9RgjAKEqMMY3WGMOox1A3qM0R3GqMEYNRh7Q76dnsyOPzMr1sGqOBBbVgtdx6nSXAuBT-VKlLwO0lwlWsoEBdJkHNRhycukymRcyhhCYSmUTjNep2UevSV7TdvoA0IrCduwDCG2qiD4hAVzlQdRzmUkkW6xOiSh-y6LyjLZo6DKqvi7FQ-J18-5MDwu945OnIkKG4maCLMAxN0z792DrnJEnu5-Ie_J3nZ9qT-Qx9XVdrFZf7RwuwEJRa3m
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integer+programming+models+for+mid-term+production+planning+for+high-tech+low-volume+supply+chains&rft.jtitle=European+journal+of+operational+research&rft.au=de+Kruijff%2C+Joost+T.&rft.au=Hurkens%2C+Cor+A.J.&rft.au=de+Kok%2C+Ton+G.&rft.date=2018-09-16&rft.issn=0377-2217&rft.volume=269&rft.issue=3&rft.spage=984&rft.epage=997&rft_id=info:doi/10.1016%2Fj.ejor.2018.02.049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2018_02_049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon