DCW-YOLO: Road Object Detection Algorithms for Autonomous Driving

Aiming at the problems of multiple parameters and poor detection accuracy of object detection network in automatic driving scenarios, an object detection algorithm based on improved YOLOv8 is proposed. First, a dynamic head framework is used to unify the object detection head and the attention mecha...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 13; s. 125676 - 125688
Hlavní autori: Ren, Hongge, Jing, Fangke, Li, Song
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Aiming at the problems of multiple parameters and poor detection accuracy of object detection network in automatic driving scenarios, an object detection algorithm based on improved YOLOv8 is proposed. First, a dynamic head framework is used to unify the object detection head and the attention mechanism, and the attention mechanism is used for scale-awareness, spatial-awareness, and task-awareness, respectively, which significantly improves the representation capability of the object detection head without increasing the computational overhead. Second, the Coordinate Attention mechanism is embedded in the SPPF layer, which embeds the target's location information into the channel attention to offer more precise localization for the model, suppress irrelevant aspects, and enable greater integration of local and global characteristics. Finally, the deleterious gradients generated by low-quality examples are reduced using the Wise-IoU v3 bounding box loss function in conjunction with a dynamic non-monotonic focusing mechanism utilizing an anchor box gradient gain assignment strategy. On the challenging public dataset KITTI, the accuracy is improved by 2.1% compared to the benchmark algorithm. In addition, the excellent performance on CCTSDB2021 and VOC highlights the generalization performance of the improved model.
AbstractList Aiming at the problems of multiple parameters and poor detection accuracy of object detection network in automatic driving scenarios, an object detection algorithm based on improved YOLOv8 is proposed. First, a dynamic head framework is used to unify the object detection head and the attention mechanism, and the attention mechanism is used for scale-awareness, spatial-awareness, and task-awareness, respectively, which significantly improves the representation capability of the object detection head without increasing the computational overhead. Second, the Coordinate Attention mechanism is embedded in the SPPF layer, which embeds the target’s location information into the channel attention to offer more precise localization for the model, suppress irrelevant aspects, and enable greater integration of local and global characteristics. Finally, the deleterious gradients generated by low-quality examples are reduced using the Wise-IoU v3 bounding box loss function in conjunction with a dynamic non-monotonic focusing mechanism utilizing an anchor box gradient gain assignment strategy. On the challenging public dataset KITTI, the accuracy is improved by 2.1% compared to the benchmark algorithm. In addition, the excellent performance on CCTSDB2021 and VOC highlights the generalization performance of the improved model.
Author Li, Song
Jing, Fangke
Ren, Hongge
Author_xml – sequence: 1
  givenname: Hongge
  surname: Ren
  fullname: Ren, Hongge
  organization: School of Control and Mechanical Engineering, Tianjin Chengjian University, Tianjin, China
– sequence: 2
  givenname: Fangke
  orcidid: 0009-0007-3859-2522
  surname: Jing
  fullname: Jing, Fangke
  email: jing_fangke@163.com
  organization: College of Electrical Engineering, North China University of Science and Technology, Tangshan, Hebei, China
– sequence: 3
  givenname: Song
  orcidid: 0009-0003-5964-8397
  surname: Li
  fullname: Li, Song
  organization: College of Electrical Engineering, North China University of Science and Technology, Tangshan, Hebei, China
BookMark eNp9kV9LwzAUxYMoOOc-gT4UfO7Mv6aNb6WbOhgMnCI-hdsunRlbM9NM8Nub2QnDB_Nyw839nRzuuUCnjW00QlcEDwnB8jYvivF8PqSY8iFjgouMnKAeJULGLGHi9Oh-jgZtu8LhZKGVpD2Uj4rX-G02nd1FTxYW0axc6cpHI-1DMbaJ8vXSOuPfN21UWxflO28bu7G7Nho582ma5SU6q2Hd6sGh9tHL_fi5eIyns4dJkU_jimPp41qUVFJRQ1Ji0MCoxgnjQhKoqxKnMtiHhFGBF5XUGeeCJwwoB-Cp5kBL1keTTndhYaW2zmzAfSkLRv00rFsqcN5Ua61AkKwuCTCZ6LCOVOIqlQtclzLLcPgraN10WltnP3a69Wpld64J9hWjXIiUJ5iEKdlNVc62rdO1qoyH_Va8A7NWBKt9AKoLQO0DUIcAAsv-sL-O_6euO8porY8Izkganr8BIoOQnA
CODEN IAECCG
CitedBy_id crossref_primary_10_1117_1_JEI_33_5_053022
crossref_primary_10_3390_su162410964
crossref_primary_10_1109_JIOT_2024_3490598
crossref_primary_10_3390_wevj15120586
crossref_primary_10_3390_buildings15183323
crossref_primary_10_3390_app15116018
crossref_primary_10_3390_s24196319
Cites_doi 10.48550/arXiv.2004.10934
10.1088/1742-6596/1802/3/032073
10.1109/tpami.2019.2913372
10.1109/tvt.2021.3049805
10.1109/CVPR.2018.00913
10.1007/s10489-019-01511-7
10.1016/j.engappai.2022.104914
10.1109/jstars.2017.2694890
10.1007/978-3-030-01234-2_1
10.1109/tmm.2017.2759508
10.1109/tie.2019.2962413
10.1109/mits.2022.3201400
10.1109/tpami.2020.3032166
10.1109/tpami.2016.2577031
10.1007/s11036-021-01845-y
10.3390/s23167190
10.1007/s11263-019-01204-1
10.3389/fnbot.2023.1058723
10.1109/CVPR46437.2021.00729
10.1007/978-3-319-46448-0_2
10.3390/electronics12102323
10.1109/tits.2020.2982804
10.3390/s22103783
10.3390/s22030921
10.1007/s11263-009-0275-4
10.1016/j.compag.2023.108006
10.1109/tpami.2018.2844175
10.1155/2022/9782608
10.3390/s22093349
10.1109/tim.2022.3153997
10.1007/s11263-006-9038-7
10.3390/s23135912
10.3390/drones7050304
10.1109/access.2023.3252021
10.1109/ICCV.2019.00925
10.1109/tpami.2019.2956516
10.3390/s23115307
10.1109/CVPR46437.2021.01350
10.1016/j.autcon.2016.05.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3364681
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 125688
ExternalDocumentID oai_doaj_org_article_a618fb1a395e468790c79d0fb9880079
10_1109_ACCESS_2024_3364681
10431781
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61203343
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hebei Province
  grantid: F2018209289
  funderid: 10.13039/501100003787
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-f6b2926fa5b0aea32e0534691afcb079202a53260dc9e8446453a24aa47e4a2b3
IEDL.DBID DOA
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001534522000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:51:47 EDT 2025
Sat Nov 01 15:13:33 EDT 2025
Sat Nov 29 07:41:03 EST 2025
Tue Nov 18 21:49:39 EST 2025
Wed Aug 27 02:13:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-f6b2926fa5b0aea32e0534691afcb079202a53260dc9e8446453a24aa47e4a2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-3859-2522
0009-0003-5964-8397
OpenAccessLink https://doaj.org/article/a618fb1a395e468790c79d0fb9880079
PQID 3246674501
PQPubID 4845423
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_a618fb1a395e468790c79d0fb9880079
proquest_journals_3246674501
crossref_citationtrail_10_1109_ACCESS_2024_3364681
crossref_primary_10_1109_ACCESS_2024_3364681
ieee_primary_10431781
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Fu (ref9) 2017
ref13
ref15
ref14
ref10
ref17
ref16
ref19
ref18
Wang (ref36) 2019
Ge (ref40) 2021
He (ref47) 2021
ref51
ref46
ref42
ref44
ref43
ref8
ref7
Redmon (ref11) 2016
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref38
Tong (ref49) 2023
ref24
Zhang (ref48) 2021
ref23
ref26
ref25
ref20
ref22
Cao (ref41) 2019
ref21
Wang (ref39) 2022
Redmon (ref12) 2018
ref28
ref27
ref29
Wang (ref45) 2019
Zhang (ref50) 2022; 12
References_xml – year: 2022
  ident: ref39
  article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
  publication-title: arXiv:2207.02696
– volume: 12
  start-page: 12
  year: 2022
  ident: ref50
  article-title: CCTSDB 2021: A more comprehensive traffic sign detection benchmark
  publication-title: Hum.-Centric Comput. Inf. Sci.
– ident: ref13
  doi: 10.48550/arXiv.2004.10934
– ident: ref28
  doi: 10.1088/1742-6596/1802/3/032073
– ident: ref43
  doi: 10.1109/tpami.2019.2913372
– year: 2023
  ident: ref49
  article-title: Wise-IoU: Bounding box regression loss with dynamic focusing mechanism
  publication-title: arXiv:2301.10051
– year: 2021
  ident: ref48
  article-title: Focal and efficient IOU loss for accurate bounding box regression
  publication-title: arXiv:2101.08158
– ident: ref20
  doi: 10.1109/tvt.2021.3049805
– ident: ref37
  doi: 10.1109/CVPR.2018.00913
– ident: ref30
  doi: 10.1007/s10489-019-01511-7
– ident: ref14
  doi: 10.1016/j.engappai.2022.104914
– year: 2017
  ident: ref9
  article-title: DSSD: Deconvolutional single shot detector
  publication-title: arXiv:1701.06659
– year: 2019
  ident: ref36
  article-title: CSPNet: A new backbone that can enhance learning capability of CNN
  publication-title: arXiv:1911.11929
– ident: ref3
  doi: 10.1109/jstars.2017.2694890
– ident: ref44
  doi: 10.1007/978-3-030-01234-2_1
– ident: ref4
  doi: 10.1109/tmm.2017.2759508
– ident: ref27
  doi: 10.1109/tie.2019.2962413
– ident: ref10
  doi: 10.1109/mits.2022.3201400
– ident: ref23
  doi: 10.1109/tpami.2020.3032166
– ident: ref5
  doi: 10.1109/tpami.2016.2577031
– ident: ref22
  doi: 10.1007/s11036-021-01845-y
– ident: ref26
  doi: 10.3390/s23167190
– ident: ref21
  doi: 10.1007/s11263-019-01204-1
– ident: ref33
  doi: 10.3389/fnbot.2023.1058723
– year: 2016
  ident: ref11
  article-title: YOLO9000: Better, faster, stronger
  publication-title: arXiv:1612.08242
– year: 2019
  ident: ref41
  article-title: Prime sample attention in object detection
  publication-title: arXiv:1904.04821
– year: 2019
  ident: ref45
  article-title: ECA-net: Efficient channel attention for deep convolutional neural networks
  publication-title: arXiv:1910.03151
– ident: ref42
  doi: 10.1109/CVPR46437.2021.00729
– ident: ref8
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref24
  doi: 10.3390/electronics12102323
– year: 2018
  ident: ref12
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
– ident: ref19
  doi: 10.1109/tits.2020.2982804
– ident: ref31
  doi: 10.3390/s22103783
– year: 2021
  ident: ref40
  article-title: YOLOX: Exceeding YOLO series in 2021
  publication-title: arXiv:2107.08430
– ident: ref17
  doi: 10.3390/s22030921
– ident: ref51
  doi: 10.1007/s11263-009-0275-4
– ident: ref25
  doi: 10.1016/j.compag.2023.108006
– ident: ref6
  doi: 10.1109/tpami.2018.2844175
– ident: ref18
  doi: 10.1155/2022/9782608
– ident: ref29
  doi: 10.3390/s22093349
– ident: ref32
  doi: 10.1109/tim.2022.3153997
– ident: ref2
  doi: 10.1007/s11263-006-9038-7
– ident: ref15
  doi: 10.3390/s23135912
– year: 2021
  ident: ref47
  article-title: Alpha-IoU: A family of power intersection over union losses for bounding box regression
  publication-title: arXiv:2110.13675
– ident: ref16
  doi: 10.3390/drones7050304
– ident: ref34
  doi: 10.1109/access.2023.3252021
– ident: ref38
  doi: 10.1109/ICCV.2019.00925
– ident: ref7
  doi: 10.1109/tpami.2019.2956516
– ident: ref35
  doi: 10.3390/s23115307
– ident: ref46
  doi: 10.1109/CVPR46437.2021.01350
– ident: ref1
  doi: 10.1016/j.autcon.2016.05.008
SSID ssj0000816957
Score 2.4136572
Snippet Aiming at the problems of multiple parameters and poor detection accuracy of object detection network in automatic driving scenarios, an object detection...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 125676
SubjectTerms Accuracy
Algorithms
Attention
Autonomous driving
Autonomous vehicles
Benchmark testing
Computational modeling
Deep learning
Feature extraction
Gradient methods
Heuristic algorithms
Location awareness
Object detection
Real-time systems
Roads
Task analysis
YOLO
YOLOv8
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZK1QMcgJYithTkQ4-kOI4Tx9zCLhWHqluhIsrJGr9gpbJBu1l-f8eOuypCIHGLIluJ57M9D3vmI-QEjAVbCosIcFeI1kABCqpCcAGBSYcWxkg2IS8u2utrdZmT1VMujPc-XT7zp_ExneW73m5iqAxXeFR3MdH6gZRyTNbaBlQig4SqZa4sVDL1tptOcRDoA3JxWlWNaNryN-2TivRnVpU_tuKkX86e_OefPSWPsyFJuxH5fbLjlwfk0b3ygs9IN5t-Kb7Oz-fv6KceHJ2bGHShMz-k-1dL2t1861eL4fuPNUXblXabIaY49Js1na0WMdJwSD6ffbiafiwyZUJh0VEbitAYrngToDYMPFQ8Mj-gB1xCsIZJhbKAGi025qzyrYjHmhUgLCCkF8BN9ZzsLvulf0FoZUxjRGAGDQwhAfV6kAh3aKVrnSvZhPA7UWqb64lHWosbnfwKpvQofx3lr7P8J-TNttPPsZzGv5u_jxhtm8Za2OkFCl_npaWhKdtgSqhU7bGTVMxK5VgwCvcmHPOEHEbA7n1vxGpCju8g13nhrjXal00jRc3Ko790e0ke8sgBnMIwx2R3WG38K7Jnfw2L9ep1mpO33HPcjw
  priority: 102
  providerName: IEEE
Title DCW-YOLO: Road Object Detection Algorithms for Autonomous Driving
URI https://ieeexplore.ieee.org/document/10431781
https://www.proquest.com/docview/3246674501
https://doaj.org/article/a618fb1a395e468790c79d0fb9880079
Volume 13
WOSCitedRecordID wos001534522000045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQ4kAPCApVly_5wLEptuPYMbewC-qBsghRlZ6ssRO3SHQX7QaO_HbGTkCLkNoLlxwix47fOPabif2GkANwHjyXHi0g6kyWDjIwkGdSSAhM18gwumQT-vy8vL42FwupvuKesE4euAPuEBQvg-OQm6KRqtSGeW1qFpzBkcd0OrqHrGfBmUpzcMmVKXQvM8SZOayGQ-wROoRCfs1zhVXxV0tRUuzvU6y8mZfTYnO6TtZ6lkir7u02yFIz-Ug-LGgHbpJqNPyZ_RqfjY_o5RRqOnYxokJHTZs2V01odft7ip7_n79zisSUVvdtPL-Ajj4dzW5iGGGL_Dg9uRp-y_p8CJlHL6zNgnLCCBWgcAwayEVM64DuLYfgHUKBfYMC6RirvWlKGf9Z5oCYg9SNBOHyT2R5Mp00nwnNnVNOBuaQPUgNuGgHjbYMpa7LuuZsQMQzNNb3YuExZ8WtTU4DM7bD00Y8bY_ngHx5eeiu08r4d_HjiPlL0Sh0nW6g-W1vfvs_8w_IVrTYQnuREcXKd59NaPuvcm6RPCqlZcH49nu0vUNWRcwGnAIyu2S5nd03e2TFP7Q389l-GpB4_f54sp-OFT4BblngTg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQQII9cB1aYYAfeCTDdpw43ltomYYoLUJDjCfLV1Zpa1Cb7vdz7HjVEAKJtyiylfh8ts_FPudD6LU2VlvKLSDAXMEbowstdVlwxnUgwoGFMZBNiNmsOTuTn3OyesqF8d6ny2f-MD6ms3zX2U0MlcEKj-ouJlrfrjhndEjX2oZUIoeErESuLUSJfNuOxzAM8AIZPyzLmtcN_U3_pDL9mVflj804aZjjB__5bw_R_WxK4nbA_hG65ZeP0e6NAoNPUDsZfyu-z6fzI_yl0w7PTQy74Inv0w2sJW4vfnSrRX9-ucZgveJ208ckh26zxpPVIsYa9tDX4_en45MikyYUFly1vgi1YZLVQVeGaK9LFrkfwAemOlhDhARZ6ApsNuKs9A2PB5ulBmA0F55rZsqnaGfZLf0-wqUxteGBGDAxuNCg2YMAwEMjXOMcJSPErkWpbK4oHoktLlTyLIhUg_xVlL_K8h-hN9tOP4eCGv9u_i5itG0aq2GnFyB8lReX0jVtgqG6lJWHTkISK6QjwUjYnWDMI7QXAbvxvQGrETq4hlzlpbtWYGHWteAVoc_-0u0Vunty-mmqph9mH5-jeywyAqegzAHa6Vcb_wLdsVf9Yr16mebnL37H39Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DCW-YOLO%3A+Road+Object+Detection+Algorithms+for+Autonomous+Driving&rft.jtitle=IEEE+access&rft.au=Ren%2C+Hongge&rft.au=Jing%2C+Fangke&rft.au=Li%2C+Song&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=125676&rft.epage=125688&rft_id=info:doi/10.1109%2FACCESS.2024.3364681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3364681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon