A DRL-Based Automated Algorithm Selection Framework for Cross-Layer QoS-Aware Scheduling and Antenna Allocation in Massive MIMO Systems

Massive multiple-input-multiple-output (MIMO) systems support advanced applications with high data rates, low latency, and high reliability in next-generation mobile networks. However, using machine learning in massive MIMO resource allocation is challenging due to quality of service (QoS) and netwo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 1
Hlavní autoři: Huang, Chih-Wei, Althamary, Ibrahim, Chou, Yen-Cheng, Chen, Hong-Yunn, Chou, Cheng-Fu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Massive multiple-input-multiple-output (MIMO) systems support advanced applications with high data rates, low latency, and high reliability in next-generation mobile networks. However, using machine learning in massive MIMO resource allocation is challenging due to quality of service (QoS) and network complexity across layers. This work presents a novel framework for adapting the scheduling and antenna allocation in massive MIMO systems using deep reinforcement learning (DRL). Rather than directly assigning execution parameters, the proposed framework utilizes DRL to select combinations of algorithms based on the current traffic conditions. The DRL model is trained using a specialized Markov decision process (MDP) model with a componentized action structure and is evaluated in realistic traffic scenarios. The results show that the proposed framework increases satisfied users by 7.2% and 12.5% compared to static algorithm combinations and other cross-layer adaptation methods. This demonstrates the effectiveness of the framework in managing and optimizing resource allocation in a flexible and adaptable manner.
AbstractList Massive multiple-input-multiple-output (MIMO) systems support advanced applications with high data rates, low latency, and high reliability in next-generation mobile networks. However, using machine learning in massive MIMO resource allocation is challenging due to quality of service (QoS) and network complexity across layers. This work presents a novel framework for adapting the scheduling and antenna allocation in massive MIMO systems using deep reinforcement learning (DRL). Rather than directly assigning execution parameters, the proposed framework utilizes DRL to select combinations of algorithms based on the current traffic conditions. The DRL model is trained using a specialized Markov decision process (MDP) model with a componentized action structure and is evaluated in realistic traffic scenarios. The results show that the proposed framework increases satisfied users by 7.2% and 12.5% compared to static algorithm combinations and other cross-layer adaptation methods. This demonstrates the effectiveness of the framework in managing and optimizing resource allocation in a flexible and adaptable manner.
Author Huang, Chih-Wei
Chou, Yen-Cheng
Althamary, Ibrahim
Chou, Cheng-Fu
Chen, Hong-Yunn
Author_xml – sequence: 1
  givenname: Chih-Wei
  orcidid: 0000-0002-0202-8977
  surname: Huang
  fullname: Huang, Chih-Wei
  organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan
– sequence: 2
  givenname: Ibrahim
  surname: Althamary
  fullname: Althamary, Ibrahim
  organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan
– sequence: 3
  givenname: Yen-Cheng
  orcidid: 0000-0003-1100-8262
  surname: Chou
  fullname: Chou, Yen-Cheng
  organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan
– sequence: 4
  givenname: Hong-Yunn
  surname: Chen
  fullname: Chen, Hong-Yunn
  organization: Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan
– sequence: 5
  givenname: Cheng-Fu
  orcidid: 0000-0003-2684-5039
  surname: Chou
  fullname: Chou, Cheng-Fu
  organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
BookMark eNqFkcFu1DAQhiNUJErpE8DBEucsdpzY8TGElq60qwoCZ8txJlsvWbvY3lb7BLx2vZsKVVywZM1oNP83o_nfZmfWWciy9wQvCMHiU9O2V123KHBBF7QoKWb1q-y8IEzktKLs7EX-JrsMYYvTq1Op4ufZnwZ9-b7KP6sAA2r20e1UPGbTxnkT73aogwl0NM6ia6928Oj8LzQ6j1rvQshX6gAefXNd3jwqD6jTdzDsJ2M3SNmEsRGsVQk3Oa1OFGPRWoVgHgCtl-tb1B1ChF14l70e1RTg8jleZD-vr360N_nq9uuybVa5LrGI-UiqUlDBB0wIq4kSRVFpVtW9qAqhGIVejFxrqGipRT-m39eF0BwwgZIPPb3IljN3cGor773ZKX-QThl5Kji_kcpHoyeQmPEeSFUBFKocB1KDGqty5CnoXnCSWB9n1r13v_cQoty6vbdpfVlwzrgoWS1SF5279PFiHsa_UwmWRwPlbKA8GiifDUwq8Y9Km3i6YPTKTP_Rfpi1BgBeTMO0ZoLSJw9vq2s
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_electronics13020390
crossref_primary_10_1007_s11235_023_01093_3
crossref_primary_10_1038_s41598_025_16571_8
crossref_primary_10_3390_app13179861
crossref_primary_10_1145_3629141
crossref_primary_10_1145_3696399
crossref_primary_10_1177_18724981251346876
crossref_primary_10_1016_j_comnet_2025_111655
crossref_primary_10_1134_S1064226923120215
Cites_doi 10.1109/ICC.2017.7997065
10.1109/JIOT.2019.2921159
10.1007/978-3-319-50137-6_7
10.1109/TWC.2020.2981320
10.1109/LCOMM.2016.2547418
10.1109/TCOMM.2021.3133939
10.1109/TSP.2019.2926019
10.1109/ISIT.2018.8437617
10.1109/6GSUMMIT49458.2020.9083926
10.1109/ACCESS.2018.2881964
10.1109/TVT.2019.2897134
10.1109/MCOM.2019.1800629
10.1109/TVT.2017.2717909
10.1109/JCN.2010.6388432
10.1109/MNET.001.1900287
10.1609/aaai.v30i1.10170
10.1109/LCOMM.2005.03014
10.1016/j.dcan.2019.08.002
10.1002/9781118612323.ch2
10.1109/tnn.1998.712192
10.1109/TCOMM.2021.3053040
10.1109/ICC.2016.7510955
10.1109/WiMOB.2011.6085383
10.1109/TCOMM.2020.2991805
10.1109/JSTSP.2016.2520912
10.1109/ACCESS.2018.2828403
10.1109/MCOM.101.2001120
10.1109/MWC.2018.1800140
10.1109/MNET.2019.1800418
10.1109/MWC.001.1900427
10.1109/MWC.001.1900323
10.1007/s10994-021-05961-4
10.1109/ACCESS.2018.2828859
10.1109/TWC.2017.2769644
10.1145/1273496.1273556
10.1109/TVT.2017.2769694
10.1109/ITA.2015.7308971
10.1109/MWC.2016.1500356WC
10.1109/MNET.2019.1800386
10.1109/COMST.2016.2618870
10.1109/ICCW.2019.8757174
10.1109/MWC.2012.6393523
10.1109/GLOBECOM42002.2020.9322383
10.1109/TWC.2017.2664837
10.1038/nature14236
10.1049/iet-com.2017.0905
10.1109/MCOM.001.2000218
10.1109/ACCESS.2021.3092754
10.1109/MCOM.001.1900601
10.1162/evco_a_00242
10.1109/TCOMM.2018.2850303
10.1109/TWC.2020.2996368
10.1016/B978-0-12-804418-6.00005-4
10.1145/3005745.3005750
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3243068
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_067be155ee2a4fd18eaf54f7eafcb971
10_1109_ACCESS_2023_3243068
10038693
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: 109-2221-E-008-054-MY3; 111-2218-E-008-004-MBK
  funderid: 10.13039/501100020950
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-f1549397d011681a9225c658b9529a63eb9f7cce534c9bfc9bb829c7e01e47db3
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000933690300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:35 EDT 2025
Sun Jun 29 15:16:48 EDT 2025
Sat Nov 29 04:02:24 EST 2025
Tue Nov 18 19:52:49 EST 2025
Wed Aug 27 02:18:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-f1549397d011681a9225c658b9529a63eb9f7cce534c9bfc9bb829c7e01e47db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2684-5039
0000-0003-1100-8262
0000-0002-0202-8977
OpenAccessLink https://doaj.org/article/067be155ee2a4fd18eaf54f7eafcb971
PQID 2776794689
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_primary_10_1109_ACCESS_2023_3243068
crossref_citationtrail_10_1109_ACCESS_2023_3243068
doaj_primary_oai_doaj_org_article_067be155ee2a4fd18eaf54f7eafcb971
ieee_primary_10038693
proquest_journals_2776794689
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
Dulac-Arnold (ref24) 2015
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
(ref14) 2016
Lagoudakis (ref15)
(ref44) 2020
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Abadi (ref59) 2015
ref29
Lillicrap (ref23)
ref60
Silver (ref43); 1
ref61
References_xml – ident: ref55
  doi: 10.1109/ICC.2017.7997065
– ident: ref56
  doi: 10.1109/JIOT.2019.2921159
– ident: ref17
  doi: 10.1007/978-3-319-50137-6_7
– ident: ref38
  doi: 10.1109/TWC.2020.2981320
– ident: ref32
  doi: 10.1109/LCOMM.2016.2547418
– start-page: 511
  volume-title: Proc. 17th Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Algorithm selection using reinforcement learning
– volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: ref59
– ident: ref48
  doi: 10.1109/TCOMM.2021.3133939
– ident: ref30
  doi: 10.1109/TSP.2019.2926019
– ident: ref6
  doi: 10.1109/ISIT.2018.8437617
– ident: ref20
  doi: 10.1109/6GSUMMIT49458.2020.9083926
– ident: ref35
  doi: 10.1109/ACCESS.2018.2881964
– ident: ref37
  doi: 10.1109/TVT.2019.2897134
– ident: ref22
  doi: 10.1109/MCOM.2019.1800629
– volume-title: NR; Physical Layer Procedures for Data
  year: 2020
  ident: ref44
– ident: ref29
  doi: 10.1109/TVT.2017.2717909
– ident: ref61
  doi: 10.1109/JCN.2010.6388432
– ident: ref1
  doi: 10.1109/MNET.001.1900287
– ident: ref16
  doi: 10.1609/aaai.v30i1.10170
– ident: ref52
  doi: 10.1109/LCOMM.2005.03014
– ident: ref26
  doi: 10.1016/j.dcan.2019.08.002
– ident: ref54
  doi: 10.1002/9781118612323.ch2
– ident: ref41
  doi: 10.1109/tnn.1998.712192
– ident: ref45
  doi: 10.1109/TCOMM.2021.3053040
– ident: ref25
  doi: 10.1109/ICC.2016.7510955
– ident: ref51
  doi: 10.1109/WiMOB.2011.6085383
– ident: ref28
  doi: 10.1109/TCOMM.2020.2991805
– ident: ref46
  doi: 10.1109/JSTSP.2016.2520912
– ident: ref5
  doi: 10.1109/ACCESS.2018.2828403
– volume-title: System Architecture for the 5G System
  year: 2016
  ident: ref14
– ident: ref21
  doi: 10.1109/MCOM.101.2001120
– ident: ref4
  doi: 10.1109/MWC.2018.1800140
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref23
  article-title: Continuous control with deep reinforcement learning
– ident: ref2
  doi: 10.1109/MNET.2019.1800418
– ident: ref58
  doi: 10.1109/MWC.001.1900427
– ident: ref10
  doi: 10.1109/MWC.001.1900323
– ident: ref13
  doi: 10.1007/s10994-021-05961-4
– ident: ref36
  doi: 10.1109/ACCESS.2018.2828859
– ident: ref33
  doi: 10.1109/TWC.2017.2769644
– ident: ref60
  doi: 10.1145/1273496.1273556
– ident: ref7
  doi: 10.1109/TVT.2017.2769694
– ident: ref53
  doi: 10.1109/ITA.2015.7308971
– ident: ref34
  doi: 10.1109/MWC.2016.1500356WC
– ident: ref40
  doi: 10.1109/MNET.2019.1800386
– ident: ref3
  doi: 10.1109/COMST.2016.2618870
– ident: ref19
  doi: 10.1109/ICCW.2019.8757174
– ident: ref57
  doi: 10.1109/MWC.2012.6393523
– ident: ref12
  doi: 10.1109/GLOBECOM42002.2020.9322383
– ident: ref27
  doi: 10.1109/TWC.2017.2664837
– ident: ref42
  doi: 10.1038/nature14236
– ident: ref31
  doi: 10.1049/iet-com.2017.0905
– ident: ref9
  doi: 10.1109/MCOM.001.2000218
– volume: 1
  start-page: 605
  volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML)
  ident: ref43
  article-title: Deterministic policy gradient algorithms
– ident: ref8
  doi: 10.1109/ACCESS.2021.3092754
– ident: ref11
  doi: 10.1109/MCOM.001.1900601
– year: 2015
  ident: ref24
  article-title: Deep reinforcement learning in large discrete action spaces
  publication-title: arXiv:1512.07679
– ident: ref18
  doi: 10.1162/evco_a_00242
– ident: ref49
  doi: 10.1109/TCOMM.2018.2850303
– ident: ref39
  doi: 10.1109/TWC.2020.2996368
– ident: ref47
  doi: 10.1016/B978-0-12-804418-6.00005-4
– ident: ref50
  doi: 10.1145/3005745.3005750
SSID ssj0000816957
Score 2.3641963
Snippet Massive multiple-input-multiple-output (MIMO) systems support advanced applications with high data rates, low latency, and high reliability in next-generation...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Antennas
automated algorithm selection
Cross layer design
Deep learning
deep reinforcement learning
Heuristic algorithms
Machine learning
Markov processes
Massive MIMO
MIMO communication
Mobile network
Network latency
Network reliability
Precoding
QoS
Quality of service
Quality of service architectures
Resource allocation
Resource management
Scheduling
Traffic models
User satisfaction
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLXaqgtYtBSKCC3Iiy5xmFdiezkNRCAl5RFA3Vl-lkjtDEon8An8Nvd6nKgIgcRiJGtkezw6tu-xfX0uIWcGbHAAM8kC97BAMYVghkvLnOUYnSpzIYbp_DLjFxfi8lK-T5fV410Y7310PvNDTMazfNfaNW6VwQjPSjGW5S7Z5XzcX9babqhgBAk54klZKM_ky3oygZ8YYoDwIfAGIMfiN-sTRfpTVJU_puJoX6aH_9myB-QgEUla98gfkR3fPCT378gLPiI_a_rq44ydg6FytF53LbBTTF1ftatl9_WGLmIQHECGTjc-WhRILJ1g49lMAx2nH9oFq3_olacLwNeh4_oV1Q1Ug87vjYbq0B7GWpYNnQMZhwmUzt_O39Ekh35MPk9ff5q8YSnwArOw3OtYQN02ICoOT2lEriUMegtUxchRIfW49EYGbq0flZWVJsBjRCEt91nuK-5M-ZjsNW3jnxCaIZ9zvAyFroD7lKIISPnyMncS-okbkGIDiLJJlRyDY1yruDrJpOpRVIiiSigOyIttoW-9KMe_s58j0tusqKgdXwCEKg1QBVbbeCBX3kNLg8uF12FUQQ_WwRrJ8wE5RtjvfK9HfEBONx1HpeF_qwrUSJLVWMinfyl2Qu5hE_vNnFOy163W_hnZt9-75e3qeezZvwAHavYA
  priority: 102
  providerName: IEEE
Title A DRL-Based Automated Algorithm Selection Framework for Cross-Layer QoS-Aware Scheduling and Antenna Allocation in Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/10038693
https://www.proquest.com/docview/2776794689
https://doaj.org/article/067be155ee2a4fd18eaf54f7eafcb971
Volume 11
WOSCitedRecordID wos000933690300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQxQEOiEcRgbbygSNu95XYc9ymjUBKyiOAerP8bCuVDUpTuHHt3-6M16mCkODCYVerlXf8mFnPN7v2N4y9tuiDI7pJEWXAAMVWSlgJTngnKTtV4WNK0_l1Kk9O1OkpfNhI9UVrwnp64H7gDnA2tQGdXgiVaaIvVTBx2KBkE52FtHu8KiRsBFNpDlblCIYy0wyVBRy04zH2aJ-yhe8jiECkrH5zRYmxP6dY-WNeTs5m8pg9yiiRt33rnrB7oXvKHm5wBz5jNy0_-jQVh-iFPG-vVwuEnnR1ebbAeP_8G5-nDDc47HyyXoDFEaHyMTVGTA1ibf5xMRftT7MMfI7K87Qq_YybDsXQyvbOoDhydknKRcdniLRxduSzd7P3PHOdb7Mvk-PP47ciZ1UQDmO5lYhEyoYoxNMvGFUawDfaIQ6xMKzAjOpgIUrnwrBuHNiIh1UVOBmKMjTS2_o52-oWXXjBeEFgzcs6omoQ2NSqioTnyrr0gEbgB6xaD7B2mXKcMl9c6hR6FKB7rWjSis5aGbA3dw997xk3_l78kDR3V5TostMNNCKdjUj_y4gGbJv0vlFfUasR1AO2szYEnd_tK10RARI0IwUv_0fdr9gD6k__WWeHba2W12GX3Xc_VhdXy71k1nie_TreS5sTbwFzmfwz
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgIAEPXIcoDPADj6TkWtuPWaHaRFouHWhvlq-j0khQl8JP4G9zjuNWQwgkHiJZke04-myfz_bxdwh5ocEGezCTiWcOFig654lmwiTWMIxOlVofwnR-bthiwU9Pxft4WT3chXHOBeczN8ZkOMu3ndngVhmM8LTgE1FcJdeqsszT4brWbksFY0iIikVtoSwVr-rpFH5jjCHCx8AcgB7z3-xPkOmPcVX-mIyDhZnd-c-23SW3I5Wk9YD9PXLFtffJrUsCgw_Iz5q-_tgkh2CqLK03fQf8FFPnZ9161X_5SpchDA5gQ2dbLy0KNJZOsfFJo4CQ0w_dMql_qLWjS0DYouv6GVUtVIPu762C6tAihlpWLZ0DHYcplM6P5-9oFETfJ59mb06mR0kMvZAYWPD1iUflNqAqFs9peKYEDHsDZEWLKhdqUjgtPDPGVUVphPbwaJ4Lw1yauZJZXTwke23XukeEpsjoLCt8rkpgPwXPPZK-rMisgJ5iRyTfAiJN1CXH8BjnMqxPUiEHFCWiKCOKI_JyV-jbIMvx7-yHiPQuK2pqhxcAoYxDVILd1g7olXPQUm8z7pSvSujDyhstWDYi-wj7pe8NiI_IwbbjyDgBXMgcVZJEOeHi8V-KPSc3jk7mjWyOF2-fkJvY3GFr54Ds9euNe0qum-_96mL9LPTyX_R--Uc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DRL-Based+Automated+Algorithm+Selection+Framework+for+Cross-Layer+QoS-Aware+Scheduling+and+Antenna+Allocation+in+Massive+MIMO+Systems&rft.jtitle=IEEE+access&rft.au=Huang%2C+Chih-Wei&rft.au=Ibrahim+Althamary&rft.au=Yen-Cheng%2C+Chou&rft.au=Chen%2C+Hong-Yunn&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=13243&rft_id=info:doi/10.1109%2FACCESS.2023.3243068&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon