A DRL-Based Automated Algorithm Selection Framework for Cross-Layer QoS-Aware Scheduling and Antenna Allocation in Massive MIMO Systems
Massive multiple-input-multiple-output (MIMO) systems support advanced applications with high data rates, low latency, and high reliability in next-generation mobile networks. However, using machine learning in massive MIMO resource allocation is challenging due to quality of service (QoS) and netwo...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Massive multiple-input-multiple-output (MIMO) systems support advanced applications with high data rates, low latency, and high reliability in next-generation mobile networks. However, using machine learning in massive MIMO resource allocation is challenging due to quality of service (QoS) and network complexity across layers. This work presents a novel framework for adapting the scheduling and antenna allocation in massive MIMO systems using deep reinforcement learning (DRL). Rather than directly assigning execution parameters, the proposed framework utilizes DRL to select combinations of algorithms based on the current traffic conditions. The DRL model is trained using a specialized Markov decision process (MDP) model with a componentized action structure and is evaluated in realistic traffic scenarios. The results show that the proposed framework increases satisfied users by 7.2% and 12.5% compared to static algorithm combinations and other cross-layer adaptation methods. This demonstrates the effectiveness of the framework in managing and optimizing resource allocation in a flexible and adaptable manner. |
|---|---|
| AbstractList | Massive multiple-input-multiple-output (MIMO) systems support advanced applications with high data rates, low latency, and high reliability in next-generation mobile networks. However, using machine learning in massive MIMO resource allocation is challenging due to quality of service (QoS) and network complexity across layers. This work presents a novel framework for adapting the scheduling and antenna allocation in massive MIMO systems using deep reinforcement learning (DRL). Rather than directly assigning execution parameters, the proposed framework utilizes DRL to select combinations of algorithms based on the current traffic conditions. The DRL model is trained using a specialized Markov decision process (MDP) model with a componentized action structure and is evaluated in realistic traffic scenarios. The results show that the proposed framework increases satisfied users by 7.2% and 12.5% compared to static algorithm combinations and other cross-layer adaptation methods. This demonstrates the effectiveness of the framework in managing and optimizing resource allocation in a flexible and adaptable manner. |
| Author | Huang, Chih-Wei Chou, Yen-Cheng Althamary, Ibrahim Chou, Cheng-Fu Chen, Hong-Yunn |
| Author_xml | – sequence: 1 givenname: Chih-Wei orcidid: 0000-0002-0202-8977 surname: Huang fullname: Huang, Chih-Wei organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan – sequence: 2 givenname: Ibrahim surname: Althamary fullname: Althamary, Ibrahim organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan – sequence: 3 givenname: Yen-Cheng orcidid: 0000-0003-1100-8262 surname: Chou fullname: Chou, Yen-Cheng organization: Department of Communication Engineering, National Central University, Taoyuan, Taiwan – sequence: 4 givenname: Hong-Yunn surname: Chen fullname: Chen, Hong-Yunn organization: Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan – sequence: 5 givenname: Cheng-Fu orcidid: 0000-0003-2684-5039 surname: Chou fullname: Chou, Cheng-Fu organization: Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan |
| BookMark | eNqFkcFu1DAQhiNUJErpE8DBEucsdpzY8TGElq60qwoCZ8txJlsvWbvY3lb7BLx2vZsKVVywZM1oNP83o_nfZmfWWciy9wQvCMHiU9O2V123KHBBF7QoKWb1q-y8IEzktKLs7EX-JrsMYYvTq1Op4ufZnwZ9-b7KP6sAA2r20e1UPGbTxnkT73aogwl0NM6ia6928Oj8LzQ6j1rvQshX6gAefXNd3jwqD6jTdzDsJ2M3SNmEsRGsVQk3Oa1OFGPRWoVgHgCtl-tb1B1ChF14l70e1RTg8jleZD-vr360N_nq9uuybVa5LrGI-UiqUlDBB0wIq4kSRVFpVtW9qAqhGIVejFxrqGipRT-m39eF0BwwgZIPPb3IljN3cGor773ZKX-QThl5Kji_kcpHoyeQmPEeSFUBFKocB1KDGqty5CnoXnCSWB9n1r13v_cQoty6vbdpfVlwzrgoWS1SF5279PFiHsa_UwmWRwPlbKA8GiifDUwq8Y9Km3i6YPTKTP_Rfpi1BgBeTMO0ZoLSJw9vq2s |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_electronics13020390 crossref_primary_10_1007_s11235_023_01093_3 crossref_primary_10_1038_s41598_025_16571_8 crossref_primary_10_3390_app13179861 crossref_primary_10_1145_3629141 crossref_primary_10_1145_3696399 crossref_primary_10_1177_18724981251346876 crossref_primary_10_1016_j_comnet_2025_111655 crossref_primary_10_1134_S1064226923120215 |
| Cites_doi | 10.1109/ICC.2017.7997065 10.1109/JIOT.2019.2921159 10.1007/978-3-319-50137-6_7 10.1109/TWC.2020.2981320 10.1109/LCOMM.2016.2547418 10.1109/TCOMM.2021.3133939 10.1109/TSP.2019.2926019 10.1109/ISIT.2018.8437617 10.1109/6GSUMMIT49458.2020.9083926 10.1109/ACCESS.2018.2881964 10.1109/TVT.2019.2897134 10.1109/MCOM.2019.1800629 10.1109/TVT.2017.2717909 10.1109/JCN.2010.6388432 10.1109/MNET.001.1900287 10.1609/aaai.v30i1.10170 10.1109/LCOMM.2005.03014 10.1016/j.dcan.2019.08.002 10.1002/9781118612323.ch2 10.1109/tnn.1998.712192 10.1109/TCOMM.2021.3053040 10.1109/ICC.2016.7510955 10.1109/WiMOB.2011.6085383 10.1109/TCOMM.2020.2991805 10.1109/JSTSP.2016.2520912 10.1109/ACCESS.2018.2828403 10.1109/MCOM.101.2001120 10.1109/MWC.2018.1800140 10.1109/MNET.2019.1800418 10.1109/MWC.001.1900427 10.1109/MWC.001.1900323 10.1007/s10994-021-05961-4 10.1109/ACCESS.2018.2828859 10.1109/TWC.2017.2769644 10.1145/1273496.1273556 10.1109/TVT.2017.2769694 10.1109/ITA.2015.7308971 10.1109/MWC.2016.1500356WC 10.1109/MNET.2019.1800386 10.1109/COMST.2016.2618870 10.1109/ICCW.2019.8757174 10.1109/MWC.2012.6393523 10.1109/GLOBECOM42002.2020.9322383 10.1109/TWC.2017.2664837 10.1038/nature14236 10.1049/iet-com.2017.0905 10.1109/MCOM.001.2000218 10.1109/ACCESS.2021.3092754 10.1109/MCOM.001.1900601 10.1162/evco_a_00242 10.1109/TCOMM.2018.2850303 10.1109/TWC.2020.2996368 10.1016/B978-0-12-804418-6.00005-4 10.1145/3005745.3005750 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3243068 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_067be155ee2a4fd18eaf54f7eafcb971 10_1109_ACCESS_2023_3243068 10038693 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science and Technology Council grantid: 109-2221-E-008-054-MY3; 111-2218-E-008-004-MBK funderid: 10.13039/501100020950 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-f1549397d011681a9225c658b9529a63eb9f7cce534c9bfc9bb829c7e01e47db3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000933690300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:35 EDT 2025 Sun Jun 29 15:16:48 EDT 2025 Sat Nov 29 04:02:24 EST 2025 Tue Nov 18 19:52:49 EST 2025 Wed Aug 27 02:18:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-f1549397d011681a9225c658b9529a63eb9f7cce534c9bfc9bb829c7e01e47db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2684-5039 0000-0003-1100-8262 0000-0002-0202-8977 |
| OpenAccessLink | https://doaj.org/article/067be155ee2a4fd18eaf54f7eafcb971 |
| PQID | 2776794689 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2023_3243068 crossref_citationtrail_10_1109_ACCESS_2023_3243068 doaj_primary_oai_doaj_org_article_067be155ee2a4fd18eaf54f7eafcb971 ieee_primary_10038693 proquest_journals_2776794689 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 Dulac-Arnold (ref24) 2015 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 (ref14) 2016 Lagoudakis (ref15) (ref44) 2020 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Abadi (ref59) 2015 ref29 Lillicrap (ref23) ref60 Silver (ref43); 1 ref61 |
| References_xml | – ident: ref55 doi: 10.1109/ICC.2017.7997065 – ident: ref56 doi: 10.1109/JIOT.2019.2921159 – ident: ref17 doi: 10.1007/978-3-319-50137-6_7 – ident: ref38 doi: 10.1109/TWC.2020.2981320 – ident: ref32 doi: 10.1109/LCOMM.2016.2547418 – start-page: 511 volume-title: Proc. 17th Int. Conf. Mach. Learn. ident: ref15 article-title: Algorithm selection using reinforcement learning – volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems year: 2015 ident: ref59 – ident: ref48 doi: 10.1109/TCOMM.2021.3133939 – ident: ref30 doi: 10.1109/TSP.2019.2926019 – ident: ref6 doi: 10.1109/ISIT.2018.8437617 – ident: ref20 doi: 10.1109/6GSUMMIT49458.2020.9083926 – ident: ref35 doi: 10.1109/ACCESS.2018.2881964 – ident: ref37 doi: 10.1109/TVT.2019.2897134 – ident: ref22 doi: 10.1109/MCOM.2019.1800629 – volume-title: NR; Physical Layer Procedures for Data year: 2020 ident: ref44 – ident: ref29 doi: 10.1109/TVT.2017.2717909 – ident: ref61 doi: 10.1109/JCN.2010.6388432 – ident: ref1 doi: 10.1109/MNET.001.1900287 – ident: ref16 doi: 10.1609/aaai.v30i1.10170 – ident: ref52 doi: 10.1109/LCOMM.2005.03014 – ident: ref26 doi: 10.1016/j.dcan.2019.08.002 – ident: ref54 doi: 10.1002/9781118612323.ch2 – ident: ref41 doi: 10.1109/tnn.1998.712192 – ident: ref45 doi: 10.1109/TCOMM.2021.3053040 – ident: ref25 doi: 10.1109/ICC.2016.7510955 – ident: ref51 doi: 10.1109/WiMOB.2011.6085383 – ident: ref28 doi: 10.1109/TCOMM.2020.2991805 – ident: ref46 doi: 10.1109/JSTSP.2016.2520912 – ident: ref5 doi: 10.1109/ACCESS.2018.2828403 – volume-title: System Architecture for the 5G System year: 2016 ident: ref14 – ident: ref21 doi: 10.1109/MCOM.101.2001120 – ident: ref4 doi: 10.1109/MWC.2018.1800140 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref23 article-title: Continuous control with deep reinforcement learning – ident: ref2 doi: 10.1109/MNET.2019.1800418 – ident: ref58 doi: 10.1109/MWC.001.1900427 – ident: ref10 doi: 10.1109/MWC.001.1900323 – ident: ref13 doi: 10.1007/s10994-021-05961-4 – ident: ref36 doi: 10.1109/ACCESS.2018.2828859 – ident: ref33 doi: 10.1109/TWC.2017.2769644 – ident: ref60 doi: 10.1145/1273496.1273556 – ident: ref7 doi: 10.1109/TVT.2017.2769694 – ident: ref53 doi: 10.1109/ITA.2015.7308971 – ident: ref34 doi: 10.1109/MWC.2016.1500356WC – ident: ref40 doi: 10.1109/MNET.2019.1800386 – ident: ref3 doi: 10.1109/COMST.2016.2618870 – ident: ref19 doi: 10.1109/ICCW.2019.8757174 – ident: ref57 doi: 10.1109/MWC.2012.6393523 – ident: ref12 doi: 10.1109/GLOBECOM42002.2020.9322383 – ident: ref27 doi: 10.1109/TWC.2017.2664837 – ident: ref42 doi: 10.1038/nature14236 – ident: ref31 doi: 10.1049/iet-com.2017.0905 – ident: ref9 doi: 10.1109/MCOM.001.2000218 – volume: 1 start-page: 605 volume-title: Proc. 31st Int. Conf. Mach. Learn. (ICML) ident: ref43 article-title: Deterministic policy gradient algorithms – ident: ref8 doi: 10.1109/ACCESS.2021.3092754 – ident: ref11 doi: 10.1109/MCOM.001.1900601 – year: 2015 ident: ref24 article-title: Deep reinforcement learning in large discrete action spaces publication-title: arXiv:1512.07679 – ident: ref18 doi: 10.1162/evco_a_00242 – ident: ref49 doi: 10.1109/TCOMM.2018.2850303 – ident: ref39 doi: 10.1109/TWC.2020.2996368 – ident: ref47 doi: 10.1016/B978-0-12-804418-6.00005-4 – ident: ref50 doi: 10.1145/3005745.3005750 |
| SSID | ssj0000816957 |
| Score | 2.3641963 |
| Snippet | Massive multiple-input-multiple-output (MIMO) systems support advanced applications with high data rates, low latency, and high reliability in next-generation... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Antennas automated algorithm selection Cross layer design Deep learning deep reinforcement learning Heuristic algorithms Machine learning Markov processes Massive MIMO MIMO communication Mobile network Network latency Network reliability Precoding QoS Quality of service Quality of service architectures Resource allocation Resource management Scheduling Traffic models User satisfaction |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFLXaqgtYtBSKCC3Iiy5xmFdiezkNRCAl5RFA3Vl-lkjtDEon8An8Nvd6nKgIgcRiJGtkezw6tu-xfX0uIWcGbHAAM8kC97BAMYVghkvLnOUYnSpzIYbp_DLjFxfi8lK-T5fV410Y7310PvNDTMazfNfaNW6VwQjPSjGW5S7Z5XzcX9babqhgBAk54klZKM_ky3oygZ8YYoDwIfAGIMfiN-sTRfpTVJU_puJoX6aH_9myB-QgEUla98gfkR3fPCT378gLPiI_a_rq44ydg6FytF53LbBTTF1ftatl9_WGLmIQHECGTjc-WhRILJ1g49lMAx2nH9oFq3_olacLwNeh4_oV1Q1Ug87vjYbq0B7GWpYNnQMZhwmUzt_O39Ekh35MPk9ff5q8YSnwArOw3OtYQN02ICoOT2lEriUMegtUxchRIfW49EYGbq0flZWVJsBjRCEt91nuK-5M-ZjsNW3jnxCaIZ9zvAyFroD7lKIISPnyMncS-okbkGIDiLJJlRyDY1yruDrJpOpRVIiiSigOyIttoW-9KMe_s58j0tusqKgdXwCEKg1QBVbbeCBX3kNLg8uF12FUQQ_WwRrJ8wE5RtjvfK9HfEBONx1HpeF_qwrUSJLVWMinfyl2Qu5hE_vNnFOy163W_hnZt9-75e3qeezZvwAHavYA priority: 102 providerName: IEEE |
| Title | A DRL-Based Automated Algorithm Selection Framework for Cross-Layer QoS-Aware Scheduling and Antenna Allocation in Massive MIMO Systems |
| URI | https://ieeexplore.ieee.org/document/10038693 https://www.proquest.com/docview/2776794689 https://doaj.org/article/067be155ee2a4fd18eaf54f7eafcb971 |
| Volume | 11 |
| WOSCitedRecordID | wos000933690300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQxQEOiEcRgbbygSNu95XYc9ymjUBKyiOAerP8bCuVDUpTuHHt3-6M16mCkODCYVerlXf8mFnPN7v2N4y9tuiDI7pJEWXAAMVWSlgJTngnKTtV4WNK0_l1Kk9O1OkpfNhI9UVrwnp64H7gDnA2tQGdXgiVaaIvVTBx2KBkE52FtHu8KiRsBFNpDlblCIYy0wyVBRy04zH2aJ-yhe8jiECkrH5zRYmxP6dY-WNeTs5m8pg9yiiRt33rnrB7oXvKHm5wBz5jNy0_-jQVh-iFPG-vVwuEnnR1ebbAeP_8G5-nDDc47HyyXoDFEaHyMTVGTA1ibf5xMRftT7MMfI7K87Qq_YybDsXQyvbOoDhydknKRcdniLRxduSzd7P3PHOdb7Mvk-PP47ciZ1UQDmO5lYhEyoYoxNMvGFUawDfaIQ6xMKzAjOpgIUrnwrBuHNiIh1UVOBmKMjTS2_o52-oWXXjBeEFgzcs6omoQ2NSqioTnyrr0gEbgB6xaD7B2mXKcMl9c6hR6FKB7rWjSis5aGbA3dw997xk3_l78kDR3V5TostMNNCKdjUj_y4gGbJv0vlFfUasR1AO2szYEnd_tK10RARI0IwUv_0fdr9gD6k__WWeHba2W12GX3Xc_VhdXy71k1nie_TreS5sTbwFzmfwz |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgIAEPXIcoDPADj6TkWtuPWaHaRFouHWhvlq-j0khQl8JP4G9zjuNWQwgkHiJZke04-myfz_bxdwh5ocEGezCTiWcOFig654lmwiTWMIxOlVofwnR-bthiwU9Pxft4WT3chXHOBeczN8ZkOMu3ndngVhmM8LTgE1FcJdeqsszT4brWbksFY0iIikVtoSwVr-rpFH5jjCHCx8AcgB7z3-xPkOmPcVX-mIyDhZnd-c-23SW3I5Wk9YD9PXLFtffJrUsCgw_Iz5q-_tgkh2CqLK03fQf8FFPnZ9161X_5SpchDA5gQ2dbLy0KNJZOsfFJo4CQ0w_dMql_qLWjS0DYouv6GVUtVIPu762C6tAihlpWLZ0DHYcplM6P5-9oFETfJ59mb06mR0kMvZAYWPD1iUflNqAqFs9peKYEDHsDZEWLKhdqUjgtPDPGVUVphPbwaJ4Lw1yauZJZXTwke23XukeEpsjoLCt8rkpgPwXPPZK-rMisgJ5iRyTfAiJN1CXH8BjnMqxPUiEHFCWiKCOKI_JyV-jbIMvx7-yHiPQuK2pqhxcAoYxDVILd1g7olXPQUm8z7pSvSujDyhstWDYi-wj7pe8NiI_IwbbjyDgBXMgcVZJEOeHi8V-KPSc3jk7mjWyOF2-fkJvY3GFr54Ds9euNe0qum-_96mL9LPTyX_R--Uc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+DRL-Based+Automated+Algorithm+Selection+Framework+for+Cross-Layer+QoS-Aware+Scheduling+and+Antenna+Allocation+in+Massive+MIMO+Systems&rft.jtitle=IEEE+access&rft.au=Huang%2C+Chih-Wei&rft.au=Ibrahim+Althamary&rft.au=Yen-Cheng%2C+Chou&rft.au=Chen%2C+Hong-Yunn&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=13243&rft_id=info:doi/10.1109%2FACCESS.2023.3243068&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |