Deep learning techniques for predicting nonlinear multi-component seismic responses of structural buildings

•A new approach to nonlinear seismic response predictions of structures using multiple-component features.•Deep learning time-series predictions through hybrid ConvLSTM models.•Signal processing improved with DWT of acceleration time-history.•Hybrid model can predict nonlinear seismic response of in...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures Vol. 252; p. 106570
Main Authors: Torky, Ahmed A., Ohno, Susumu
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.08.2021
Elsevier BV
Subjects:
ISSN:0045-7949, 1879-2243
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A new approach to nonlinear seismic response predictions of structures using multiple-component features.•Deep learning time-series predictions through hybrid ConvLSTM models.•Signal processing improved with DWT of acceleration time-history.•Hybrid model can predict nonlinear seismic response of industrial-level building. This paper presents a new approach for nonlinear multi-component seismic response prediction of structures using hybrid deep learning techniques. Modern recurrent neural networks map the relationship between acceleration time-series of the base/ground of a building and the superstructure, as a form of nonlinear time-history analysis method. Seismic responses were measured in three components which enables multi-component seismic predictions with adequate deep learning architectures. While long short-term memory (LSTM) neural networks can obtain data from a single component per surrogate model, hybrid convolutional-LSTMs (ConvLSTM) neural networks are utilized for multi-component purposes. A guide for pre-processing data and structuring the architecture of deep neural networks are proposed. Also, two filtering methods are compared, Fast Fourier Transform (FFT) Butterworth filter and discrete wavelet transform (DWT) decomposition. Decimation is implemented to reduce the features to useful values, as a dimension reduction approach. With enhancements to the architecture of the network, training time can be reduced significantly, and accuracy could be further improved. A challenging case study is addressed that covers an industrial level practical building. Results show that proposed hybrid models can even predict the capacity curves of a structure indirectly, providing new prospects for engineers to evaluate the seismic performance of a building.
AbstractList This paper presents a new approach for nonlinear multi-component seismic response prediction of structures using hybrid deep learning techniques. Modern recurrent neural networks map the relationship between acceleration time-series of the base/ground of a building and the superstructure, as a form of nonlinear time-history analysis method. Seismic responses were measured in three components which enables multi-component seismic predictions with adequate deep learning architectures. While long short-term memory (LSTM) neural networks can obtain data from a single component per surrogate model, hybrid convolutional-LSTMs (ConvLSTM) neural networks are utilized for multi-component purposes. A guide for pre-processing data and structuring the architecture of deep neural networks are proposed. Also, two filtering methods are compared, Fast Fourier Transform (FFT) Butterworth filter and discrete wavelet transform (DWT) decomposition. Decimation is implemented to reduce the features to useful values, as a dimension reduction approach. With enhancements to the architecture of the network, training time can be reduced significantly, and accuracy could be further improved. A challenging case study is addressed that covers an industrial level practical building. Results show that proposed hybrid models can even predict the capacity curves of a structure indirectly, providing new prospects for engineers to evaluate the seismic performance of a building.
•A new approach to nonlinear seismic response predictions of structures using multiple-component features.•Deep learning time-series predictions through hybrid ConvLSTM models.•Signal processing improved with DWT of acceleration time-history.•Hybrid model can predict nonlinear seismic response of industrial-level building. This paper presents a new approach for nonlinear multi-component seismic response prediction of structures using hybrid deep learning techniques. Modern recurrent neural networks map the relationship between acceleration time-series of the base/ground of a building and the superstructure, as a form of nonlinear time-history analysis method. Seismic responses were measured in three components which enables multi-component seismic predictions with adequate deep learning architectures. While long short-term memory (LSTM) neural networks can obtain data from a single component per surrogate model, hybrid convolutional-LSTMs (ConvLSTM) neural networks are utilized for multi-component purposes. A guide for pre-processing data and structuring the architecture of deep neural networks are proposed. Also, two filtering methods are compared, Fast Fourier Transform (FFT) Butterworth filter and discrete wavelet transform (DWT) decomposition. Decimation is implemented to reduce the features to useful values, as a dimension reduction approach. With enhancements to the architecture of the network, training time can be reduced significantly, and accuracy could be further improved. A challenging case study is addressed that covers an industrial level practical building. Results show that proposed hybrid models can even predict the capacity curves of a structure indirectly, providing new prospects for engineers to evaluate the seismic performance of a building.
ArticleNumber 106570
Author Ohno, Susumu
Torky, Ahmed A.
Author_xml – sequence: 1
  givenname: Ahmed A.
  surname: Torky
  fullname: Torky, Ahmed A.
  email: ahmed.torky@dc.tohoku.ac.jp
  organization: Graduate School of Engineering, Tohoku University, Japan
– sequence: 2
  givenname: Susumu
  surname: Ohno
  fullname: Ohno, Susumu
  email: ohno@irides.tohoku.ac.jp
  organization: International Research Institute of Disaster Science, Tohoku University, Japan
BookMark eNqNkMtOxCAUhonRxPHyDJK47njAtpSFC-M9MXGja0LpqTJ2oAI18e2ljnHhRheE5PBfDt8e2XbeISFHDJYMWH2yWhq_HmMKk1ly4CxP60rAFlmwRsiC8_J0mywAyqoQspS7ZC_GFQDUJcCCvF4ijnRAHZx1zzSheXH2bcJIex_oGLCzJs0vuXWwLuvoehqSLebSvIhLNKKNa2towJgnMVt9T7_2SVPQA20nO3Q5Ih6QnV4PEQ-_733ydH31eHFb3D_c3F2c3xemBJkKbKHSGjTKGhptRN1yzfvGVE3TtcA4yi4fyTljspWCQ9t3TV_3UrCqaUGc7pPjTe4Y_PyVpFZ-Ci5XKl6VdV2KildZJTYqE3yMAXs1BrvW4UMxUDNZtVI_ZNVMVm3IZufZL6exSSfrXQraDv_wn2_8mCG8WwwqGovOZNYBTVKdt39mfALJkp_o
CitedBy_id crossref_primary_10_1016_j_engstruct_2025_120225
crossref_primary_10_1016_j_istruc_2025_110199
crossref_primary_10_1016_j_engstruct_2025_119710
crossref_primary_10_1016_j_engstruct_2025_119913
crossref_primary_10_1016_j_autcon_2022_104255
crossref_primary_10_1016_j_engstruct_2024_118702
crossref_primary_10_1016_j_engstruct_2025_121273
crossref_primary_10_1142_S0219455424501608
crossref_primary_10_1016_j_engstruct_2024_117733
crossref_primary_10_1007_s44379_024_00011_x
crossref_primary_10_1080_13632469_2025_2469090
crossref_primary_10_1016_j_compstruc_2024_107443
crossref_primary_10_1016_j_engstruct_2023_117048
crossref_primary_10_1007_s42107_023_00915_8
crossref_primary_10_1016_j_jobe_2025_112643
crossref_primary_10_1142_S0219455425501986
crossref_primary_10_1177_14759217241241983
crossref_primary_10_3390_math12132084
crossref_primary_10_1088_1361_665X_ad742d
crossref_primary_10_1007_s42107_025_01307_w
crossref_primary_10_1016_j_compstruc_2023_107114
crossref_primary_10_1016_j_engappai_2024_109031
crossref_primary_10_1080_15732479_2024_2345853
crossref_primary_10_1016_j_compstruc_2023_107038
crossref_primary_10_1016_j_compstruc_2025_107719
crossref_primary_10_1016_j_soildyn_2023_108263
crossref_primary_10_1016_j_engappai_2025_110955
crossref_primary_10_1016_j_ress_2025_111006
crossref_primary_10_1007_s40430_023_04043_x
crossref_primary_10_1002_eqe_4213
crossref_primary_10_1016_j_engstruct_2025_120247
crossref_primary_10_1080_17445302_2025_2472259
crossref_primary_10_1016_j_engstruct_2024_119132
crossref_primary_10_1016_j_compgeo_2025_107382
crossref_primary_10_1016_j_jii_2023_100470
crossref_primary_10_1016_j_measurement_2025_116820
crossref_primary_10_1016_j_ymssp_2023_110906
crossref_primary_10_1016_j_engappai_2024_108965
crossref_primary_10_1002_suco_70274
crossref_primary_10_1016_j_istruc_2025_109548
crossref_primary_10_1007_s00158_025_03969_1
crossref_primary_10_1016_j_aei_2025_103797
crossref_primary_10_1016_j_jobe_2025_112932
crossref_primary_10_1016_j_compstruc_2025_107902
crossref_primary_10_1016_j_soildyn_2024_108733
crossref_primary_10_1016_j_istruc_2024_106465
crossref_primary_10_1002_eqe_4264
crossref_primary_10_1016_j_engstruct_2025_120953
crossref_primary_10_1016_j_istruc_2025_109390
crossref_primary_10_1016_j_jobe_2024_110864
crossref_primary_10_1016_j_jobe_2024_108766
crossref_primary_10_3390_s22145186
crossref_primary_10_1016_j_cma_2024_117074
crossref_primary_10_1111_mice_12944
crossref_primary_10_1016_j_engstruct_2024_119227
crossref_primary_10_1007_s40430_025_05697_5
crossref_primary_10_1016_j_apor_2023_103514
crossref_primary_10_1016_j_engstruct_2022_114576
crossref_primary_10_1016_j_engstruct_2022_115503
crossref_primary_10_1016_j_aei_2023_102002
crossref_primary_10_1016_j_compstruc_2022_106742
crossref_primary_10_1016_j_jobe_2022_104837
crossref_primary_10_1002_eqe_4273
crossref_primary_10_1061_PPSCFX_SCENG_1292
crossref_primary_10_1016_j_engstruct_2022_115065
crossref_primary_10_1002_eqe_4236
crossref_primary_10_1016_j_compstruc_2025_107777
crossref_primary_10_1002_eqe_3863
crossref_primary_10_1007_s11069_024_06465_9
crossref_primary_10_1016_j_engstruct_2023_116094
Cites_doi 10.1038/nature14539
10.1785/0120050052
10.1016/j.compstruc.2019.05.006
10.1016/j.asoc.2018.05.018
10.1002/nme.1620090207
10.1002/2475-8876.1010
10.1177/8755293020919419
10.1371/journal.pone.0230114
10.1061/(ASCE)CP.1943-5487.0000820
10.1016/j.neunet.2018.12.005
10.1007/s00707-020-02878-2
10.3130/aijs.79.1107
10.1016/j.strusafe.2017.12.001
10.3130/aijs.78.1061
10.1016/j.strusafe.2019.101913
10.1007/s11831-017-9237-0
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Aug 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2021
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.compstruc.2021.106570
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2243
ExternalDocumentID 10_1016_j_compstruc_2021_106570
S0045794921000924
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSW
SSZ
T5K
T9H
TAE
TN5
UAO
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AGCQF
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-eb05aa0ae9608ac76b2a2f8c588db012e9d2e9922119b9720bfd8f6f97158b073
ISICitedReferencesCount 82
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658896800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7949
IngestDate Sun Sep 07 03:46:14 EDT 2025
Sat Nov 29 07:26:30 EST 2025
Tue Nov 18 21:38:58 EST 2025
Fri Feb 23 02:44:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep neural networks
Multi-component response
Discrete wavelet transforms
Convolutional long short-term memory neural networks
Nonlinear seismic response prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-eb05aa0ae9608ac76b2a2f8c588db012e9d2e9922119b9720bfd8f6f97158b073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2546647525
PQPubID 2045492
ParticipantIDs proquest_journals_2546647525
crossref_primary_10_1016_j_compstruc_2021_106570
crossref_citationtrail_10_1016_j_compstruc_2021_106570
elsevier_sciencedirect_doi_10_1016_j_compstruc_2021_106570
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computers & structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Motosaka M, Ohno S, Mitsuji K, Wang X, Hatakeyama T. Development of Structural Health Monitoring System Combined with Earthquake Early Warning System for Real-time Earthquake Information Navigation. In: 16th World Conf. Earthq. Eng. Santiago, Chile, 9-13 January; 2017.
Kumar, Islam, Sekimoto, Mattmann, Wilson (b0105) 2020; 15
Khodabandehlou, Pekcan, Fadali (b0090) 2019; 26
Kashima T. Dynamic Behavior of an Eight-Storey SRC Building Examined from Strong Motion Records. In: 13th World Conf. Earthq. Eng., Vancouver, Canada; 2004.
Kashima T. Dynamic Behaviour of Src Buildings Damaged By the 2011 Great East Japan Earthquake Based on Strong Motion Records. In: Second Eur. Conf. Earthq. Eng. Seismol., Istanbul, Turkey, 2014: pp. 1–11.
Zhang R, Liu Y, Sun H. Physics-guided Convolutional Neural Network (PhyCNN) for Data-driven Seismic Response Modeling; 2019. p. 1–24.
Wu, Jahanshahi (b0075) 2019
Lecun, Bengio, Hinton (b0045) 2015
Torky AA, Ohno S, Kashima T. Deep learning techniques for structural response prediction during strong ground motion. In: 17th World Conf Earthq Eng 17WCEE, Sendai, Japan, n.d.
BRI Strong Motion Observation (English), (n.d.).
B.R.I. (BRI) Kashima’s Office, International Institute of Seismology and Earthquake Engineering (IISEE), ViewWave Software; 2021.
Kawamura, Kusunoki, Yamashita, Hattori, Hinata, Figueroa (b0145) 2013
Motosaka, Tsamba, Yoshida, Mitsuji (b0020) 2015; 15
Clinton, Bradford, Heaton, Favela (b0025) 2006
Bathe, Ramm, Wilson (b0015) 1975
Kashima T, Koyama S, Okawa I. Strong Motion Records in Buildings from the 2011 off the Pacific coast of Tohoku Earthquake, Building Research Data No.135, Building Research Institute, (n.d.).
Rofooei FR, Kaveh A, Farahani FM. Estimating the vulnerability of the concrete moment resisting frame structures using artificial neural networks. Int. J. Optim. Civ. Eng. 2011.
Ohno S, Tsuruta R. Ground-motion prediction by ANN using machine learning for the Tohoku region, Japan. In: 11th Natl. Conf. Earthq. Eng. 2018, NCEE 2018 Integr. Sci. Eng. Policy, Los Angeles, California; 2018. p. 5429–5437.
Zhang, Chen, Chen, Zheng, Büyüköztürk, Sun (b0055) 2019; 220
Zhang, Burton, Sun, Shokrabadi (b0010) 2018; 72
Li, Nakamura, Kashima, Techigawara (b0140) 2014; 79
Xie, Ebad Sichani, Padgett, DesRoches (b0030) 2020
.
Kim, Kwon, Song (b0100) 2019
Kim, Song, Kwon (b0085) 2020; 84
Lee, Ha, Zokhirova, Moon, Lee (b0120) 2018
Kusunoki, Hinata, Hattori, Tasai (b0115) 2018
Garcia-Garcia, Orts-Escolano, Oprea, Villena-Martinez, Martinez-Gonzalez, Garcia-Rodriguez (b0065) 2018; 70
Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: Adv. Neural Inf. Process. Syst.; 2015.
Kaveh, Dadras Eslamlou, Javadi, Geran Malek (b0040) 2021
Gulgec, Takáč, Pakzad (b0070) 2019; 33
Butterworth S. On the theory of filter amplifiers. Exp Wirel Wirel Eng; 1930. https://doi.org/citeulike-article-id:5322726.
Kim (10.1016/j.compstruc.2021.106570_b0085) 2020; 84
10.1016/j.compstruc.2021.106570_b0135
Kaveh (10.1016/j.compstruc.2021.106570_b0040) 2021
Kim (10.1016/j.compstruc.2021.106570_b0100) 2019
Li (10.1016/j.compstruc.2021.106570_b0140) 2014; 79
Lee (10.1016/j.compstruc.2021.106570_b0120) 2018
Clinton (10.1016/j.compstruc.2021.106570_b0025) 2006
Zhang (10.1016/j.compstruc.2021.106570_b0055) 2019; 220
Lecun (10.1016/j.compstruc.2021.106570_b0045) 2015
Khodabandehlou (10.1016/j.compstruc.2021.106570_b0090) 2019; 26
10.1016/j.compstruc.2021.106570_b0110
10.1016/j.compstruc.2021.106570_b0155
10.1016/j.compstruc.2021.106570_b0035
10.1016/j.compstruc.2021.106570_b0050
10.1016/j.compstruc.2021.106570_b0095
10.1016/j.compstruc.2021.106570_b0150
Garcia-Garcia (10.1016/j.compstruc.2021.106570_b0065) 2018; 70
10.1016/j.compstruc.2021.106570_b0130
Xie (10.1016/j.compstruc.2021.106570_b0030) 2020
10.1016/j.compstruc.2021.106570_b0125
10.1016/j.compstruc.2021.106570_b0005
Kumar (10.1016/j.compstruc.2021.106570_b0105) 2020; 15
Motosaka (10.1016/j.compstruc.2021.106570_b0020) 2015; 15
10.1016/j.compstruc.2021.106570_b0080
10.1016/j.compstruc.2021.106570_b0060
Kawamura (10.1016/j.compstruc.2021.106570_b0145) 2013
Bathe (10.1016/j.compstruc.2021.106570_b0015) 1975
Gulgec (10.1016/j.compstruc.2021.106570_b0070) 2019; 33
Kusunoki (10.1016/j.compstruc.2021.106570_b0115) 2018
Wu (10.1016/j.compstruc.2021.106570_b0075) 2019
Zhang (10.1016/j.compstruc.2021.106570_b0010) 2018; 72
References_xml – volume: 70
  start-page: 41
  year: 2018
  end-page: 65
  ident: b0065
  article-title: A survey on deep learning techniques for image and video semantic segmentation
  publication-title: Appl Soft Comput J
– reference: B.R.I. (BRI) Kashima’s Office, International Institute of Seismology and Earthquake Engineering (IISEE), ViewWave Software; 2021.
– volume: 33
  start-page: 04019005
  year: 2019
  ident: b0070
  article-title: Convolutional neural network approach for robust structural damage detection and localization
  publication-title: J. Comput Civ Eng
– reference: Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In: Adv. Neural Inf. Process. Syst.; 2015.
– year: 2018
  ident: b0115
  article-title: A new method for evaluating the real-time residual seismic capacity of existing structures using accelerometers: structures with multiple degrees of freedom
  publication-title: Japan Archit Rev
– reference: Kashima T. Dynamic Behavior of an Eight-Storey SRC Building Examined from Strong Motion Records. In: 13th World Conf. Earthq. Eng., Vancouver, Canada; 2004.
– year: 2018
  ident: b0120
  article-title: Background information of deep learning for structural engineering
  publication-title: Arch Comput Methods Eng
– reference: Kashima T. Dynamic Behaviour of Src Buildings Damaged By the 2011 Great East Japan Earthquake Based on Strong Motion Records. In: Second Eur. Conf. Earthq. Eng. Seismol., Istanbul, Turkey, 2014: pp. 1–11.
– volume: 26
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0090
  article-title: Vibration-based structural condition assessment using convolution neural networks
  publication-title: Struct Control Heal Monit
– year: 1975
  ident: b0015
  article-title: Finite element formulations for large deformation dynamic analysis
  publication-title: Int J Numer Meth Eng
– volume: 15
  start-page: 3_1-3_16
  year: 2015
  ident: b0020
  article-title: Long-term monitoring of amplitude dependent dynamic characteristics of a damaged building during the 2011 Tohoku Earthquake
  publication-title: J JAEEJournal Japan Assoc Earthq Eng
– year: 2006
  ident: b0025
  article-title: The observed wander of the natural frequencies in a structure
  publication-title: Bull Seismol Soc Am
– volume: 220
  start-page: 55
  year: 2019
  end-page: 68
  ident: b0055
  article-title: Deep long short-term memory networks for nonlinear structural seismic response prediction
  publication-title: Comput Struct
– reference: Motosaka M, Ohno S, Mitsuji K, Wang X, Hatakeyama T. Development of Structural Health Monitoring System Combined with Earthquake Early Warning System for Real-time Earthquake Information Navigation. In: 16th World Conf. Earthq. Eng. Santiago, Chile, 9-13 January; 2017.
– volume: 79
  start-page: 1107
  year: 2014
  end-page: 1115
  ident: b0140
  article-title: Earthquake damage evaluation of an 8-story steel-reinforced concrete building using Sa-Sd Curves
  publication-title: J Struct Constr Eng, AIJ.
– volume: 72
  start-page: 1
  year: 2018
  end-page: 16
  ident: b0010
  article-title: A machine learning framework for assessing post-earthquake structural safety
  publication-title: Struct Saf
– year: 2021
  ident: b0040
  article-title: Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders
  publication-title: Acta Mech
– year: 2019
  ident: b0075
  article-title: Deep convolutional neural network for structural dynamic response estimation and system identification
  publication-title: J Eng Mech
– reference: Torky AA, Ohno S, Kashima T. Deep learning techniques for structural response prediction during strong ground motion. In: 17th World Conf Earthq Eng 17WCEE, Sendai, Japan, n.d.
– year: 2015
  ident: b0045
  article-title: Deep learning
  publication-title: Nature
– reference: Ohno S, Tsuruta R. Ground-motion prediction by ANN using machine learning for the Tohoku region, Japan. In: 11th Natl. Conf. Earthq. Eng. 2018, NCEE 2018 Integr. Sci. Eng. Policy, Los Angeles, California; 2018. p. 5429–5437.
– year: 2020
  ident: b0030
  article-title: The promise of implementing machine learning in earthquake engineering: a state-of-the-art review
  publication-title: Earthq Spectra
– year: 2013
  ident: b0145
  article-title: Study of a new method to compute the performance curve of real structures with acceleration sensors: in the case of SDOF system structures
  publication-title: J Struct Constr Eng
– volume: 15
  start-page: 1
  year: 2020
  end-page: 18
  ident: b0105
  article-title: ConvCast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data
  publication-title: PLoS ONE
– reference: .
– reference: BRI Strong Motion Observation (English), (n.d.).
– reference: Butterworth S. On the theory of filter amplifiers. Exp Wirel Wirel Eng; 1930. https://doi.org/citeulike-article-id:5322726.
– reference: Zhang R, Liu Y, Sun H. Physics-guided Convolutional Neural Network (PhyCNN) for Data-driven Seismic Response Modeling; 2019. p. 1–24.
– year: 2019
  ident: b0100
  article-title: Response prediction of nonlinear hysteretic systems by deep neural networks
  publication-title: Neural Networks
– reference: Rofooei FR, Kaveh A, Farahani FM. Estimating the vulnerability of the concrete moment resisting frame structures using artificial neural networks. Int. J. Optim. Civ. Eng. 2011.
– volume: 84
  start-page: 101913
  year: 2020
  ident: b0085
  article-title: Probabilistic evaluation of seismic responses using deep learning method
  publication-title: Struct Saf
– reference: Kashima T, Koyama S, Okawa I. Strong Motion Records in Buildings from the 2011 off the Pacific coast of Tohoku Earthquake, Building Research Data No.135, Building Research Institute, (n.d.).
– year: 2015
  ident: 10.1016/j.compstruc.2021.106570_b0045
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2006
  ident: 10.1016/j.compstruc.2021.106570_b0025
  article-title: The observed wander of the natural frequencies in a structure
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120050052
– volume: 220
  start-page: 55
  year: 2019
  ident: 10.1016/j.compstruc.2021.106570_b0055
  article-title: Deep long short-term memory networks for nonlinear structural seismic response prediction
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2019.05.006
– ident: 10.1016/j.compstruc.2021.106570_b0130
– volume: 70
  start-page: 41
  year: 2018
  ident: 10.1016/j.compstruc.2021.106570_b0065
  article-title: A survey on deep learning techniques for image and video semantic segmentation
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2018.05.018
– year: 1975
  ident: 10.1016/j.compstruc.2021.106570_b0015
  article-title: Finite element formulations for large deformation dynamic analysis
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.1620090207
– ident: 10.1016/j.compstruc.2021.106570_b0155
– year: 2018
  ident: 10.1016/j.compstruc.2021.106570_b0115
  article-title: A new method for evaluating the real-time residual seismic capacity of existing structures using accelerometers: structures with multiple degrees of freedom
  publication-title: Japan Archit Rev
  doi: 10.1002/2475-8876.1010
– year: 2020
  ident: 10.1016/j.compstruc.2021.106570_b0030
  article-title: The promise of implementing machine learning in earthquake engineering: a state-of-the-art review
  publication-title: Earthq Spectra
  doi: 10.1177/8755293020919419
– volume: 15
  start-page: 1
  year: 2020
  ident: 10.1016/j.compstruc.2021.106570_b0105
  article-title: ConvCast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0230114
– ident: 10.1016/j.compstruc.2021.106570_b0050
– ident: 10.1016/j.compstruc.2021.106570_b0035
– volume: 33
  start-page: 04019005
  year: 2019
  ident: 10.1016/j.compstruc.2021.106570_b0070
  article-title: Convolutional neural network approach for robust structural damage detection and localization
  publication-title: J. Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000820
– year: 2019
  ident: 10.1016/j.compstruc.2021.106570_b0100
  article-title: Response prediction of nonlinear hysteretic systems by deep neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.12.005
– year: 2021
  ident: 10.1016/j.compstruc.2021.106570_b0040
  article-title: Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders
  publication-title: Acta Mech
  doi: 10.1007/s00707-020-02878-2
– ident: 10.1016/j.compstruc.2021.106570_b0095
– ident: 10.1016/j.compstruc.2021.106570_b0125
– volume: 79
  start-page: 1107
  year: 2014
  ident: 10.1016/j.compstruc.2021.106570_b0140
  article-title: Earthquake damage evaluation of an 8-story steel-reinforced concrete building using Sa-Sd Curves
  publication-title: J Struct Constr Eng, AIJ.
  doi: 10.3130/aijs.79.1107
– ident: 10.1016/j.compstruc.2021.106570_b0150
– volume: 26
  start-page: 1
  year: 2019
  ident: 10.1016/j.compstruc.2021.106570_b0090
  article-title: Vibration-based structural condition assessment using convolution neural networks
  publication-title: Struct Control Heal Monit
– ident: 10.1016/j.compstruc.2021.106570_b0135
– ident: 10.1016/j.compstruc.2021.106570_b0060
– volume: 72
  start-page: 1
  year: 2018
  ident: 10.1016/j.compstruc.2021.106570_b0010
  article-title: A machine learning framework for assessing post-earthquake structural safety
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2017.12.001
– volume: 15
  start-page: 3_1-3_16
  year: 2015
  ident: 10.1016/j.compstruc.2021.106570_b0020
  article-title: Long-term monitoring of amplitude dependent dynamic characteristics of a damaged building during the 2011 Tohoku Earthquake
  publication-title: J JAEEJournal Japan Assoc Earthq Eng
– ident: 10.1016/j.compstruc.2021.106570_b0080
– year: 2013
  ident: 10.1016/j.compstruc.2021.106570_b0145
  article-title: Study of a new method to compute the performance curve of real structures with acceleration sensors: in the case of SDOF system structures
  publication-title: J Struct Constr Eng
  doi: 10.3130/aijs.78.1061
– volume: 84
  start-page: 101913
  year: 2020
  ident: 10.1016/j.compstruc.2021.106570_b0085
  article-title: Probabilistic evaluation of seismic responses using deep learning method
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2019.101913
– ident: 10.1016/j.compstruc.2021.106570_b0005
– ident: 10.1016/j.compstruc.2021.106570_b0110
– year: 2019
  ident: 10.1016/j.compstruc.2021.106570_b0075
  article-title: Deep convolutional neural network for structural dynamic response estimation and system identification
  publication-title: J Eng Mech
– year: 2018
  ident: 10.1016/j.compstruc.2021.106570_b0120
  article-title: Background information of deep learning for structural engineering
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-017-9237-0
SSID ssj0006400
Score 2.5888147
Snippet •A new approach to nonlinear seismic response predictions of structures using multiple-component features.•Deep learning time-series predictions through hybrid...
This paper presents a new approach for nonlinear multi-component seismic response prediction of structures using hybrid deep learning techniques. Modern...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106570
SubjectTerms Artificial neural networks
Butterworth filters
Computer architecture
Convolutional long short-term memory neural networks
Data processing
Deep learning
Deep neural networks
Discrete Wavelet Transform
Discrete wavelet transforms
Fast Fourier transformations
Fourier transforms
Machine learning
Multi-component response
Neural networks
Nonlinear seismic response prediction
Recurrent neural networks
Seismic response
Superstructures
Wavelet transforms
Title Deep learning techniques for predicting nonlinear multi-component seismic responses of structural buildings
URI https://dx.doi.org/10.1016/j.compstruc.2021.106570
https://www.proquest.com/docview/2546647525
Volume 252
WOSCitedRecordID wos000658896800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2243
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006400
  issn: 0045-7949
  databaseCode: AIEXJ
  dateStart: 19950103
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFO0lMoHekKp8o7DbdXuqqBqyyFFe7PsxKEtNJtuWtSf35n4kVAVCgcOG62cOOv1fJ4Z2-NvCHlfST8QaS28RAqYoDDle6JEIkgfrVsAIyrSySay-ZwtFvkXs13Q9ekEsqZh19d5-19FDWUgbDw6-w_idi-FAvgOQocriB2ufyX4faVamwzi2wfH0drzLiAlQIWHQOBOo0kyxEoHFXoYXL5sMDSgU6fdeU_t3MfPalpaTTTbk3RIk0q7G3u2Nj1E14PJPj1EKBbLlV6mnZyAAR6WUI9O-uTfGB50dX41XoQIAxcCZ1bG3OmYr2NlGyMbpmYk3VVav7Is98BriMYKONQctkaFBncqdr3GcIZyafu_sIvNgHIM3Rlsmd2_nx_x2fHhIS-mi2InmrUXHuYZw_34nWhfy_whWQ-zJAdNuD75NF18dvY7je3BJd38X6IC7_z93_k0t6x777IUz8hTM9egE42R5-SBal6QJyMGypfkO6KFWrTQAS0U0EIHtFCHFnoLLdSghTq00GVNB7RQh5ZX5Hg2LfYOPJN_wyth1n_pKeknQvhCwSyXiTJLZSjCmpUJYzjEQ5VX8MlDJAmUeRb6sq5YndZ5FiRMgu14TdagdeoNoXmcRjE8KxUDhxfsSBqj8pdlJWKRxckGSW0P8tKQ02OOlB_cRiGecdf1HLue667fIL6r2Gp-lvurfLQi4sbN1O4jB7DdX3nLCpWbQd9xzCmRxlkSJpt_vv2WPB5GzxZZg7erd-RR-fPytFttGyDeAJDIrjc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+techniques+for+predicting+nonlinear+multi-component+seismic+responses+of+structural+buildings&rft.jtitle=Computers+%26+structures&rft.au=Torky%2C+Ahmed+A&rft.au=Ohno%2C+Susumu&rft.date=2021-08-01&rft.pub=Elsevier+BV&rft.issn=0045-7949&rft.eissn=1879-2243&rft.volume=252&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compstruc.2021.106570&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7949&client=summon