Laser Point Cloud-Image Fusion Technology for Intelligent Driving Vehicles Based on Semi-Supervised Learning Algorithm
In autonomous vehicle, the traditional method of manually labeling laser point cloud data is not only expensive, but also complex in process. To overcome these challenges, a laser point cloud-image fusion technology based on semi-supervised learning algorithms is proposed to improve the efficiency a...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 12; S. 132664 - 132676 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In autonomous vehicle, the traditional method of manually labeling laser point cloud data is not only expensive, but also complex in process. To overcome these challenges, a laser point cloud-image fusion technology based on semi-supervised learning algorithms is proposed to improve the efficiency and accuracy of 3D object detection. This study trains the model under partially supervised conditions to optimize detection accuracy and processing speed. The research results indicated that the semi-supervised learning algorithm had the lowest loss function value, which converged below 0.20 after 1000 iterations, far lower than other comparison algorithms. The root mean square error and mean absolute error of the semi-supervised learning algorithm were also the lowest, within 0.11. After testing on the KITTI, SUN-RGBD, and ScanNet v2 data sets, the proposed algorithm demonstrated a high accuracy of over 95%, demonstrating its generalization ability and robustness in different environments. The research provides an efficient and cost-effective 3D object detection solution for the field of autonomous driving, which has important practical application value. |
|---|---|
| AbstractList | In autonomous vehicle, the traditional method of manually labeling laser point cloud data is not only expensive, but also complex in process. To overcome these challenges, a laser point cloud-image fusion technology based on semi-supervised learning algorithms is proposed to improve the efficiency and accuracy of 3D object detection. This study trains the model under partially supervised conditions to optimize detection accuracy and processing speed. The research results indicated that the semi-supervised learning algorithm had the lowest loss function value, which converged below 0.20 after 1000 iterations, far lower than other comparison algorithms. The root mean square error and mean absolute error of the semi-supervised learning algorithm were also the lowest, within 0.11. After testing on the KITTI, SUN-RGBD, and ScanNet v2 data sets, the proposed algorithm demonstrated a high accuracy of over 95%, demonstrating its generalization ability and robustness in different environments. The research provides an efficient and cost-effective 3D object detection solution for the field of autonomous driving, which has important practical application value. |
| Author | Dong, Xiujuan Lan, Jianping |
| Author_xml | – sequence: 1 givenname: Jianping orcidid: 0009-0003-6725-7003 surname: Lan fullname: Lan, Jianping organization: Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China – sequence: 2 givenname: Xiujuan orcidid: 0009-0001-1087-2270 surname: Dong fullname: Dong, Xiujuan email: qiyuandxj@126.com organization: Institute of Automotive Engineers, Hubei University of Automotive Technology, Shiyan, China |
| BookMark | eNqFUV1v0zAUjdCQGGO_AB4s8Zzi78SPJWxQqRJIHbxarn2Tukrj4jiV9u_nkAlNvOAXW0fn416ft8XVEAYoivcErwjB6tO6ae52uxXFlK8Yl6Sm9avimhKpSiaYvHrxflPcjuMR51NnSFTXxWVrRojoR_BDQk0fJlduTqYDdD-NPgzoAexhCH3oHlEbItoMCfred5DZX6K_-KFDv-DgbQ8j-pytHMqiHZx8uZvOEC9-hrZg4jBT130Xok-H07vidWv6EW6f75vi5_3dQ_Ot3H7_umnW29JyrFIJBpSyXOyFtIrIWmSAyrbNgKXc7CtbicrVACQvJ4EZJh2lDteYEForzm6KzeLrgjnqc_QnEx91MF7_AULstIlpHl8b45S1rXT7PeVECNO2hghFHVTYiIpmr4-L1zmG3xOMSR_DFIc8vmY5jlKOOcsstrBsDOMYof2bSrCe-9JLX3ruSz_3lVXqH5X1yaTcQIrG9__Rfli0HgBepMma5I9gT3pmpkk |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_nano15191462 |
| Cites_doi | 10.1117/1.jei.32.5.053015 10.1109/LRA.2022.3144524 10.1109/LRA.2021.3139542 10.1109/LRA.2022.3142440 10.1109/LRA.2022.3185783 10.1007/s41064-024-00281-3 10.1109/tpami.2021.3063611 10.1080/20964471.2022.2123352 10.3390/geomatics2040025 10.1109/tits.2021.3099023 10.1609/aaai.v38i2.27944 10.1364/OE.525618 10.1109/tcsvt.2021.3081591 10.1109/TITS.2022.3195555 10.1109/TCYB.2021.3090370 10.1109/TITS.2022.3167957 10.1080/01431161.2023.2297177 10.47852/bonviewAAES32021220 10.1007/s00521-023-08455-7 10.1109/TITS.2021.3057374 10.1007/s10462-020-09876-9 10.1109/TPAMI.2022.3216926 10.1007/s11042-022-12412-2 10.1364/josaa.494980 10.1109/tpami.2021.3108410 10.3390/rs14225866 10.14569/ijacsa.2022.0131123 10.1609/aaai.v38i6.28358 10.1609/aaai.v38i6.28446 10.1080/01431161.2024.2305633 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3461828 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 132676 |
| ExternalDocumentID | oai_doaj_org_article_aad9ccf6dbb24155affa1592de70a572 10_1109_ACCESS_2024_3461828 10681080 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Key Project of Open Fund of Hubei Key Laboratory of Automotive Power Transmission and Electronic Control grantid: ZDK12023A01 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-eae99c45b56c91685eae26ff5b5c24ab7c757d8ee15366e3a36d22d0801128943 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001327275400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:14 EDT 2025 Mon Jun 30 15:32:37 EDT 2025 Sat Nov 29 04:27:05 EST 2025 Tue Nov 18 22:15:43 EST 2025 Wed Aug 27 02:19:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-eae99c45b56c91685eae26ff5b5c24ab7c757d8ee15366e3a36d22d0801128943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-1087-2270 0009-0003-6725-7003 |
| OpenAccessLink | https://doaj.org/article/aad9ccf6dbb24155affa1592de70a572 |
| PQID | 3112224043 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3112224043 doaj_primary_oai_doaj_org_article_aad9ccf6dbb24155affa1592de70a572 crossref_primary_10_1109_ACCESS_2024_3461828 crossref_citationtrail_10_1109_ACCESS_2024_3461828 ieee_primary_10681080 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref7 doi: 10.1117/1.jei.32.5.053015 – ident: ref25 doi: 10.1109/LRA.2022.3144524 – ident: ref20 doi: 10.1109/LRA.2021.3139542 – ident: ref11 doi: 10.1109/LRA.2022.3142440 – ident: ref13 doi: 10.1109/LRA.2022.3185783 – ident: ref17 doi: 10.1007/s41064-024-00281-3 – ident: ref6 doi: 10.1109/tpami.2021.3063611 – ident: ref14 doi: 10.1080/20964471.2022.2123352 – ident: ref16 doi: 10.3390/geomatics2040025 – ident: ref3 doi: 10.1109/tits.2021.3099023 – ident: ref23 doi: 10.1609/aaai.v38i2.27944 – ident: ref21 doi: 10.1364/OE.525618 – ident: ref2 doi: 10.1109/tcsvt.2021.3081591 – ident: ref30 doi: 10.1109/TITS.2022.3195555 – ident: ref12 doi: 10.1109/TCYB.2021.3090370 – ident: ref28 doi: 10.1109/TITS.2022.3167957 – ident: ref24 doi: 10.1080/01431161.2023.2297177 – ident: ref29 doi: 10.47852/bonviewAAES32021220 – ident: ref8 doi: 10.1007/s00521-023-08455-7 – ident: ref9 doi: 10.1109/TITS.2021.3057374 – ident: ref27 doi: 10.1007/s10462-020-09876-9 – ident: ref18 doi: 10.1109/TPAMI.2022.3216926 – ident: ref26 doi: 10.1007/s11042-022-12412-2 – ident: ref10 doi: 10.1364/josaa.494980 – ident: ref1 doi: 10.1109/tpami.2021.3108410 – ident: ref15 doi: 10.3390/rs14225866 – ident: ref5 doi: 10.14569/ijacsa.2022.0131123 – ident: ref4 doi: 10.1609/aaai.v38i6.28358 – ident: ref19 doi: 10.1609/aaai.v38i6.28446 – ident: ref22 doi: 10.1080/01431161.2024.2305633 |
| SSID | ssj0000816957 |
| Score | 2.30664 |
| Snippet | In autonomous vehicle, the traditional method of manually labeling laser point cloud data is not only expensive, but also complex in process. To overcome these... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 132664 |
| SubjectTerms | 3D object detection Accuracy Algorithms Calibration camera-LiDAR system Cameras Computer vision image fusion laser point cloud Laser radar Lasers Machine learning Object detection Object recognition Point cloud compression Semi-supervised learning Semi-supervised learning algorithm Semisupervised learning Three dimensional models Three-dimensional displays |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELag4gAHKFDEloJ84IjLbhI_ctwurKiEqkoF1Jvlx7iNtLup0qS_v2PHXYoQSL1FIzuxPfb4m4n9DSEfay-CBeVZWUJgFfeCWSGBzYSFEFTpnHAp2YQ8OVHn5_Vpvqye7sIAQDp8BofxMf3L960bYqgMV3hkz1LooT-WUoyXtbYBlZhBouYyMwvNpvXn-WKBnUAfsKgOy0ogklZ_7D6JpD9nVfnLFKf9ZfnigS3bJc8zkKTzUfMvySPYvCLP7tELviY333GL6uhp22x6uli1g2fHa7QfdDnEGBn9HVanCF3p8Zads6dfuiZGGugvuEzn5ugRvspTrHQG64adDVfRxkRRJmi9oPPVRds1_eV6j_xcfv2x-MZyngXm0LvrGRioa1dxy4VDtKg4CgoRAgpcURkrneTSKwC0jkJAaUrhi8JjdxGsRf72N2Rn027gLaHlNFju0ecOCA0Md8p7IafGVsr5MLNiQoq78dcuk5DHXBgrnZyRaa1HpemoNJ2VNiGftpWuRg6O_xc_iordFo0E2kmAGtN5PWpjfO1cEN7aiGG4CcEgsis8YHO5LCZkL2r53vdGBU_Iwd080Xm1X-sSxyFCo6rc_0e1d-RpbOIYuzkgO303wHvyxN30zXX3IU3kW3k48vc priority: 102 providerName: IEEE |
| Title | Laser Point Cloud-Image Fusion Technology for Intelligent Driving Vehicles Based on Semi-Supervised Learning Algorithm |
| URI | https://ieeexplore.ieee.org/document/10681080 https://www.proquest.com/docview/3112224043 https://doaj.org/article/aad9ccf6dbb24155affa1592de70a572 |
| Volume | 12 |
| WOSCitedRecordID | wos001327275400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEIUiFkrlA0dMs3H8Om63XVEJqkoF1JvlZxtpH1Wa7ZHfzthxt4uQ4MIlh1Ecx_4m85LzDUIflOfRBukJpSGShnlOLBeBjLkNMUrqHHe52YQ4P5dXV-piq9VXOhM20AMPG3dkjFfORe6tTc6GmRgNuODaB1EZJrL1rYTaSqayDZZjrpgoNEPjSh1NplNYESSEdfOJNhzCavmbK8qM_aXFyh92OTub2Qv0vESJeDK83R56EpYv0bMt7sBX6P4L-J8OX6zaZY-n89Xak7MFGAc8W6cCGH6smWOIS_HZhnqzxyddm8oI-Ee4yYfi8DE8ymMYdBkWLblc3yYDkkSFffUaT-bXq67tbxb76Pvs9Nv0MylNFIiD1K0nwQSlXMMs4w5CQclAUPMYQeDqxljhBBNehgCmj_NADeW-rj0EkhCJJXL212hnuVqGNwjTKlrmIaGO4PcNc9J7DiDYRjofx5aPUP2wn9oVhvHU6GKuc6ZRKT2AoBMIuoAwQh83g24Hgo2_336cgNrcmtixswB0Rhed0f_SmRHaTzBvzZdY2WQ1QgcPuOvyKd9pCvuQ4p6Gvv0fc79DT9N6hirOAdrpu3V4j3bdfd_edYdZi-H69efpYf4X8Rf_Ovke |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbQmAQ8wIBNdGzgBx7JaOPYcR67smoVpZq0gfZmxfZ5i9Q2U5bs9-_seGUIgcRbdLIT22efv7vY3xHyqbDCaZA2YQxcknErEi1ySEZCg3OSGSNMSDaRLxby8rI4i5fVw10YAAiHz-DIP4Z_-bY2nQ-V4Qr37FkSPfSnPnVWvK61Can4HBIFzyO30GhYfBlPJtgN9ALT7IhlArG0_G3_CTT9Ma_KH8Y47DDTV__Zth3yMkJJOu51_5o8gfUb8uIRweBbcjfHTaqhZ3W1bulkWXc2ma3QgtBp56Nk9FdgnSJ4pbMNP2dLvzaVjzXQn3AdTs7RY3yVpVjpHFZVct7deCvjRZGi9YqOl1d1U7XXq13yY3pyMTlNYqaFxKB_1yZQQlGYjGsuDOJFyVGQCudQYNKs1LnJeW4lANpHIYCVTNg0tdhdhGuewX2PbK3rNbwjlA2d5ha9bofgoORGWivyYakzaawbaTEg6cP4KxNpyH02jKUK7siwUL3SlFeaikobkM-bSjc9C8e_ix97xW6KegrtIECNqbgiVVnawhgnrNYexfDSuRKxXWoBm8vzdEB2vZYffa9X8IAcPMwTFdf7rWI4Dh4cZWz_L9U-kmenF9_naj5bfHtPnvvm9pGcA7LVNh0ckm1z11a3zYcwqe8BQw_2QA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+Point+Cloud-Image+Fusion+Technology+for+Intelligent+Driving+Vehicles+Based+on+Semi-Supervised+Learning+Algorithm&rft.jtitle=IEEE+access&rft.au=Lan%2C+Jianping&rft.au=Dong%2C+Xiujuan&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=132664&rft.epage=132676&rft_id=info:doi/10.1109%2FACCESS.2024.3461828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3461828 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |