Laser Point Cloud-Image Fusion Technology for Intelligent Driving Vehicles Based on Semi-Supervised Learning Algorithm

In autonomous vehicle, the traditional method of manually labeling laser point cloud data is not only expensive, but also complex in process. To overcome these challenges, a laser point cloud-image fusion technology based on semi-supervised learning algorithms is proposed to improve the efficiency a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 12; S. 132664 - 132676
Hauptverfasser: Lan, Jianping, Dong, Xiujuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In autonomous vehicle, the traditional method of manually labeling laser point cloud data is not only expensive, but also complex in process. To overcome these challenges, a laser point cloud-image fusion technology based on semi-supervised learning algorithms is proposed to improve the efficiency and accuracy of 3D object detection. This study trains the model under partially supervised conditions to optimize detection accuracy and processing speed. The research results indicated that the semi-supervised learning algorithm had the lowest loss function value, which converged below 0.20 after 1000 iterations, far lower than other comparison algorithms. The root mean square error and mean absolute error of the semi-supervised learning algorithm were also the lowest, within 0.11. After testing on the KITTI, SUN-RGBD, and ScanNet v2 data sets, the proposed algorithm demonstrated a high accuracy of over 95%, demonstrating its generalization ability and robustness in different environments. The research provides an efficient and cost-effective 3D object detection solution for the field of autonomous driving, which has important practical application value.
AbstractList In autonomous vehicle, the traditional method of manually labeling laser point cloud data is not only expensive, but also complex in process. To overcome these challenges, a laser point cloud-image fusion technology based on semi-supervised learning algorithms is proposed to improve the efficiency and accuracy of 3D object detection. This study trains the model under partially supervised conditions to optimize detection accuracy and processing speed. The research results indicated that the semi-supervised learning algorithm had the lowest loss function value, which converged below 0.20 after 1000 iterations, far lower than other comparison algorithms. The root mean square error and mean absolute error of the semi-supervised learning algorithm were also the lowest, within 0.11. After testing on the KITTI, SUN-RGBD, and ScanNet v2 data sets, the proposed algorithm demonstrated a high accuracy of over 95%, demonstrating its generalization ability and robustness in different environments. The research provides an efficient and cost-effective 3D object detection solution for the field of autonomous driving, which has important practical application value.
Author Dong, Xiujuan
Lan, Jianping
Author_xml – sequence: 1
  givenname: Jianping
  orcidid: 0009-0003-6725-7003
  surname: Lan
  fullname: Lan, Jianping
  organization: Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
– sequence: 2
  givenname: Xiujuan
  orcidid: 0009-0001-1087-2270
  surname: Dong
  fullname: Dong, Xiujuan
  email: qiyuandxj@126.com
  organization: Institute of Automotive Engineers, Hubei University of Automotive Technology, Shiyan, China
BookMark eNqFUV1v0zAUjdCQGGO_AB4s8Zzi78SPJWxQqRJIHbxarn2Tukrj4jiV9u_nkAlNvOAXW0fn416ft8XVEAYoivcErwjB6tO6ae52uxXFlK8Yl6Sm9avimhKpSiaYvHrxflPcjuMR51NnSFTXxWVrRojoR_BDQk0fJlduTqYDdD-NPgzoAexhCH3oHlEbItoMCfred5DZX6K_-KFDv-DgbQ8j-pytHMqiHZx8uZvOEC9-hrZg4jBT130Xok-H07vidWv6EW6f75vi5_3dQ_Ot3H7_umnW29JyrFIJBpSyXOyFtIrIWmSAyrbNgKXc7CtbicrVACQvJ4EZJh2lDteYEForzm6KzeLrgjnqc_QnEx91MF7_AULstIlpHl8b45S1rXT7PeVECNO2hghFHVTYiIpmr4-L1zmG3xOMSR_DFIc8vmY5jlKOOcsstrBsDOMYof2bSrCe-9JLX3ruSz_3lVXqH5X1yaTcQIrG9__Rfli0HgBepMma5I9gT3pmpkk
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_nano15191462
Cites_doi 10.1117/1.jei.32.5.053015
10.1109/LRA.2022.3144524
10.1109/LRA.2021.3139542
10.1109/LRA.2022.3142440
10.1109/LRA.2022.3185783
10.1007/s41064-024-00281-3
10.1109/tpami.2021.3063611
10.1080/20964471.2022.2123352
10.3390/geomatics2040025
10.1109/tits.2021.3099023
10.1609/aaai.v38i2.27944
10.1364/OE.525618
10.1109/tcsvt.2021.3081591
10.1109/TITS.2022.3195555
10.1109/TCYB.2021.3090370
10.1109/TITS.2022.3167957
10.1080/01431161.2023.2297177
10.47852/bonviewAAES32021220
10.1007/s00521-023-08455-7
10.1109/TITS.2021.3057374
10.1007/s10462-020-09876-9
10.1109/TPAMI.2022.3216926
10.1007/s11042-022-12412-2
10.1364/josaa.494980
10.1109/tpami.2021.3108410
10.3390/rs14225866
10.14569/ijacsa.2022.0131123
10.1609/aaai.v38i6.28358
10.1609/aaai.v38i6.28446
10.1080/01431161.2024.2305633
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3461828
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 132676
ExternalDocumentID oai_doaj_org_article_aad9ccf6dbb24155affa1592de70a572
10_1109_ACCESS_2024_3461828
10681080
Genre orig-research
GrantInformation_xml – fundername: Key Project of Open Fund of Hubei Key Laboratory of Automotive Power Transmission and Electronic Control
  grantid: ZDK12023A01
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-eae99c45b56c91685eae26ff5b5c24ab7c757d8ee15366e3a36d22d0801128943
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001327275400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:14 EDT 2025
Mon Jun 30 15:32:37 EDT 2025
Sat Nov 29 04:27:05 EST 2025
Tue Nov 18 22:15:43 EST 2025
Wed Aug 27 02:19:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-eae99c45b56c91685eae26ff5b5c24ab7c757d8ee15366e3a36d22d0801128943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-1087-2270
0009-0003-6725-7003
OpenAccessLink https://doaj.org/article/aad9ccf6dbb24155affa1592de70a572
PQID 3112224043
PQPubID 4845423
PageCount 13
ParticipantIDs proquest_journals_3112224043
doaj_primary_oai_doaj_org_article_aad9ccf6dbb24155affa1592de70a572
crossref_primary_10_1109_ACCESS_2024_3461828
crossref_citationtrail_10_1109_ACCESS_2024_3461828
ieee_primary_10681080
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1117/1.jei.32.5.053015
– ident: ref25
  doi: 10.1109/LRA.2022.3144524
– ident: ref20
  doi: 10.1109/LRA.2021.3139542
– ident: ref11
  doi: 10.1109/LRA.2022.3142440
– ident: ref13
  doi: 10.1109/LRA.2022.3185783
– ident: ref17
  doi: 10.1007/s41064-024-00281-3
– ident: ref6
  doi: 10.1109/tpami.2021.3063611
– ident: ref14
  doi: 10.1080/20964471.2022.2123352
– ident: ref16
  doi: 10.3390/geomatics2040025
– ident: ref3
  doi: 10.1109/tits.2021.3099023
– ident: ref23
  doi: 10.1609/aaai.v38i2.27944
– ident: ref21
  doi: 10.1364/OE.525618
– ident: ref2
  doi: 10.1109/tcsvt.2021.3081591
– ident: ref30
  doi: 10.1109/TITS.2022.3195555
– ident: ref12
  doi: 10.1109/TCYB.2021.3090370
– ident: ref28
  doi: 10.1109/TITS.2022.3167957
– ident: ref24
  doi: 10.1080/01431161.2023.2297177
– ident: ref29
  doi: 10.47852/bonviewAAES32021220
– ident: ref8
  doi: 10.1007/s00521-023-08455-7
– ident: ref9
  doi: 10.1109/TITS.2021.3057374
– ident: ref27
  doi: 10.1007/s10462-020-09876-9
– ident: ref18
  doi: 10.1109/TPAMI.2022.3216926
– ident: ref26
  doi: 10.1007/s11042-022-12412-2
– ident: ref10
  doi: 10.1364/josaa.494980
– ident: ref1
  doi: 10.1109/tpami.2021.3108410
– ident: ref15
  doi: 10.3390/rs14225866
– ident: ref5
  doi: 10.14569/ijacsa.2022.0131123
– ident: ref4
  doi: 10.1609/aaai.v38i6.28358
– ident: ref19
  doi: 10.1609/aaai.v38i6.28446
– ident: ref22
  doi: 10.1080/01431161.2024.2305633
SSID ssj0000816957
Score 2.30664
Snippet In autonomous vehicle, the traditional method of manually labeling laser point cloud data is not only expensive, but also complex in process. To overcome these...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132664
SubjectTerms 3D object detection
Accuracy
Algorithms
Calibration
camera-LiDAR system
Cameras
Computer vision
image fusion
laser point cloud
Laser radar
Lasers
Machine learning
Object detection
Object recognition
Point cloud compression
Semi-supervised learning
Semi-supervised learning algorithm
Semisupervised learning
Three dimensional models
Three-dimensional displays
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELag4gAHKFDEloJ84IjLbhI_ctwurKiEqkoF1Jvlx7iNtLup0qS_v2PHXYoQSL1FIzuxPfb4m4n9DSEfay-CBeVZWUJgFfeCWSGBzYSFEFTpnHAp2YQ8OVHn5_Vpvqye7sIAQDp8BofxMf3L960bYqgMV3hkz1LooT-WUoyXtbYBlZhBouYyMwvNpvXn-WKBnUAfsKgOy0ogklZ_7D6JpD9nVfnLFKf9ZfnigS3bJc8zkKTzUfMvySPYvCLP7tELviY333GL6uhp22x6uli1g2fHa7QfdDnEGBn9HVanCF3p8Zads6dfuiZGGugvuEzn5ugRvspTrHQG64adDVfRxkRRJmi9oPPVRds1_eV6j_xcfv2x-MZyngXm0LvrGRioa1dxy4VDtKg4CgoRAgpcURkrneTSKwC0jkJAaUrhi8JjdxGsRf72N2Rn027gLaHlNFju0ecOCA0Md8p7IafGVsr5MLNiQoq78dcuk5DHXBgrnZyRaa1HpemoNJ2VNiGftpWuRg6O_xc_iordFo0E2kmAGtN5PWpjfO1cEN7aiGG4CcEgsis8YHO5LCZkL2r53vdGBU_Iwd080Xm1X-sSxyFCo6rc_0e1d-RpbOIYuzkgO303wHvyxN30zXX3IU3kW3k48vc
  priority: 102
  providerName: IEEE
Title Laser Point Cloud-Image Fusion Technology for Intelligent Driving Vehicles Based on Semi-Supervised Learning Algorithm
URI https://ieeexplore.ieee.org/document/10681080
https://www.proquest.com/docview/3112224043
https://doaj.org/article/aad9ccf6dbb24155affa1592de70a572
Volume 12
WOSCitedRecordID wos001327275400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQ1QMcEIUiFkrlA0dMs3H8Om63XVEJqkoF1JvlZxtpH1Wa7ZHfzthxt4uQ4MIlh1Ecx_4m85LzDUIflOfRBukJpSGShnlOLBeBjLkNMUrqHHe52YQ4P5dXV-piq9VXOhM20AMPG3dkjFfORe6tTc6GmRgNuODaB1EZJrL1rYTaSqayDZZjrpgoNEPjSh1NplNYESSEdfOJNhzCavmbK8qM_aXFyh92OTub2Qv0vESJeDK83R56EpYv0bMt7sBX6P4L-J8OX6zaZY-n89Xak7MFGAc8W6cCGH6smWOIS_HZhnqzxyddm8oI-Ee4yYfi8DE8ymMYdBkWLblc3yYDkkSFffUaT-bXq67tbxb76Pvs9Nv0MylNFIiD1K0nwQSlXMMs4w5CQclAUPMYQeDqxljhBBNehgCmj_NADeW-rj0EkhCJJXL212hnuVqGNwjTKlrmIaGO4PcNc9J7DiDYRjofx5aPUP2wn9oVhvHU6GKuc6ZRKT2AoBMIuoAwQh83g24Hgo2_336cgNrcmtixswB0Rhed0f_SmRHaTzBvzZdY2WQ1QgcPuOvyKd9pCvuQ4p6Gvv0fc79DT9N6hirOAdrpu3V4j3bdfd_edYdZi-H69efpYf4X8Rf_Ovke
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwELbQmAQ8wIBNdGzgBx7JaOPYcR67smoVpZq0gfZmxfZ5i9Q2U5bs9-_seGUIgcRbdLIT22efv7vY3xHyqbDCaZA2YQxcknErEi1ySEZCg3OSGSNMSDaRLxby8rI4i5fVw10YAAiHz-DIP4Z_-bY2nQ-V4Qr37FkSPfSnPnVWvK61Can4HBIFzyO30GhYfBlPJtgN9ALT7IhlArG0_G3_CTT9Ma_KH8Y47DDTV__Zth3yMkJJOu51_5o8gfUb8uIRweBbcjfHTaqhZ3W1bulkWXc2ma3QgtBp56Nk9FdgnSJ4pbMNP2dLvzaVjzXQn3AdTs7RY3yVpVjpHFZVct7deCvjRZGi9YqOl1d1U7XXq13yY3pyMTlNYqaFxKB_1yZQQlGYjGsuDOJFyVGQCudQYNKs1LnJeW4lANpHIYCVTNg0tdhdhGuewX2PbK3rNbwjlA2d5ha9bofgoORGWivyYakzaawbaTEg6cP4KxNpyH02jKUK7siwUL3SlFeaikobkM-bSjc9C8e_ix97xW6KegrtIECNqbgiVVnawhgnrNYexfDSuRKxXWoBm8vzdEB2vZYffa9X8IAcPMwTFdf7rWI4Dh4cZWz_L9U-kmenF9_naj5bfHtPnvvm9pGcA7LVNh0ckm1z11a3zYcwqe8BQw_2QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+Point+Cloud-Image+Fusion+Technology+for+Intelligent+Driving+Vehicles+Based+on+Semi-Supervised+Learning+Algorithm&rft.jtitle=IEEE+access&rft.au=Lan%2C+Jianping&rft.au=Dong%2C+Xiujuan&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=132664&rft.epage=132676&rft_id=info:doi/10.1109%2FACCESS.2024.3461828&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3461828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon