Latin Hypercube Designs with Branching and Nested Factors for Initialization of Automatic Algorithm Configuration

The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The method is among the most widely used in the literature. By default, initializes its search process via uniform sampling of algor...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary computation Vol. 27; no. 1; p. 129
Main Authors: Wessing, Simon, López-Ibáñez, Manuel
Format: Journal Article
Language:English
Published: United States 01.03.2019
Subjects:
ISSN:1530-9304, 1530-9304
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The method is among the most widely used in the literature. By default, initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of , but also better than other initialization methods present in other automatic configuration methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1530-9304
1530-9304
DOI:10.1162/evco_a_00241