Latin Hypercube Designs with Branching and Nested Factors for Initialization of Automatic Algorithm Configuration

The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The method is among the most widely used in the literature. By default, initializes its search process via uniform sampling of algor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Evolutionary computation Ročník 27; číslo 1; s. 129
Hlavní autori: Wessing, Simon, López-Ibáñez, Manuel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.03.2019
Predmet:
ISSN:1530-9304, 1530-9304
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The method is among the most widely used in the literature. By default, initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of , but also better than other initialization methods present in other automatic configuration methods.
AbstractList The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The method is among the most widely used in the literature. By default, initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of , but also better than other initialization methods present in other automatic configuration methods.
The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The irace method is among the most widely used in the literature. By default, irace initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of irace , but also better than other initialization methods present in other automatic configuration methods.The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The irace method is among the most widely used in the literature. By default, irace initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of irace , but also better than other initialization methods present in other automatic configuration methods.
Author Wessing, Simon
López-Ibáñez, Manuel
Author_xml – sequence: 1
  givenname: Simon
  surname: Wessing
  fullname: Wessing, Simon
  email: simon.wessing@tu-dortmund.de
  organization: Computer Science Department, Technische Universität Dortmund, Germany simon.wessing@tu-dortmund.de
– sequence: 2
  givenname: Manuel
  surname: López-Ibáñez
  fullname: López-Ibáñez, Manuel
  email: manuel.lopez-ibanez@manchester.ac.uk
  organization: Alliance Manchester Business School, University of Manchester, UK manuel.lopez-ibanez@manchester.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30475671$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAQgC1URB-wMSOPLAG_4jRjKZRWqmCBOTo7TmuU2K2dgMqvJ0CRkE66h777dLoxGjjvDEKXlNxQKtmtede-gIIQJugJGtGUkyTnRAz-1UM0jvGNEMoZoWdo2I-yVGZ0hPZraK3Dy8POBN0pg-9NtBsX8Ydtt_gugNNb6zYYXImfTGxNiRegWx8irnzAK2dbC7X97C3eYV_hWdf6pu80ntUbH3pLg-feVXbThR_oHJ1WUEdzccwT9Lp4eJkvk_Xz42o-WydakLxNTC6UojxPWSmYMFTnkgN8hyaScVWyrJSgAaYVVanISqZpVskcVKVy2e9M0PWvdxf8vutPLxobtalrcMZ3sWCUTyWXqSA9enVEO9WYstgF20A4FH9vYl8wm23S
CitedBy_id crossref_primary_10_1111_sjos_12786
crossref_primary_10_1016_j_cie_2021_107277
crossref_primary_10_1109_TTE_2025_3537161
crossref_primary_10_1109_ACCESS_2020_3042216
crossref_primary_10_1177_15280837231186654
ContentType Journal Article
DBID NPM
7X8
DOI 10.1162/evco_a_00241
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
ExternalDocumentID 30475671
Genre Journal Article
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
AAYOK
ABAZT
ABDBF
ABJNI
ACM
ACUHS
ADL
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
CCLIF
COF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EJD
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
LHSKQ
MCG
MINIK
NPM
O9-
OCL
P2P
PK0
RMI
SV3
TUS
W7O
ZWS
7X8
ABVLG
AEFXT
AEJOY
ID FETCH-LOGICAL-c409t-e94bb13952d424e1c963aa3aa3c0623bd27d6acaa8f1b547d2c17f69abfb96d42
IEDL.DBID 7X8
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460193700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-9304
IngestDate Thu Jul 10 17:11:42 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Automatic algorithm configuration
branching and nested designs
racing
sampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-e94bb13952d424e1c963aa3aa3c0623bd27d6acaa8f1b547d2c17f69abfb96d42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30475671
PQID 2138636540
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2138636540
pubmed_primary_30475671
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2019
SSID ssj0013201
Score 2.2567391
Snippet The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 129
Title Latin Hypercube Designs with Branching and Nested Factors for Initialization of Automatic Algorithm Configuration
URI https://www.ncbi.nlm.nih.gov/pubmed/30475671
https://www.proquest.com/docview/2138636540
Volume 27
WOSCitedRecordID wos000460193700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UetCD1fqqL1bwujTZJJvsSeqjVNDSg0JvYbOPWqhJ27T9_c7mgb0IghByCRuWnZmdb2dm50PoztUeDTQ1RAbCEPDHPok8XxIVCDAvzzE8UQXZRDgYRKMRH1YBt7wqq6z3xGKjVpm0MfIOdb2IeQwAxv1sTixrlM2uVhQa26jhAZSxJV3haDOL4FT9Uh3C4dxeF74z2tFrmcUiti7K_R1cFk6m1_zv9A7RQQUvcbfUhyO0pdMWatbUDbiy5Bba3-hDeIzmryCfFPfhTLqQq0Tjp6KuI8c2SosfLPeGDVRhkSo8KAKkuFfy9GDAvPjFFiCJaXWjE2cGd1fLrOgFi7vTMUxz-fmF7d3CyXhVatwJ-ug9vz_2ScXFQCScAJdEcz9JYIkDqnzqa1eC4QphH-kAgkoUDRUTUojIuEngh4pKNzSMi8QknMGYU7STZqk-Rzjg8Ek5nlQasBg4S5AHNVwyBv9jSrbRbb3EMei6TWCIVGerPP5Z5DY6K-UUz8qmHLFNHwYsdC_-MPoS7YFm8LKU7Ao1DFi6vka7cr2c5IubQongPRi-fQO2BtRX
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latin+Hypercube+Designs+with+Branching+and+Nested+Factors+for+Initialization+of+Automatic+Algorithm+Configuration&rft.jtitle=Evolutionary+computation&rft.au=Wessing%2C+Simon&rft.au=L%C3%B3pez-Ib%C3%A1%C3%B1ez%2C+Manuel&rft.date=2019-03-01&rft.eissn=1530-9304&rft.volume=27&rft.issue=1&rft.spage=129&rft_id=info:doi/10.1162%2Fevco_a_00241&rft_id=info%3Apmid%2F30475671&rft_id=info%3Apmid%2F30475671&rft.externalDocID=30475671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon