Latin Hypercube Designs with Branching and Nested Factors for Initialization of Automatic Algorithm Configuration
The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The method is among the most widely used in the literature. By default, initializes its search process via uniform sampling of algor...
Uložené v:
| Vydané v: | Evolutionary computation Ročník 27; číslo 1; s. 129 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.03.2019
|
| Predmet: | |
| ISSN: | 1530-9304, 1530-9304 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The
method is among the most widely used in the literature. By default,
initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of
, but also better than other initialization methods present in other automatic configuration methods. |
|---|---|
| AbstractList | The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The
method is among the most widely used in the literature. By default,
initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of
, but also better than other initialization methods present in other automatic configuration methods. The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The irace method is among the most widely used in the literature. By default, irace initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of irace , but also better than other initialization methods present in other automatic configuration methods.The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration methods. The irace method is among the most widely used in the literature. By default, irace initializes its search process via uniform sampling of algorithm configurations. Although better initialization methods exist in the literature, the mixed-variable (numerical and categorical) nature of typical parameter spaces and the presence of conditional parameters make most of the methods not applicable in practice. Here, we present an improved initialization method that overcomes these limitations by employing concepts from the design and analysis of computer experiments with branching and nested factors. Our results show that this initialization method is not only better, in some scenarios, than the uniform sampling used by the current version of irace , but also better than other initialization methods present in other automatic configuration methods. |
| Author | Wessing, Simon López-Ibáñez, Manuel |
| Author_xml | – sequence: 1 givenname: Simon surname: Wessing fullname: Wessing, Simon email: simon.wessing@tu-dortmund.de organization: Computer Science Department, Technische Universität Dortmund, Germany simon.wessing@tu-dortmund.de – sequence: 2 givenname: Manuel surname: López-Ibáñez fullname: López-Ibáñez, Manuel email: manuel.lopez-ibanez@manchester.ac.uk organization: Alliance Manchester Business School, University of Manchester, UK manuel.lopez-ibanez@manchester.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30475671$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAQgC1URB-wMSOPLAG_4jRjKZRWqmCBOTo7TmuU2K2dgMqvJ0CRkE66h777dLoxGjjvDEKXlNxQKtmtede-gIIQJugJGtGUkyTnRAz-1UM0jvGNEMoZoWdo2I-yVGZ0hPZraK3Dy8POBN0pg-9NtBsX8Ydtt_gugNNb6zYYXImfTGxNiRegWx8irnzAK2dbC7X97C3eYV_hWdf6pu80ntUbH3pLg-feVXbThR_oHJ1WUEdzccwT9Lp4eJkvk_Xz42o-WydakLxNTC6UojxPWSmYMFTnkgN8hyaScVWyrJSgAaYVVanISqZpVskcVKVy2e9M0PWvdxf8vutPLxobtalrcMZ3sWCUTyWXqSA9enVEO9WYstgF20A4FH9vYl8wm23S |
| CitedBy_id | crossref_primary_10_1111_sjos_12786 crossref_primary_10_1016_j_cie_2021_107277 crossref_primary_10_1109_TTE_2025_3537161 crossref_primary_10_1109_ACCESS_2020_3042216 crossref_primary_10_1177_15280837231186654 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1162/evco_a_00241 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1530-9304 |
| ExternalDocumentID | 30475671 |
| Genre | Journal Article |
| GroupedDBID | --- .4S .DC 0R~ 36B 4.4 53G 5GY 5VS 6IK AAJGR AAKMM AALFJ AALMD AAYFX AAYOK ABAZT ABDBF ABJNI ACM ACUHS ADL ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF AZFZN BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CAG CCLIF COF CS3 DU5 EAP EAS EBC EBD EBS ECS EDO EJD EMB EMK EMOBN EPL EST ESX F5P FEDTE FNEHJ GUFHI HGAVV HZ~ I-F I07 IPLJI JAVBF LHSKQ MCG MINIK NPM O9- OCL P2P PK0 RMI SV3 TUS W7O ZWS 7X8 ABVLG AEFXT AEJOY |
| ID | FETCH-LOGICAL-c409t-e94bb13952d424e1c963aa3aa3c0623bd27d6acaa8f1b547d2c17f69abfb96d42 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460193700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-9304 |
| IngestDate | Thu Jul 10 17:11:42 EDT 2025 Thu Apr 03 07:08:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Automatic algorithm configuration branching and nested designs racing sampling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-e94bb13952d424e1c963aa3aa3c0623bd27d6acaa8f1b547d2c17f69abfb96d42 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30475671 |
| PQID | 2138636540 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2138636540 pubmed_primary_30475671 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Evolutionary computation |
| PublicationTitleAlternate | Evol Comput |
| PublicationYear | 2019 |
| SSID | ssj0013201 |
| Score | 2.2567391 |
| Snippet | The configuration of algorithms is a laborious and difficult process. Thus, it is advisable to automate this task by using appropriate automatic configuration... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 129 |
| Title | Latin Hypercube Designs with Branching and Nested Factors for Initialization of Automatic Algorithm Configuration |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30475671 https://www.proquest.com/docview/2138636540 |
| Volume | 27 |
| WOSCitedRecordID | wos000460193700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UetCD1fqqL1bwujTZJJvsSeqjVNDSg0JvYbOPWqhJ27T9_c7mgb0IghByCRuWnZmdb2dm50PoztUeDTQ1RAbCEPDHPok8XxIVCDAvzzE8UQXZRDgYRKMRH1YBt7wqq6z3xGKjVpm0MfIOdb2IeQwAxv1sTixrlM2uVhQa26jhAZSxJV3haDOL4FT9Uh3C4dxeF74z2tFrmcUiti7K_R1cFk6m1_zv9A7RQQUvcbfUhyO0pdMWatbUDbiy5Bba3-hDeIzmryCfFPfhTLqQq0Tjp6KuI8c2SosfLPeGDVRhkSo8KAKkuFfy9GDAvPjFFiCJaXWjE2cGd1fLrOgFi7vTMUxz-fmF7d3CyXhVatwJ-ug9vz_2ScXFQCScAJdEcz9JYIkDqnzqa1eC4QphH-kAgkoUDRUTUojIuEngh4pKNzSMi8QknMGYU7STZqk-Rzjg8Ek5nlQasBg4S5AHNVwyBv9jSrbRbb3EMei6TWCIVGerPP5Z5DY6K-UUz8qmHLFNHwYsdC_-MPoS7YFm8LKU7Ao1DFi6vka7cr2c5IubQongPRi-fQO2BtRX |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latin+Hypercube+Designs+with+Branching+and+Nested+Factors+for+Initialization+of+Automatic+Algorithm+Configuration&rft.jtitle=Evolutionary+computation&rft.au=Wessing%2C+Simon&rft.au=L%C3%B3pez-Ib%C3%A1%C3%B1ez%2C+Manuel&rft.date=2019-03-01&rft.eissn=1530-9304&rft.volume=27&rft.issue=1&rft.spage=129&rft_id=info:doi/10.1162%2Fevco_a_00241&rft_id=info%3Apmid%2F30475671&rft_id=info%3Apmid%2F30475671&rft.externalDocID=30475671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-9304&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-9304&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-9304&client=summon |