The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces
•Addresses numerical algorithms for pseudo-monotone variational inequalities.•Proves the convergence of Tseng’s FBF method and validates the theoretical results with numerical experiments.•Emphasizes the interplay between discrete and continuous time approaches to variational inequalities. Tseng’s f...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 287; H. 1; S. 49 - 60 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
16.11.2020
|
| Schlagworte: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Addresses numerical algorithms for pseudo-monotone variational inequalities.•Proves the convergence of Tseng’s FBF method and validates the theoretical results with numerical experiments.•Emphasizes the interplay between discrete and continuous time approaches to variational inequalities.
Tseng’s forward–backward–forward algorithm is a valuable alternative for Korpelevich’s extragradient method when solving variational inequalities over a convex and closed set governed by monotone and Lipschitz continuous operators, as it requires in every step only one projection operation. However, it is well-known that Korpelevich’s method converges and can therefore be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz continuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a forward–backward–forward dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into Tseng’s forward–backward–forward algorithm with relaxation parameters, which we prove to converge also when it is applied to pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaranteed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone variational inequalities over polyhedral sets and fractional programming problems. |
|---|---|
| AbstractList | •Addresses numerical algorithms for pseudo-monotone variational inequalities.•Proves the convergence of Tseng’s FBF method and validates the theoretical results with numerical experiments.•Emphasizes the interplay between discrete and continuous time approaches to variational inequalities.
Tseng’s forward–backward–forward algorithm is a valuable alternative for Korpelevich’s extragradient method when solving variational inequalities over a convex and closed set governed by monotone and Lipschitz continuous operators, as it requires in every step only one projection operation. However, it is well-known that Korpelevich’s method converges and can therefore be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz continuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a forward–backward–forward dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into Tseng’s forward–backward–forward algorithm with relaxation parameters, which we prove to converge also when it is applied to pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaranteed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone variational inequalities over polyhedral sets and fractional programming problems. |
| Author | Vuong, P.T. Csetnek, E.R. Boţ, R.I. |
| Author_xml | – sequence: 1 givenname: R.I. surname: Boţ fullname: Boţ, R.I. email: radu.bot@univie.ac.at organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria – sequence: 2 givenname: E.R. orcidid: 0000-0002-5024-6186 surname: Csetnek fullname: Csetnek, E.R. email: ernoe.robert.csetnek@univie.ac.at organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria – sequence: 3 givenname: P.T. surname: Vuong fullname: Vuong, P.T. email: vuong.phan@univie.ac.at organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria |
| BookMark | eNp9kEtOwzAQQC1UJMrnAqx8gYRxnDipxAYhflIlNmVtOfZEuKR2sN0idtyABTfkJKS0Kxas5qN5o5l3TCbOOyTknEHOgImLZY5LH_ICCsihzIFXB2TKmrrIRCNgQqbA6zorClYfkeMYlwDAKlZNyefiGWnnw5sK5vvjq1X6ZZ_um3SF6dkb2gW_otq7ZN3aryNVzlBjow6YkA4Y4oA62c3vMjpEXBufrbzzaTyUblSwKlnvVE-tw9e16m2yGMeC3tu-xZBoHJTGeEoOO9VHPNvHE_J0e7O4vs_mj3cP11fzTJcwSxkyAbzQBlutOdZd2XaFmBnsmkoIA6rms7ZlGkxlQChe60ZUvBKmVLwcZzt-QordXh18jAE7OQS7UuFdMpBbpXIpt0rlVqmEUo5KR6j5A2mbfv9KQdn-f_Ryh-L41MZikFFbdBqNDaM4abz9D_8BvC-cAw |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_120078 crossref_primary_10_1007_s41980_022_00678_z crossref_primary_10_1007_s12215_025_01211_x crossref_primary_10_1080_02331934_2024_2329788 crossref_primary_10_1007_s40314_022_02006_x crossref_primary_10_1016_j_cam_2021_114003 crossref_primary_10_1007_s11067_023_09594_z crossref_primary_10_1007_s11067_022_09575_8 crossref_primary_10_1007_s11075_022_01264_4 crossref_primary_10_1007_s40314_022_02104_w crossref_primary_10_1007_s11075_021_01093_x crossref_primary_10_1016_j_cnsns_2025_108938 crossref_primary_10_1016_j_neunet_2025_107344 crossref_primary_10_1007_s11075_022_01457_x crossref_primary_10_1007_s13398_021_01205_1 crossref_primary_10_1109_TCSI_2024_3488858 crossref_primary_10_1137_20M1335297 crossref_primary_10_1016_j_cam_2022_114517 crossref_primary_10_1007_s41478_022_00384_3 crossref_primary_10_1007_s10957_020_01669_y crossref_primary_10_1080_02331934_2024_2341941 crossref_primary_10_1109_TCYB_2021_3093076 crossref_primary_10_1016_j_cnsns_2024_108414 crossref_primary_10_1080_02331934_2022_2094795 crossref_primary_10_1007_s12559_024_10252_w crossref_primary_10_1007_s10255_024_1108_5 crossref_primary_10_1007_s10473_024_0210_3 crossref_primary_10_1007_s10013_021_00544_1 crossref_primary_10_1080_02331934_2024_2385645 crossref_primary_10_1007_s11067_022_09568_7 crossref_primary_10_1007_s10957_025_02622_7 crossref_primary_10_1007_s12346_022_00698_4 crossref_primary_10_3390_fractalfract6100566 crossref_primary_10_1016_j_cnsns_2025_109201 crossref_primary_10_1007_s10440_021_00451_0 crossref_primary_10_1155_2021_5511634 crossref_primary_10_3390_sym13030489 crossref_primary_10_1007_s11067_023_09606_y crossref_primary_10_1016_j_apnum_2021_01_017 crossref_primary_10_1007_s11075_020_01058_6 crossref_primary_10_3390_su13105391 crossref_primary_10_1007_s11081_022_09713_8 crossref_primary_10_1016_j_cam_2022_114739 crossref_primary_10_1007_s13398_021_01116_1 crossref_primary_10_1080_02331934_2025_2518464 crossref_primary_10_1016_j_neucom_2021_04_059 crossref_primary_10_1007_s40314_024_02929_7 crossref_primary_10_1109_TNNLS_2023_3321761 crossref_primary_10_1007_s10898_020_00895_y crossref_primary_10_1007_s11075_021_01126_5 crossref_primary_10_1007_s11590_022_01871_z crossref_primary_10_1016_j_cnsns_2025_109179 crossref_primary_10_1007_s11067_021_09554_5 crossref_primary_10_1007_s40314_024_02785_5 crossref_primary_10_1007_s10898_024_01377_1 crossref_primary_10_1007_s11228_020_00548_y crossref_primary_10_1016_j_cnsns_2024_108110 crossref_primary_10_1186_s13663_021_00689_1 crossref_primary_10_1007_s40314_022_02110_y crossref_primary_10_1007_s00500_023_08806_5 crossref_primary_10_1007_s10957_024_02437_y crossref_primary_10_1007_s40314_024_02699_2 crossref_primary_10_2989_16073606_2024_2327562 crossref_primary_10_1016_j_cam_2023_115099 crossref_primary_10_1016_j_cam_2025_117035 crossref_primary_10_1080_02331934_2021_1925669 crossref_primary_10_1080_02331934_2023_2168482 crossref_primary_10_1080_02331934_2023_2168483 crossref_primary_10_1007_s11590_020_01678_w crossref_primary_10_1007_s40305_025_00624_w crossref_primary_10_1007_s12190_024_02186_1 crossref_primary_10_1007_s40314_021_01529_z crossref_primary_10_1016_j_apnum_2021_06_002 crossref_primary_10_1016_j_cnsns_2024_108217 crossref_primary_10_2298_FIL2426289T crossref_primary_10_1007_s12190_021_01581_2 crossref_primary_10_1109_TAC_2023_3326713 crossref_primary_10_1007_s40314_025_03147_5 crossref_primary_10_1080_02331934_2025_2526724 crossref_primary_10_1155_2022_8644675 crossref_primary_10_1109_TNNLS_2023_3236695 crossref_primary_10_1007_s10013_020_00447_7 crossref_primary_10_1007_s00009_023_02535_7 crossref_primary_10_1007_s10107_025_02206_3 crossref_primary_10_1080_00036811_2021_1954166 crossref_primary_10_1016_j_cam_2022_114260 crossref_primary_10_1080_02331934_2020_1808644 crossref_primary_10_1007_s11075_022_01386_9 crossref_primary_10_1007_s10957_025_02764_8 crossref_primary_10_1007_s10915_021_01751_1 crossref_primary_10_1007_s40314_022_01958_4 crossref_primary_10_1007_s11063_021_10628_1 crossref_primary_10_1080_02331934_2024_2424446 crossref_primary_10_1007_s11075_023_01622_w crossref_primary_10_1016_j_neunet_2021_01_012 crossref_primary_10_1080_02331934_2023_2245414 crossref_primary_10_1016_j_apnum_2021_02_004 crossref_primary_10_1109_TNNLS_2022_3144148 crossref_primary_10_1080_02331934_2020_1849206 crossref_primary_10_1155_2022_7117244 crossref_primary_10_1515_math_2022_0571 crossref_primary_10_1016_j_cnsns_2024_108315 crossref_primary_10_1080_00036811_2023_2292279 crossref_primary_10_1007_s10957_025_02718_0 crossref_primary_10_3390_math13121956 crossref_primary_10_1515_ijnsns_2021_0459 crossref_primary_10_1007_s10898_025_01467_8 crossref_primary_10_1007_s40314_022_01969_1 crossref_primary_10_1016_j_neunet_2024_106323 |
| Cites_doi | 10.1080/02331934.2010.539689 10.1137/S0363012997317475 10.1137/S0363012994268655 10.1080/02331934.2018.1522636 10.1007/BF01584075 10.1007/s10957-010-9757-3 10.1007/s10898-013-0042-5 10.1007/s11590-015-0960-x 10.1137/S1052623494250415 10.1007/BF00941468 10.1080/02331934.2017.1294592 10.1007/s10589-009-9246-5 10.1007/s10957-013-0414-5 10.1007/s10589-014-9673-9 10.1007/s10957-011-9912-5 10.1137/14097238X 10.1080/10556788.2017.1300899 10.1007/s10957-011-9830-6 10.1007/s10957-017-1214-0 10.1007/s10957-010-9650-0 10.1007/BF00940531 10.1137/S0363012998338806 10.1007/s11075-019-00780-0 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2020.04.035 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 60 |
| ExternalDocumentID | 10_1016_j_ejor_2020_04_035 S037722172030388X |
| GrantInformation_xml | – fundername: FWF grantid: 2419-N32 funderid: https://doi.org/10.13039/501100002428 – fundername: FWF funderid: https://doi.org/10.13039/501100002428 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c409t-e16032cdebcc3e7f4bf269def8566d0a739bb1c0d5d06a37c865356d4a344bff3 |
| ISICitedReferencesCount | 137 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541072800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Tue Nov 18 22:28:25 EST 2025 Sat Nov 29 07:20:24 EST 2025 Fri Feb 23 02:47:45 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Tseng’s FBF algorithm Dynamical system Convex programming Pseudo-monotonicity Variational inequalities |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c409t-e16032cdebcc3e7f4bf269def8566d0a739bb1c0d5d06a37c865356d4a344bff3 |
| ORCID | 0000-0002-5024-6186 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S037722172030388X |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_ejor_2020_04_035 crossref_citationtrail_10_1016_j_ejor_2020_04_035 elsevier_sciencedirect_doi_10_1016_j_ejor_2020_04_035 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-16 |
| PublicationDateYYYYMMDD | 2020-11-16 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Ceng, Teboulle, Yao (bib0008) 2010; 146 Bauschke, Combettes (bib0003) 2011 Dang, Lan (bib0013) 2015; 60 Kim, Vuong, Khanh (bib0019) 2016; 10 Borwein, Lewis (bib0007) 2006 László (bib0022) 2011; 150 Zhu, Marcotte (bib0034) 1996; 6 Cottle, Yao (bib0012) 1992; 75 Korpelevich (bib0021) 1976; 12 Kinderlehrer, Stampacchia (bib0020) 1980 Mangasarian (bib0026) 1965; 3 Maugeri, Raciti (bib0027) 2009; 16 Vuong (bib0033) 2018; 176 Karamardian, Schaible (bib0017) 1990; 66 Khanh, Vuong (bib0018) 2014; 58 Facchinei, Pang (bib0014) 2003 Censor, Gibali, Reich (bib0009) 2011; 148 Malitsky (bib0025) 2018; 33 Boţ, Csetnek (bib0006) 2017; 66 Bianchi, Hadjisavvas, Schaible (bib0005) 2003; 10 Censor, Gibali, Reich (bib0010) 2012; 61 Hadjisavvas, Schaible, Wong (bib0015) 2012; 152 Solodov, Tseng (bib0030) 1996; 34 Thong, D. V., Shehu, Y., & Iyiola, O. S. (2019). Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numerical Algorithms. DOI Banert, Boţ (bib0002) 2018; 25 Shehu, Dong, Jiang (bib0028) 2019; 68 Bello Cruz, Iusem (bib0004) 2010; 46 Cottle, Ferland (bib0011) 1971; 1 . Solodov, Svaiter (bib0029) 1999; 37 Abbas, Attouch, Svaiter (bib0001) 2014; 161 Thong, Tseng (bib0032) 2000; 38 Malitsky, Y. (2018a). Golden ratio algorithms for variational inequalities. Harker, Pang (bib0016) 1990; 26 Malitsky (bib0023) 2015; 25 Cottle (10.1016/j.ejor.2020.04.035_bib0012) 1992; 75 Censor (10.1016/j.ejor.2020.04.035_bib0009) 2011; 148 Maugeri (10.1016/j.ejor.2020.04.035_bib0027) 2009; 16 Zhu (10.1016/j.ejor.2020.04.035_bib0034) 1996; 6 László (10.1016/j.ejor.2020.04.035_bib0022) 2011; 150 Abbas (10.1016/j.ejor.2020.04.035_bib0001) 2014; 161 10.1016/j.ejor.2020.04.035_bib0031 Borwein (10.1016/j.ejor.2020.04.035_bib0007) 2006 Cottle (10.1016/j.ejor.2020.04.035_bib0011) 1971; 1 Solodov (10.1016/j.ejor.2020.04.035_bib0029) 1999; 37 Vuong (10.1016/j.ejor.2020.04.035_bib0033) 2018; 176 Harker (10.1016/j.ejor.2020.04.035_bib0016) 1990; 26 Bianchi (10.1016/j.ejor.2020.04.035_bib0005) 2003; 10 Kim (10.1016/j.ejor.2020.04.035_bib0019) 2016; 10 Solodov (10.1016/j.ejor.2020.04.035_bib0030) 1996; 34 Mangasarian (10.1016/j.ejor.2020.04.035_bib0026) 1965; 3 Banert (10.1016/j.ejor.2020.04.035_bib0002) 2018; 25 Bello Cruz (10.1016/j.ejor.2020.04.035_bib0004) 2010; 46 Hadjisavvas (10.1016/j.ejor.2020.04.035_bib0015) 2012; 152 Censor (10.1016/j.ejor.2020.04.035_bib0010) 2012; 61 Dang (10.1016/j.ejor.2020.04.035_bib0013) 2015; 60 Shehu (10.1016/j.ejor.2020.04.035_bib0028) 2019; 68 Boţ (10.1016/j.ejor.2020.04.035_bib0006) 2017; 66 Ceng (10.1016/j.ejor.2020.04.035_bib0008) 2010; 146 Bauschke (10.1016/j.ejor.2020.04.035_bib0003) 2011 Malitsky (10.1016/j.ejor.2020.04.035_bib0025) 2018; 33 Khanh (10.1016/j.ejor.2020.04.035_bib0018) 2014; 58 10.1016/j.ejor.2020.04.035_bib0024 Karamardian (10.1016/j.ejor.2020.04.035_bib0017) 1990; 66 Facchinei (10.1016/j.ejor.2020.04.035_bib0014) 2003 Korpelevich (10.1016/j.ejor.2020.04.035_bib0021) 1976; 12 Kinderlehrer (10.1016/j.ejor.2020.04.035_bib0020) 1980 Malitsky (10.1016/j.ejor.2020.04.035_bib0023) 2015; 25 Thong (10.1016/j.ejor.2020.04.035_bib0032) 2000; 38 |
| References_xml | – volume: 68 start-page: 385 year: 2019 end-page: 409 ident: bib0028 article-title: Single projection method for pseudo-monotone variational inequality in Hilbert spaces publication-title: Optimization – volume: 25 start-page: 502 year: 2015 end-page: 520 ident: bib0023 article-title: Projected reflected gradient methods for monotone variational inequalities publication-title: SIAM Journal on Optimization – volume: 16 start-page: 899 year: 2009 end-page: 911 ident: bib0027 article-title: On existence theorems for monotone and nonmonotone variational inequalities publication-title: Journal of Convex Analysis – volume: 152 start-page: 1 year: 2012 end-page: 20 ident: bib0015 article-title: Pseudomonotone operators: A survey of the theory and its applications publication-title: Journal of Optimization Theory and Applications – year: 1980 ident: bib0020 article-title: An introduction to variational inequalities and their applications – volume: 6 start-page: 714 year: 1996 end-page: 726 ident: bib0034 article-title: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities publication-title: SIAM Journal on Control Optimization – volume: 66 start-page: 1383 year: 2017 end-page: 1396 ident: bib0006 article-title: Proximal-gradient algorithms for fractional programming publication-title: Optimization – volume: 66 start-page: 37 year: 1990 end-page: 46 ident: bib0017 article-title: Seven kinds of monotone maps publication-title: Journal of Optimization Theory and Applications – volume: 75 start-page: 281 year: 1992 end-page: 295 ident: bib0012 article-title: Pseudo-monotone complementarity problems in Hilbert space publication-title: Journal of Optimization Theory and Applications – year: 2011 ident: bib0003 article-title: Convex analysis and monotone operator theory in hilbert spaces publication-title: CMS books in mathematics – volume: 1 start-page: 95 year: 1971 end-page: 101 ident: bib0011 article-title: On pseudo-convex functions of nonnegative variables publication-title: Mathematical Programming – year: 2003 ident: bib0014 article-title: Finite-dimensional variational inequalities and complementarity problems – volume: 12 start-page: 747 year: 1976 end-page: 756 ident: bib0021 article-title: The extragradient method for finding saddle points and other problems publication-title: Ekonomika i Matematicheskie Metody – reference: Malitsky, Y. (2018a). Golden ratio algorithms for variational inequalities. – volume: 10 start-page: 1669 year: 2016 end-page: 1679 ident: bib0019 article-title: Qualitative properties of strongly pseudomonotone variational inequalities publication-title: Optics Letters – volume: 148 start-page: 318 year: 2011 end-page: 335 ident: bib0009 article-title: The subgradient extragradient method for solving variational inequalities in Hilbert space publication-title: Journal of Optimization Theory and Applications – year: 2006 ident: bib0007 article-title: Convex analysis and nonlinear optimization: Theory and examples – volume: 38 start-page: 431 year: 2000 end-page: 446 ident: bib0032 article-title: A modified forward-backward splitting method for maximal monotone mappings publication-title: SIAM Journal on Control Optimization – volume: 37 start-page: 765 year: 1999 end-page: 776 ident: bib0029 article-title: A new projection method for variational inequality problems publication-title: SIAM Journal on Control Optimization – volume: 10 start-page: 149 year: 2003 end-page: 168 ident: bib0005 article-title: On pseudomonotone maps publication-title: Journal of Convex Analysis – volume: 26 start-page: 265 year: 1990 end-page: 284 ident: bib0016 article-title: A damped-Newton method for the linear complementarity problem publication-title: Computational solution of nonlinear systems of equations (Fort Collins, CO, 1988) – volume: 161 start-page: 331 year: 2014 end-page: 360 ident: bib0001 article-title: Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces publication-title: Journal of Optimization Theory and Applications – reference: . – volume: 33 start-page: 140 year: 2018 end-page: 164 ident: bib0025 article-title: Proximal extrapolated gradient methods for variational inequalities publication-title: Optimization Methods and Software – volume: 46 start-page: 247 year: 2010 end-page: 263 ident: bib0004 article-title: Convergence of direct methods for paramonotone variational inequalities publication-title: Computational Optimization and Applications – volume: 61 start-page: 1119 year: 2012 end-page: 1132 ident: bib0010 article-title: Extensions of Korpelevich’s extragradient method for the variational inequality problem in euclidean space publication-title: Optimization – volume: 58 start-page: 341 year: 2014 end-page: 350 ident: bib0018 article-title: Modified projection method for strongly pseudomonotone variational inequalities publication-title: Journal of Global Optimization – volume: 3 start-page: 281 year: 1965 end-page: 290 ident: bib0026 article-title: Pseudo-convex functions publication-title: SIAM Journal on Control Optimization – reference: Thong, D. V., Shehu, Y., & Iyiola, O. S. (2019). Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numerical Algorithms. DOI: – volume: 60 start-page: 277 year: 2015 end-page: 310 ident: bib0013 article-title: On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators publication-title: Computational Optimization and Applications – volume: 146 start-page: 19 year: 2010 end-page: 31 ident: bib0008 article-title: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems publication-title: Journal of Optimization Theory and Applications – volume: 25 start-page: 371 year: 2018 end-page: 388 ident: bib0002 article-title: A forward-backward-forward differential equation and its asymptotic properties publication-title: Journal of Convex Analysis – volume: 150 start-page: 425 year: 2011 end-page: 443 ident: bib0022 article-title: Some existence results of solutions for general variational inequalities publication-title: Journal of Optimization Theory and Applications – volume: 34 start-page: 1814 year: 1996 end-page: 1830 ident: bib0030 article-title: Modified projection-type methods for monotone variational inequalities publication-title: SIAM Journal on Control Optimization – volume: 176 start-page: 399 year: 2018 end-page: 409 ident: bib0033 article-title: On the weak convergence of the extragradient method for solving variational inequalities publication-title: Journal of Optimization Theory and Applications – volume: 61 start-page: 1119 issue: 9 year: 2012 ident: 10.1016/j.ejor.2020.04.035_bib0010 article-title: Extensions of Korpelevich’s extragradient method for the variational inequality problem in euclidean space publication-title: Optimization doi: 10.1080/02331934.2010.539689 – volume: 37 start-page: 765 year: 1999 ident: 10.1016/j.ejor.2020.04.035_bib0029 article-title: A new projection method for variational inequality problems publication-title: SIAM Journal on Control Optimization doi: 10.1137/S0363012997317475 – volume: 34 start-page: 1814 year: 1996 ident: 10.1016/j.ejor.2020.04.035_bib0030 article-title: Modified projection-type methods for monotone variational inequalities publication-title: SIAM Journal on Control Optimization doi: 10.1137/S0363012994268655 – year: 2003 ident: 10.1016/j.ejor.2020.04.035_bib0014 – ident: 10.1016/j.ejor.2020.04.035_bib0024 – volume: 68 start-page: 385 issue: 1 year: 2019 ident: 10.1016/j.ejor.2020.04.035_bib0028 article-title: Single projection method for pseudo-monotone variational inequality in Hilbert spaces publication-title: Optimization doi: 10.1080/02331934.2018.1522636 – volume: 1 start-page: 95 year: 1971 ident: 10.1016/j.ejor.2020.04.035_bib0011 article-title: On pseudo-convex functions of nonnegative variables publication-title: Mathematical Programming doi: 10.1007/BF01584075 – volume: 148 start-page: 318 year: 2011 ident: 10.1016/j.ejor.2020.04.035_bib0009 article-title: The subgradient extragradient method for solving variational inequalities in Hilbert space publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-010-9757-3 – volume: 58 start-page: 341 year: 2014 ident: 10.1016/j.ejor.2020.04.035_bib0018 article-title: Modified projection method for strongly pseudomonotone variational inequalities publication-title: Journal of Global Optimization doi: 10.1007/s10898-013-0042-5 – year: 2006 ident: 10.1016/j.ejor.2020.04.035_bib0007 – volume: 10 start-page: 1669 year: 2016 ident: 10.1016/j.ejor.2020.04.035_bib0019 article-title: Qualitative properties of strongly pseudomonotone variational inequalities publication-title: Optics Letters doi: 10.1007/s11590-015-0960-x – volume: 6 start-page: 714 year: 1996 ident: 10.1016/j.ejor.2020.04.035_bib0034 article-title: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities publication-title: SIAM Journal on Control Optimization doi: 10.1137/S1052623494250415 – volume: 75 start-page: 281 year: 1992 ident: 10.1016/j.ejor.2020.04.035_bib0012 article-title: Pseudo-monotone complementarity problems in Hilbert space publication-title: Journal of Optimization Theory and Applications doi: 10.1007/BF00941468 – year: 2011 ident: 10.1016/j.ejor.2020.04.035_bib0003 article-title: Convex analysis and monotone operator theory in hilbert spaces – volume: 66 start-page: 1383 issue: 8 year: 2017 ident: 10.1016/j.ejor.2020.04.035_bib0006 article-title: Proximal-gradient algorithms for fractional programming publication-title: Optimization doi: 10.1080/02331934.2017.1294592 – volume: 3 start-page: 281 year: 1965 ident: 10.1016/j.ejor.2020.04.035_bib0026 article-title: Pseudo-convex functions publication-title: SIAM Journal on Control Optimization – volume: 46 start-page: 247 issue: 2 year: 2010 ident: 10.1016/j.ejor.2020.04.035_bib0004 article-title: Convergence of direct methods for paramonotone variational inequalities publication-title: Computational Optimization and Applications doi: 10.1007/s10589-009-9246-5 – volume: 161 start-page: 331 issue: 2 year: 2014 ident: 10.1016/j.ejor.2020.04.035_bib0001 article-title: Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-013-0414-5 – volume: 25 start-page: 371 issue: 2 year: 2018 ident: 10.1016/j.ejor.2020.04.035_bib0002 article-title: A forward-backward-forward differential equation and its asymptotic properties publication-title: Journal of Convex Analysis – volume: 60 start-page: 277 year: 2015 ident: 10.1016/j.ejor.2020.04.035_bib0013 article-title: On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators publication-title: Computational Optimization and Applications doi: 10.1007/s10589-014-9673-9 – volume: 26 start-page: 265 year: 1990 ident: 10.1016/j.ejor.2020.04.035_bib0016 article-title: A damped-Newton method for the linear complementarity problem – volume: 152 start-page: 1 year: 2012 ident: 10.1016/j.ejor.2020.04.035_bib0015 article-title: Pseudomonotone operators: A survey of the theory and its applications publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-011-9912-5 – volume: 25 start-page: 502 year: 2015 ident: 10.1016/j.ejor.2020.04.035_bib0023 article-title: Projected reflected gradient methods for monotone variational inequalities publication-title: SIAM Journal on Optimization doi: 10.1137/14097238X – volume: 33 start-page: 140 issue: 1 year: 2018 ident: 10.1016/j.ejor.2020.04.035_bib0025 article-title: Proximal extrapolated gradient methods for variational inequalities publication-title: Optimization Methods and Software doi: 10.1080/10556788.2017.1300899 – volume: 12 start-page: 747 year: 1976 ident: 10.1016/j.ejor.2020.04.035_bib0021 article-title: The extragradient method for finding saddle points and other problems publication-title: Ekonomika i Matematicheskie Metody – volume: 150 start-page: 425 year: 2011 ident: 10.1016/j.ejor.2020.04.035_bib0022 article-title: Some existence results of solutions for general variational inequalities publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-011-9830-6 – year: 1980 ident: 10.1016/j.ejor.2020.04.035_bib0020 – volume: 10 start-page: 149 year: 2003 ident: 10.1016/j.ejor.2020.04.035_bib0005 article-title: On pseudomonotone maps t for which −t is also pseudomonotone publication-title: Journal of Convex Analysis – volume: 176 start-page: 399 issue: 2 year: 2018 ident: 10.1016/j.ejor.2020.04.035_bib0033 article-title: On the weak convergence of the extragradient method for solving variational inequalities publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-017-1214-0 – volume: 146 start-page: 19 year: 2010 ident: 10.1016/j.ejor.2020.04.035_bib0008 article-title: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems publication-title: Journal of Optimization Theory and Applications doi: 10.1007/s10957-010-9650-0 – volume: 66 start-page: 37 year: 1990 ident: 10.1016/j.ejor.2020.04.035_bib0017 article-title: Seven kinds of monotone maps publication-title: Journal of Optimization Theory and Applications doi: 10.1007/BF00940531 – volume: 16 start-page: 899 year: 2009 ident: 10.1016/j.ejor.2020.04.035_bib0027 article-title: On existence theorems for monotone and nonmonotone variational inequalities publication-title: Journal of Convex Analysis – volume: 38 start-page: 431 year: 2000 ident: 10.1016/j.ejor.2020.04.035_bib0032 article-title: A modified forward-backward splitting method for maximal monotone mappings publication-title: SIAM Journal on Control Optimization doi: 10.1137/S0363012998338806 – ident: 10.1016/j.ejor.2020.04.035_bib0031 doi: 10.1007/s11075-019-00780-0 |
| SSID | ssj0001515 |
| Score | 2.655251 |
| Snippet | •Addresses numerical algorithms for pseudo-monotone variational inequalities.•Proves the convergence of Tseng’s FBF method and validates the theoretical... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 49 |
| SubjectTerms | Convex programming Dynamical system Pseudo-monotonicity Tseng’s FBF algorithm Variational inequalities |
| Title | The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces |
| URI | https://dx.doi.org/10.1016/j.ejor.2020.04.035 |
| Volume | 287 |
| WOSCitedRecordID | wos000541072800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKFyE48FMWsfzJB_ZUJUrjOImPZbVoF6HVChXUWxQ7jtRqlVZtWu2RN-DAK_EkPAkzsZ0NZVmxBy5RMnLcpPPFHo9nviHkLRcyFKO08EottIf7t57kZerFkSoDZCzSSZMo_DE5O0unU3He6_1wuTDbi6Sq0stLsfyvqgYZKBtTZ2-h7rZTEMA5KB2OoHY4_rPiwRLFaFgXycAkeum6AtvAFpA2SSYYtT6rNhgTi950zNddgUmNzMYuH7MJSlyu9aZYePBCC2TyHm5hue1cimCzmjTNWRPoNTyZIYdWPYRxS9loxeu2AaxJDIKV68myELXe6neLwyN-OGYNJvxTv908Weu60mZM9z-14i8bG2t87k_8rmsD1rEjU7S6HQFZknhhaJI73XAd2gm6i0sz-BruUzuNmyoFf0wQxlcx9_V8gWywYdAQ3RrGlN_ZuHdmyTZ20YXFzTPsI8M-siDKoI87ZC9MuEj7ZG98ejz90FoEaDQ2u1n2dWzylokz3H2S6w2kjtEzeUwe2tUKHRuUPSE9XQ3IPZcsMSCPXFEQaueIAXnQYbh8Sr4BGqkF28-v3x0O4dQKqUEgRQTSKwRSQCB1CKQdBGJndAeBtINA2kUgXFCLQGoQuE8-vz-eHJ14tgaIp6JA1J7GMuihKrRUiumkjGQZxqLQZQrrkCLIEyakHKmg4EUQ5yxRacwZj4soZxG0Ldkz0q_gSZ4TyngpuRBhIEUapYXIoW2uk6YQMpgf8oCM3B-fKUuQj3VaLrK_q_yADNt7loYe5sbW3OkzswauMVwzgOcN97241a-8JPevPqZXpF-vNvo1uau29Wy9emOx-QtabM7w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+forward%E2%80%93backward%E2%80%93forward+method+from+continuous+and+discrete+perspective+for+pseudo-monotone+variational+inequalities+in+Hilbert+spaces&rft.jtitle=European+journal+of+operational+research&rft.au=Bo%C5%A3%2C+R.I.&rft.au=Csetnek%2C+E.R.&rft.au=Vuong%2C+P.T.&rft.date=2020-11-16&rft.issn=0377-2217&rft.volume=287&rft.issue=1&rft.spage=49&rft.epage=60&rft_id=info:doi/10.1016%2Fj.ejor.2020.04.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2020_04_035 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |