The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces

•Addresses numerical algorithms for pseudo-monotone variational inequalities.•Proves the convergence of Tseng’s FBF method and validates the theoretical results with numerical experiments.•Emphasizes the interplay between discrete and continuous time approaches to variational inequalities. Tseng’s f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 287; H. 1; S. 49 - 60
Hauptverfasser: Boţ, R.I., Csetnek, E.R., Vuong, P.T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 16.11.2020
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Addresses numerical algorithms for pseudo-monotone variational inequalities.•Proves the convergence of Tseng’s FBF method and validates the theoretical results with numerical experiments.•Emphasizes the interplay between discrete and continuous time approaches to variational inequalities. Tseng’s forward–backward–forward algorithm is a valuable alternative for Korpelevich’s extragradient method when solving variational inequalities over a convex and closed set governed by monotone and Lipschitz continuous operators, as it requires in every step only one projection operation. However, it is well-known that Korpelevich’s method converges and can therefore be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz continuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a forward–backward–forward dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into Tseng’s forward–backward–forward algorithm with relaxation parameters, which we prove to converge also when it is applied to pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaranteed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone variational inequalities over polyhedral sets and fractional programming problems.
AbstractList •Addresses numerical algorithms for pseudo-monotone variational inequalities.•Proves the convergence of Tseng’s FBF method and validates the theoretical results with numerical experiments.•Emphasizes the interplay between discrete and continuous time approaches to variational inequalities. Tseng’s forward–backward–forward algorithm is a valuable alternative for Korpelevich’s extragradient method when solving variational inequalities over a convex and closed set governed by monotone and Lipschitz continuous operators, as it requires in every step only one projection operation. However, it is well-known that Korpelevich’s method converges and can therefore be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz continuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a forward–backward–forward dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into Tseng’s forward–backward–forward algorithm with relaxation parameters, which we prove to converge also when it is applied to pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaranteed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone variational inequalities over polyhedral sets and fractional programming problems.
Author Vuong, P.T.
Csetnek, E.R.
Boţ, R.I.
Author_xml – sequence: 1
  givenname: R.I.
  surname: Boţ
  fullname: Boţ, R.I.
  email: radu.bot@univie.ac.at
  organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria
– sequence: 2
  givenname: E.R.
  orcidid: 0000-0002-5024-6186
  surname: Csetnek
  fullname: Csetnek, E.R.
  email: ernoe.robert.csetnek@univie.ac.at
  organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria
– sequence: 3
  givenname: P.T.
  surname: Vuong
  fullname: Vuong, P.T.
  email: vuong.phan@univie.ac.at
  organization: Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna 1090, Austria
BookMark eNp9kEtOwzAQQC1UJMrnAqx8gYRxnDipxAYhflIlNmVtOfZEuKR2sN0idtyABTfkJKS0Kxas5qN5o5l3TCbOOyTknEHOgImLZY5LH_ICCsihzIFXB2TKmrrIRCNgQqbA6zorClYfkeMYlwDAKlZNyefiGWnnw5sK5vvjq1X6ZZ_um3SF6dkb2gW_otq7ZN3aryNVzlBjow6YkA4Y4oA62c3vMjpEXBufrbzzaTyUblSwKlnvVE-tw9e16m2yGMeC3tu-xZBoHJTGeEoOO9VHPNvHE_J0e7O4vs_mj3cP11fzTJcwSxkyAbzQBlutOdZd2XaFmBnsmkoIA6rms7ZlGkxlQChe60ZUvBKmVLwcZzt-QordXh18jAE7OQS7UuFdMpBbpXIpt0rlVqmEUo5KR6j5A2mbfv9KQdn-f_Ryh-L41MZikFFbdBqNDaM4abz9D_8BvC-cAw
CitedBy_id crossref_primary_10_1016_j_ins_2023_120078
crossref_primary_10_1007_s41980_022_00678_z
crossref_primary_10_1007_s12215_025_01211_x
crossref_primary_10_1080_02331934_2024_2329788
crossref_primary_10_1007_s40314_022_02006_x
crossref_primary_10_1016_j_cam_2021_114003
crossref_primary_10_1007_s11067_023_09594_z
crossref_primary_10_1007_s11067_022_09575_8
crossref_primary_10_1007_s11075_022_01264_4
crossref_primary_10_1007_s40314_022_02104_w
crossref_primary_10_1007_s11075_021_01093_x
crossref_primary_10_1016_j_cnsns_2025_108938
crossref_primary_10_1016_j_neunet_2025_107344
crossref_primary_10_1007_s11075_022_01457_x
crossref_primary_10_1007_s13398_021_01205_1
crossref_primary_10_1109_TCSI_2024_3488858
crossref_primary_10_1137_20M1335297
crossref_primary_10_1016_j_cam_2022_114517
crossref_primary_10_1007_s41478_022_00384_3
crossref_primary_10_1007_s10957_020_01669_y
crossref_primary_10_1080_02331934_2024_2341941
crossref_primary_10_1109_TCYB_2021_3093076
crossref_primary_10_1016_j_cnsns_2024_108414
crossref_primary_10_1080_02331934_2022_2094795
crossref_primary_10_1007_s12559_024_10252_w
crossref_primary_10_1007_s10255_024_1108_5
crossref_primary_10_1007_s10473_024_0210_3
crossref_primary_10_1007_s10013_021_00544_1
crossref_primary_10_1080_02331934_2024_2385645
crossref_primary_10_1007_s11067_022_09568_7
crossref_primary_10_1007_s10957_025_02622_7
crossref_primary_10_1007_s12346_022_00698_4
crossref_primary_10_3390_fractalfract6100566
crossref_primary_10_1016_j_cnsns_2025_109201
crossref_primary_10_1007_s10440_021_00451_0
crossref_primary_10_1155_2021_5511634
crossref_primary_10_3390_sym13030489
crossref_primary_10_1007_s11067_023_09606_y
crossref_primary_10_1016_j_apnum_2021_01_017
crossref_primary_10_1007_s11075_020_01058_6
crossref_primary_10_3390_su13105391
crossref_primary_10_1007_s11081_022_09713_8
crossref_primary_10_1016_j_cam_2022_114739
crossref_primary_10_1007_s13398_021_01116_1
crossref_primary_10_1080_02331934_2025_2518464
crossref_primary_10_1016_j_neucom_2021_04_059
crossref_primary_10_1007_s40314_024_02929_7
crossref_primary_10_1109_TNNLS_2023_3321761
crossref_primary_10_1007_s10898_020_00895_y
crossref_primary_10_1007_s11075_021_01126_5
crossref_primary_10_1007_s11590_022_01871_z
crossref_primary_10_1016_j_cnsns_2025_109179
crossref_primary_10_1007_s11067_021_09554_5
crossref_primary_10_1007_s40314_024_02785_5
crossref_primary_10_1007_s10898_024_01377_1
crossref_primary_10_1007_s11228_020_00548_y
crossref_primary_10_1016_j_cnsns_2024_108110
crossref_primary_10_1186_s13663_021_00689_1
crossref_primary_10_1007_s40314_022_02110_y
crossref_primary_10_1007_s00500_023_08806_5
crossref_primary_10_1007_s10957_024_02437_y
crossref_primary_10_1007_s40314_024_02699_2
crossref_primary_10_2989_16073606_2024_2327562
crossref_primary_10_1016_j_cam_2023_115099
crossref_primary_10_1016_j_cam_2025_117035
crossref_primary_10_1080_02331934_2021_1925669
crossref_primary_10_1080_02331934_2023_2168482
crossref_primary_10_1080_02331934_2023_2168483
crossref_primary_10_1007_s11590_020_01678_w
crossref_primary_10_1007_s40305_025_00624_w
crossref_primary_10_1007_s12190_024_02186_1
crossref_primary_10_1007_s40314_021_01529_z
crossref_primary_10_1016_j_apnum_2021_06_002
crossref_primary_10_1016_j_cnsns_2024_108217
crossref_primary_10_2298_FIL2426289T
crossref_primary_10_1007_s12190_021_01581_2
crossref_primary_10_1109_TAC_2023_3326713
crossref_primary_10_1007_s40314_025_03147_5
crossref_primary_10_1080_02331934_2025_2526724
crossref_primary_10_1155_2022_8644675
crossref_primary_10_1109_TNNLS_2023_3236695
crossref_primary_10_1007_s10013_020_00447_7
crossref_primary_10_1007_s00009_023_02535_7
crossref_primary_10_1007_s10107_025_02206_3
crossref_primary_10_1080_00036811_2021_1954166
crossref_primary_10_1016_j_cam_2022_114260
crossref_primary_10_1080_02331934_2020_1808644
crossref_primary_10_1007_s11075_022_01386_9
crossref_primary_10_1007_s10957_025_02764_8
crossref_primary_10_1007_s10915_021_01751_1
crossref_primary_10_1007_s40314_022_01958_4
crossref_primary_10_1007_s11063_021_10628_1
crossref_primary_10_1080_02331934_2024_2424446
crossref_primary_10_1007_s11075_023_01622_w
crossref_primary_10_1016_j_neunet_2021_01_012
crossref_primary_10_1080_02331934_2023_2245414
crossref_primary_10_1016_j_apnum_2021_02_004
crossref_primary_10_1109_TNNLS_2022_3144148
crossref_primary_10_1080_02331934_2020_1849206
crossref_primary_10_1155_2022_7117244
crossref_primary_10_1515_math_2022_0571
crossref_primary_10_1016_j_cnsns_2024_108315
crossref_primary_10_1080_00036811_2023_2292279
crossref_primary_10_1007_s10957_025_02718_0
crossref_primary_10_3390_math13121956
crossref_primary_10_1515_ijnsns_2021_0459
crossref_primary_10_1007_s10898_025_01467_8
crossref_primary_10_1007_s40314_022_01969_1
crossref_primary_10_1016_j_neunet_2024_106323
Cites_doi 10.1080/02331934.2010.539689
10.1137/S0363012997317475
10.1137/S0363012994268655
10.1080/02331934.2018.1522636
10.1007/BF01584075
10.1007/s10957-010-9757-3
10.1007/s10898-013-0042-5
10.1007/s11590-015-0960-x
10.1137/S1052623494250415
10.1007/BF00941468
10.1080/02331934.2017.1294592
10.1007/s10589-009-9246-5
10.1007/s10957-013-0414-5
10.1007/s10589-014-9673-9
10.1007/s10957-011-9912-5
10.1137/14097238X
10.1080/10556788.2017.1300899
10.1007/s10957-011-9830-6
10.1007/s10957-017-1214-0
10.1007/s10957-010-9650-0
10.1007/BF00940531
10.1137/S0363012998338806
10.1007/s11075-019-00780-0
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2020.04.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 60
ExternalDocumentID 10_1016_j_ejor_2020_04_035
S037722172030388X
GrantInformation_xml – fundername: FWF
  grantid: 2419-N32
  funderid: https://doi.org/10.13039/501100002428
– fundername: FWF
  funderid: https://doi.org/10.13039/501100002428
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
ID FETCH-LOGICAL-c409t-e16032cdebcc3e7f4bf269def8566d0a739bb1c0d5d06a37c865356d4a344bff3
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541072800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Nov 18 22:28:25 EST 2025
Sat Nov 29 07:20:24 EST 2025
Fri Feb 23 02:47:45 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Tseng’s FBF algorithm
Dynamical system
Convex programming
Pseudo-monotonicity
Variational inequalities
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-e16032cdebcc3e7f4bf269def8566d0a739bb1c0d5d06a37c865356d4a344bff3
ORCID 0000-0002-5024-6186
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S037722172030388X
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_ejor_2020_04_035
crossref_citationtrail_10_1016_j_ejor_2020_04_035
elsevier_sciencedirect_doi_10_1016_j_ejor_2020_04_035
PublicationCentury 2000
PublicationDate 2020-11-16
PublicationDateYYYYMMDD 2020-11-16
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-16
  day: 16
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ceng, Teboulle, Yao (bib0008) 2010; 146
Bauschke, Combettes (bib0003) 2011
Dang, Lan (bib0013) 2015; 60
Kim, Vuong, Khanh (bib0019) 2016; 10
Borwein, Lewis (bib0007) 2006
László (bib0022) 2011; 150
Zhu, Marcotte (bib0034) 1996; 6
Cottle, Yao (bib0012) 1992; 75
Korpelevich (bib0021) 1976; 12
Kinderlehrer, Stampacchia (bib0020) 1980
Mangasarian (bib0026) 1965; 3
Maugeri, Raciti (bib0027) 2009; 16
Vuong (bib0033) 2018; 176
Karamardian, Schaible (bib0017) 1990; 66
Khanh, Vuong (bib0018) 2014; 58
Facchinei, Pang (bib0014) 2003
Censor, Gibali, Reich (bib0009) 2011; 148
Malitsky (bib0025) 2018; 33
Boţ, Csetnek (bib0006) 2017; 66
Bianchi, Hadjisavvas, Schaible (bib0005) 2003; 10
Censor, Gibali, Reich (bib0010) 2012; 61
Hadjisavvas, Schaible, Wong (bib0015) 2012; 152
Solodov, Tseng (bib0030) 1996; 34
Thong, D. V., Shehu, Y., & Iyiola, O. S. (2019). Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numerical Algorithms. DOI
Banert, Boţ (bib0002) 2018; 25
Shehu, Dong, Jiang (bib0028) 2019; 68
Bello Cruz, Iusem (bib0004) 2010; 46
Cottle, Ferland (bib0011) 1971; 1
.
Solodov, Svaiter (bib0029) 1999; 37
Abbas, Attouch, Svaiter (bib0001) 2014; 161
Thong, Tseng (bib0032) 2000; 38
Malitsky, Y. (2018a). Golden ratio algorithms for variational inequalities.
Harker, Pang (bib0016) 1990; 26
Malitsky (bib0023) 2015; 25
Cottle (10.1016/j.ejor.2020.04.035_bib0012) 1992; 75
Censor (10.1016/j.ejor.2020.04.035_bib0009) 2011; 148
Maugeri (10.1016/j.ejor.2020.04.035_bib0027) 2009; 16
Zhu (10.1016/j.ejor.2020.04.035_bib0034) 1996; 6
László (10.1016/j.ejor.2020.04.035_bib0022) 2011; 150
Abbas (10.1016/j.ejor.2020.04.035_bib0001) 2014; 161
10.1016/j.ejor.2020.04.035_bib0031
Borwein (10.1016/j.ejor.2020.04.035_bib0007) 2006
Cottle (10.1016/j.ejor.2020.04.035_bib0011) 1971; 1
Solodov (10.1016/j.ejor.2020.04.035_bib0029) 1999; 37
Vuong (10.1016/j.ejor.2020.04.035_bib0033) 2018; 176
Harker (10.1016/j.ejor.2020.04.035_bib0016) 1990; 26
Bianchi (10.1016/j.ejor.2020.04.035_bib0005) 2003; 10
Kim (10.1016/j.ejor.2020.04.035_bib0019) 2016; 10
Solodov (10.1016/j.ejor.2020.04.035_bib0030) 1996; 34
Mangasarian (10.1016/j.ejor.2020.04.035_bib0026) 1965; 3
Banert (10.1016/j.ejor.2020.04.035_bib0002) 2018; 25
Bello Cruz (10.1016/j.ejor.2020.04.035_bib0004) 2010; 46
Hadjisavvas (10.1016/j.ejor.2020.04.035_bib0015) 2012; 152
Censor (10.1016/j.ejor.2020.04.035_bib0010) 2012; 61
Dang (10.1016/j.ejor.2020.04.035_bib0013) 2015; 60
Shehu (10.1016/j.ejor.2020.04.035_bib0028) 2019; 68
Boţ (10.1016/j.ejor.2020.04.035_bib0006) 2017; 66
Ceng (10.1016/j.ejor.2020.04.035_bib0008) 2010; 146
Bauschke (10.1016/j.ejor.2020.04.035_bib0003) 2011
Malitsky (10.1016/j.ejor.2020.04.035_bib0025) 2018; 33
Khanh (10.1016/j.ejor.2020.04.035_bib0018) 2014; 58
10.1016/j.ejor.2020.04.035_bib0024
Karamardian (10.1016/j.ejor.2020.04.035_bib0017) 1990; 66
Facchinei (10.1016/j.ejor.2020.04.035_bib0014) 2003
Korpelevich (10.1016/j.ejor.2020.04.035_bib0021) 1976; 12
Kinderlehrer (10.1016/j.ejor.2020.04.035_bib0020) 1980
Malitsky (10.1016/j.ejor.2020.04.035_bib0023) 2015; 25
Thong (10.1016/j.ejor.2020.04.035_bib0032) 2000; 38
References_xml – volume: 68
  start-page: 385
  year: 2019
  end-page: 409
  ident: bib0028
  article-title: Single projection method for pseudo-monotone variational inequality in Hilbert spaces
  publication-title: Optimization
– volume: 25
  start-page: 502
  year: 2015
  end-page: 520
  ident: bib0023
  article-title: Projected reflected gradient methods for monotone variational inequalities
  publication-title: SIAM Journal on Optimization
– volume: 16
  start-page: 899
  year: 2009
  end-page: 911
  ident: bib0027
  article-title: On existence theorems for monotone and nonmonotone variational inequalities
  publication-title: Journal of Convex Analysis
– volume: 152
  start-page: 1
  year: 2012
  end-page: 20
  ident: bib0015
  article-title: Pseudomonotone operators: A survey of the theory and its applications
  publication-title: Journal of Optimization Theory and Applications
– year: 1980
  ident: bib0020
  article-title: An introduction to variational inequalities and their applications
– volume: 6
  start-page: 714
  year: 1996
  end-page: 726
  ident: bib0034
  article-title: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities
  publication-title: SIAM Journal on Control Optimization
– volume: 66
  start-page: 1383
  year: 2017
  end-page: 1396
  ident: bib0006
  article-title: Proximal-gradient algorithms for fractional programming
  publication-title: Optimization
– volume: 66
  start-page: 37
  year: 1990
  end-page: 46
  ident: bib0017
  article-title: Seven kinds of monotone maps
  publication-title: Journal of Optimization Theory and Applications
– volume: 75
  start-page: 281
  year: 1992
  end-page: 295
  ident: bib0012
  article-title: Pseudo-monotone complementarity problems in Hilbert space
  publication-title: Journal of Optimization Theory and Applications
– year: 2011
  ident: bib0003
  article-title: Convex analysis and monotone operator theory in hilbert spaces
  publication-title: CMS books in mathematics
– volume: 1
  start-page: 95
  year: 1971
  end-page: 101
  ident: bib0011
  article-title: On pseudo-convex functions of nonnegative variables
  publication-title: Mathematical Programming
– year: 2003
  ident: bib0014
  article-title: Finite-dimensional variational inequalities and complementarity problems
– volume: 12
  start-page: 747
  year: 1976
  end-page: 756
  ident: bib0021
  article-title: The extragradient method for finding saddle points and other problems
  publication-title: Ekonomika i Matematicheskie Metody
– reference: Malitsky, Y. (2018a). Golden ratio algorithms for variational inequalities.
– volume: 10
  start-page: 1669
  year: 2016
  end-page: 1679
  ident: bib0019
  article-title: Qualitative properties of strongly pseudomonotone variational inequalities
  publication-title: Optics Letters
– volume: 148
  start-page: 318
  year: 2011
  end-page: 335
  ident: bib0009
  article-title: The subgradient extragradient method for solving variational inequalities in Hilbert space
  publication-title: Journal of Optimization Theory and Applications
– year: 2006
  ident: bib0007
  article-title: Convex analysis and nonlinear optimization: Theory and examples
– volume: 38
  start-page: 431
  year: 2000
  end-page: 446
  ident: bib0032
  article-title: A modified forward-backward splitting method for maximal monotone mappings
  publication-title: SIAM Journal on Control Optimization
– volume: 37
  start-page: 765
  year: 1999
  end-page: 776
  ident: bib0029
  article-title: A new projection method for variational inequality problems
  publication-title: SIAM Journal on Control Optimization
– volume: 10
  start-page: 149
  year: 2003
  end-page: 168
  ident: bib0005
  article-title: On pseudomonotone maps
  publication-title: Journal of Convex Analysis
– volume: 26
  start-page: 265
  year: 1990
  end-page: 284
  ident: bib0016
  article-title: A damped-Newton method for the linear complementarity problem
  publication-title: Computational solution of nonlinear systems of equations (Fort Collins, CO, 1988)
– volume: 161
  start-page: 331
  year: 2014
  end-page: 360
  ident: bib0001
  article-title: Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces
  publication-title: Journal of Optimization Theory and Applications
– reference: .
– volume: 33
  start-page: 140
  year: 2018
  end-page: 164
  ident: bib0025
  article-title: Proximal extrapolated gradient methods for variational inequalities
  publication-title: Optimization Methods and Software
– volume: 46
  start-page: 247
  year: 2010
  end-page: 263
  ident: bib0004
  article-title: Convergence of direct methods for paramonotone variational inequalities
  publication-title: Computational Optimization and Applications
– volume: 61
  start-page: 1119
  year: 2012
  end-page: 1132
  ident: bib0010
  article-title: Extensions of Korpelevich’s extragradient method for the variational inequality problem in euclidean space
  publication-title: Optimization
– volume: 58
  start-page: 341
  year: 2014
  end-page: 350
  ident: bib0018
  article-title: Modified projection method for strongly pseudomonotone variational inequalities
  publication-title: Journal of Global Optimization
– volume: 3
  start-page: 281
  year: 1965
  end-page: 290
  ident: bib0026
  article-title: Pseudo-convex functions
  publication-title: SIAM Journal on Control Optimization
– reference: Thong, D. V., Shehu, Y., & Iyiola, O. S. (2019). Weak and strong convergence theorems for solving pseudo-monotone variational inequalities with non-Lipschitz mappings. Numerical Algorithms. DOI:
– volume: 60
  start-page: 277
  year: 2015
  end-page: 310
  ident: bib0013
  article-title: On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators
  publication-title: Computational Optimization and Applications
– volume: 146
  start-page: 19
  year: 2010
  end-page: 31
  ident: bib0008
  article-title: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems
  publication-title: Journal of Optimization Theory and Applications
– volume: 25
  start-page: 371
  year: 2018
  end-page: 388
  ident: bib0002
  article-title: A forward-backward-forward differential equation and its asymptotic properties
  publication-title: Journal of Convex Analysis
– volume: 150
  start-page: 425
  year: 2011
  end-page: 443
  ident: bib0022
  article-title: Some existence results of solutions for general variational inequalities
  publication-title: Journal of Optimization Theory and Applications
– volume: 34
  start-page: 1814
  year: 1996
  end-page: 1830
  ident: bib0030
  article-title: Modified projection-type methods for monotone variational inequalities
  publication-title: SIAM Journal on Control Optimization
– volume: 176
  start-page: 399
  year: 2018
  end-page: 409
  ident: bib0033
  article-title: On the weak convergence of the extragradient method for solving variational inequalities
  publication-title: Journal of Optimization Theory and Applications
– volume: 61
  start-page: 1119
  issue: 9
  year: 2012
  ident: 10.1016/j.ejor.2020.04.035_bib0010
  article-title: Extensions of Korpelevich’s extragradient method for the variational inequality problem in euclidean space
  publication-title: Optimization
  doi: 10.1080/02331934.2010.539689
– volume: 37
  start-page: 765
  year: 1999
  ident: 10.1016/j.ejor.2020.04.035_bib0029
  article-title: A new projection method for variational inequality problems
  publication-title: SIAM Journal on Control Optimization
  doi: 10.1137/S0363012997317475
– volume: 34
  start-page: 1814
  year: 1996
  ident: 10.1016/j.ejor.2020.04.035_bib0030
  article-title: Modified projection-type methods for monotone variational inequalities
  publication-title: SIAM Journal on Control Optimization
  doi: 10.1137/S0363012994268655
– year: 2003
  ident: 10.1016/j.ejor.2020.04.035_bib0014
– ident: 10.1016/j.ejor.2020.04.035_bib0024
– volume: 68
  start-page: 385
  issue: 1
  year: 2019
  ident: 10.1016/j.ejor.2020.04.035_bib0028
  article-title: Single projection method for pseudo-monotone variational inequality in Hilbert spaces
  publication-title: Optimization
  doi: 10.1080/02331934.2018.1522636
– volume: 1
  start-page: 95
  year: 1971
  ident: 10.1016/j.ejor.2020.04.035_bib0011
  article-title: On pseudo-convex functions of nonnegative variables
  publication-title: Mathematical Programming
  doi: 10.1007/BF01584075
– volume: 148
  start-page: 318
  year: 2011
  ident: 10.1016/j.ejor.2020.04.035_bib0009
  article-title: The subgradient extragradient method for solving variational inequalities in Hilbert space
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-010-9757-3
– volume: 58
  start-page: 341
  year: 2014
  ident: 10.1016/j.ejor.2020.04.035_bib0018
  article-title: Modified projection method for strongly pseudomonotone variational inequalities
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-013-0042-5
– year: 2006
  ident: 10.1016/j.ejor.2020.04.035_bib0007
– volume: 10
  start-page: 1669
  year: 2016
  ident: 10.1016/j.ejor.2020.04.035_bib0019
  article-title: Qualitative properties of strongly pseudomonotone variational inequalities
  publication-title: Optics Letters
  doi: 10.1007/s11590-015-0960-x
– volume: 6
  start-page: 714
  year: 1996
  ident: 10.1016/j.ejor.2020.04.035_bib0034
  article-title: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities
  publication-title: SIAM Journal on Control Optimization
  doi: 10.1137/S1052623494250415
– volume: 75
  start-page: 281
  year: 1992
  ident: 10.1016/j.ejor.2020.04.035_bib0012
  article-title: Pseudo-monotone complementarity problems in Hilbert space
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/BF00941468
– year: 2011
  ident: 10.1016/j.ejor.2020.04.035_bib0003
  article-title: Convex analysis and monotone operator theory in hilbert spaces
– volume: 66
  start-page: 1383
  issue: 8
  year: 2017
  ident: 10.1016/j.ejor.2020.04.035_bib0006
  article-title: Proximal-gradient algorithms for fractional programming
  publication-title: Optimization
  doi: 10.1080/02331934.2017.1294592
– volume: 3
  start-page: 281
  year: 1965
  ident: 10.1016/j.ejor.2020.04.035_bib0026
  article-title: Pseudo-convex functions
  publication-title: SIAM Journal on Control Optimization
– volume: 46
  start-page: 247
  issue: 2
  year: 2010
  ident: 10.1016/j.ejor.2020.04.035_bib0004
  article-title: Convergence of direct methods for paramonotone variational inequalities
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-009-9246-5
– volume: 161
  start-page: 331
  issue: 2
  year: 2014
  ident: 10.1016/j.ejor.2020.04.035_bib0001
  article-title: Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-013-0414-5
– volume: 25
  start-page: 371
  issue: 2
  year: 2018
  ident: 10.1016/j.ejor.2020.04.035_bib0002
  article-title: A forward-backward-forward differential equation and its asymptotic properties
  publication-title: Journal of Convex Analysis
– volume: 60
  start-page: 277
  year: 2015
  ident: 10.1016/j.ejor.2020.04.035_bib0013
  article-title: On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-014-9673-9
– volume: 26
  start-page: 265
  year: 1990
  ident: 10.1016/j.ejor.2020.04.035_bib0016
  article-title: A damped-Newton method for the linear complementarity problem
– volume: 152
  start-page: 1
  year: 2012
  ident: 10.1016/j.ejor.2020.04.035_bib0015
  article-title: Pseudomonotone operators: A survey of the theory and its applications
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-011-9912-5
– volume: 25
  start-page: 502
  year: 2015
  ident: 10.1016/j.ejor.2020.04.035_bib0023
  article-title: Projected reflected gradient methods for monotone variational inequalities
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/14097238X
– volume: 33
  start-page: 140
  issue: 1
  year: 2018
  ident: 10.1016/j.ejor.2020.04.035_bib0025
  article-title: Proximal extrapolated gradient methods for variational inequalities
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556788.2017.1300899
– volume: 12
  start-page: 747
  year: 1976
  ident: 10.1016/j.ejor.2020.04.035_bib0021
  article-title: The extragradient method for finding saddle points and other problems
  publication-title: Ekonomika i Matematicheskie Metody
– volume: 150
  start-page: 425
  year: 2011
  ident: 10.1016/j.ejor.2020.04.035_bib0022
  article-title: Some existence results of solutions for general variational inequalities
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-011-9830-6
– year: 1980
  ident: 10.1016/j.ejor.2020.04.035_bib0020
– volume: 10
  start-page: 149
  year: 2003
  ident: 10.1016/j.ejor.2020.04.035_bib0005
  article-title: On pseudomonotone maps t for which −t is also pseudomonotone
  publication-title: Journal of Convex Analysis
– volume: 176
  start-page: 399
  issue: 2
  year: 2018
  ident: 10.1016/j.ejor.2020.04.035_bib0033
  article-title: On the weak convergence of the extragradient method for solving variational inequalities
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-017-1214-0
– volume: 146
  start-page: 19
  year: 2010
  ident: 10.1016/j.ejor.2020.04.035_bib0008
  article-title: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-010-9650-0
– volume: 66
  start-page: 37
  year: 1990
  ident: 10.1016/j.ejor.2020.04.035_bib0017
  article-title: Seven kinds of monotone maps
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/BF00940531
– volume: 16
  start-page: 899
  year: 2009
  ident: 10.1016/j.ejor.2020.04.035_bib0027
  article-title: On existence theorems for monotone and nonmonotone variational inequalities
  publication-title: Journal of Convex Analysis
– volume: 38
  start-page: 431
  year: 2000
  ident: 10.1016/j.ejor.2020.04.035_bib0032
  article-title: A modified forward-backward splitting method for maximal monotone mappings
  publication-title: SIAM Journal on Control Optimization
  doi: 10.1137/S0363012998338806
– ident: 10.1016/j.ejor.2020.04.035_bib0031
  doi: 10.1007/s11075-019-00780-0
SSID ssj0001515
Score 2.655251
Snippet •Addresses numerical algorithms for pseudo-monotone variational inequalities.•Proves the convergence of Tseng’s FBF method and validates the theoretical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 49
SubjectTerms Convex programming
Dynamical system
Pseudo-monotonicity
Tseng’s FBF algorithm
Variational inequalities
Title The forward–backward–forward method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces
URI https://dx.doi.org/10.1016/j.ejor.2020.04.035
Volume 287
WOSCitedRecordID wos000541072800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwELZKFyE48FMWsfzJB_ZUJUrjOImPZbVoF6HVChXUWxQ7jtRqlVZtWu2RN-DAK_EkPAkzsZ0NZVmxBy5RMnLcpPPFHo9nviHkLRcyFKO08EottIf7t57kZerFkSoDZCzSSZMo_DE5O0unU3He6_1wuTDbi6Sq0stLsfyvqgYZKBtTZ2-h7rZTEMA5KB2OoHY4_rPiwRLFaFgXycAkeum6AtvAFpA2SSYYtT6rNhgTi950zNddgUmNzMYuH7MJSlyu9aZYePBCC2TyHm5hue1cimCzmjTNWRPoNTyZIYdWPYRxS9loxeu2AaxJDIKV68myELXe6neLwyN-OGYNJvxTv908Weu60mZM9z-14i8bG2t87k_8rmsD1rEjU7S6HQFZknhhaJI73XAd2gm6i0sz-BruUzuNmyoFf0wQxlcx9_V8gWywYdAQ3RrGlN_ZuHdmyTZ20YXFzTPsI8M-siDKoI87ZC9MuEj7ZG98ejz90FoEaDQ2u1n2dWzylokz3H2S6w2kjtEzeUwe2tUKHRuUPSE9XQ3IPZcsMSCPXFEQaueIAXnQYbh8Sr4BGqkF28-v3x0O4dQKqUEgRQTSKwRSQCB1CKQdBGJndAeBtINA2kUgXFCLQGoQuE8-vz-eHJ14tgaIp6JA1J7GMuihKrRUiumkjGQZxqLQZQrrkCLIEyakHKmg4EUQ5yxRacwZj4soZxG0Ldkz0q_gSZ4TyngpuRBhIEUapYXIoW2uk6YQMpgf8oCM3B-fKUuQj3VaLrK_q_yADNt7loYe5sbW3OkzswauMVwzgOcN97241a-8JPevPqZXpF-vNvo1uau29Wy9emOx-QtabM7w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+forward%E2%80%93backward%E2%80%93forward+method+from+continuous+and+discrete+perspective+for+pseudo-monotone+variational+inequalities+in+Hilbert+spaces&rft.jtitle=European+journal+of+operational+research&rft.au=Bo%C5%A3%2C+R.I.&rft.au=Csetnek%2C+E.R.&rft.au=Vuong%2C+P.T.&rft.date=2020-11-16&rft.issn=0377-2217&rft.volume=287&rft.issue=1&rft.spage=49&rft.epage=60&rft_id=info:doi/10.1016%2Fj.ejor.2020.04.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2020_04_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon