Using Clustering Algorithms to Automatically Identify Phishing Campaigns
Attackers attempt to create successful phishing campaigns by sending out trustworthy-looking emails with a range of variations, such as adding the recipient name in the subject line or changing URLs in email body. These tactics are used to bypass filters and make it difficult for the information sys...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 96502 - 96513 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Attackers attempt to create successful phishing campaigns by sending out trustworthy-looking emails with a range of variations, such as adding the recipient name in the subject line or changing URLs in email body. These tactics are used to bypass filters and make it difficult for the information system teams to block all emails even when they are aware of an ongoing attack. Little is done about grouping emails into campaigns with the goal of better supporting staff who mitigate phishing using reported phishing. This paper explores the feasibility of using clustering algorithms to group emails into campaigns that IT staff would interpret as being similar. First, we applied Meanshift and DBSCAN algorithms with seven feature sets. Then, we evaluated the solutions with the Silhouette coefficient and homogeneity score and find that Mean Shift outperforms DBSCAN with email origin and URLs based features. We then run a user study to validate our clustering solution and find that clustering is a promising approach for campaign identification. |
|---|---|
| AbstractList | Attackers attempt to create successful phishing campaigns by sending out trustworthy-looking emails with a range of variations, such as adding the recipient name in the subject line or changing URLs in email body. These tactics are used to bypass filters and make it difficult for the information system teams to block all emails even when they are aware of an ongoing attack. Little is done about grouping emails into campaigns with the goal of better supporting staff who mitigate phishing using reported phishing. This paper explores the feasibility of using clustering algorithms to group emails into campaigns that IT staff would interpret as being similar. First, we applied Meanshift and DBSCAN algorithms with seven feature sets. Then, we evaluated the solutions with the Silhouette coefficient and homogeneity score and find that Mean Shift outperforms DBSCAN with email origin and URLs based features. We then run a user study to validate our clustering solution and find that clustering is a promising approach for campaign identification. |
| Author | Althobaiti, Kholoud Wolters, Maria K. Alsufyani, Nawal Vaniea, Kami |
| Author_xml | – sequence: 1 givenname: Kholoud orcidid: 0000-0002-7299-7095 surname: Althobaiti fullname: Althobaiti, Kholoud email: kholod.k@tu.edu.sa organization: Department of Computer Science, Taif University, Taif, Saudi Arabia – sequence: 2 givenname: Maria K. surname: Wolters fullname: Wolters, Maria K. organization: School of Informatics, The University of Edinburgh, Edinburgh, U.K – sequence: 3 givenname: Nawal surname: Alsufyani fullname: Alsufyani, Nawal organization: Department of Computer Science, Taif University, Taif, Saudi Arabia – sequence: 4 givenname: Kami surname: Vaniea fullname: Vaniea, Kami organization: School of Informatics, The University of Edinburgh, Edinburgh, U.K |
| BookMark | eNqFkUtLAzEUhYMo-Oov0MWA66l5zCNZlkFtQVCoXYdM5k6bMp3UJLPovzd1iogbs8nlcr9zLvdco_Pe9oDQHcFTQrB4nFXV03I5pZiyKWMEc4LP0BUlhUhZzorzX_Ulmni_xfHx2MrLKzRfedOvk6obfAB3LGfd2joTNjufBJvMhmB3Khituu6QLBrog2kPyfvG-M03qHZ7Zda9v0UXreo8TE7_DVo9P31U8_T17WVRzV5TnWER0kZDy2usgJUZE0BbVtKclKrUpK4zqkhW47gZ5k3Z6KJRhOa6yFjNW67aJtPsBi1G3caqrdw7s1PuIK0y8rth3VoqF_ftQEZ9QQGKss15Fv0UEF1CQzFwwUFkUeth1No7-zmAD3JrB9fH9SXl0TVCOYtTbJzSznrvoP1xJVgeE5BjAvKYgDwlECnxh9ImxEPaPjhlun_Y-5E1APDLjbJc5IR9AWHklc0 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3555157 crossref_primary_10_7717_peerj_cs_2487 |
| Cites_doi | 10.1109/WI-IAT.2011.94 10.1016/j.jksuci.2014.03.014 10.1145/2851613.2851801 10.1145/1879141.1879147 10.1108/09685221011035241 10.1109/SURV.2013.030713.00020 10.26555/ijain.v7i1.605 10.1109/IMF.2011.15 10.1016/j.aasri.2013.10.020 10.1145/2611040.2611059 10.1080/10919392.2019.1552745 10.1145/3476079 10.1109/ISI.2013.6578788 10.1109/ARES.2014.46 10.4018/IJWLTT.2020040102 10.1016/j.knosys.2014.08.007 10.1109/ICPR.2010.1010 10.1080/19393555.2021.1959678 10.1109/TIFS.2018.2871744 10.14569/IJACSA.2017.081054 10.1007/s13278-011-0031-y 10.1016/j.cose.2012.04.001 10.1109/eCRS.2013.6805777 10.1109/ACCESS.2019.2954791 10.1007/978-3-642-15037-1_20 10.1109/TrustCom.2013.76 10.1109/ACCESS.2020.2969780 10.1145/3068335 10.1007/s11063-017-9593-7 10.1109/34.1000236 10.1016/j.cose.2014.04.002 10.1007/978-3-662-44851-9_41 10.1007/s11227-008-0216-y 10.1145/1242572.1242660 10.1109/ICIC53490.2021.9692960 10.1145/1557019.1557124 10.24251/HICSS.2017.520 10.1007/s10462-020-09814-9 10.1109/ISCIT.2012.6380857 10.1145/3319535.3354239 10.1007/978-3-642-27937-9_5 10.1109/ecrime.2010.5706698 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3310810 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 96513 |
| ExternalDocumentID | oai_doaj_org_article_39e92ee67f584374ae1c7ed20e898e94 10_1109_ACCESS_2023_3310810 10235951 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deanship of Scientific Research, Taif University funderid: 10.13039/501100006261 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-dcef8b0ae37439e2f372517a7c1bb42a14b069508d7dc6da125c643b8f8afd4c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001067558600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:27 EDT 2025 Mon Jun 30 05:34:34 EDT 2025 Sat Nov 29 04:03:00 EST 2025 Tue Nov 18 21:49:38 EST 2025 Wed Aug 27 02:51:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-dcef8b0ae37439e2f372517a7c1bb42a14b069508d7dc6da125c643b8f8afd4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7299-7095 |
| OpenAccessLink | https://doaj.org/article/39e92ee67f584374ae1c7ed20e898e94 |
| PQID | 2864343753 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3310810 doaj_primary_oai_doaj_org_article_39e92ee67f584374ae1c7ed20e898e94 proquest_journals_2864343753 crossref_primary_10_1109_ACCESS_2023_3310810 ieee_primary_10235951 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref12 ref56 ref15 ref59 ref14 ref53 ref11 yearwood (ref47) 2009; 101 ref17 ma (ref33) 2009 ref19 ref18 lastdrager (ref20) 2015 pedregosa (ref39) 2011; 12 ref50 ref46 ref45 ref48 hamid (ref32) 2016; 549 ref41 ref44 ester (ref6) 0 van craenendonck (ref42) 2015; 1 ref43 (ref10) 2019 ref49 ref9 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 althobaiti (ref51) 2021 ref2 ref1 ref38 (ref7) 2020 (ref8) 2020 oest (ref58) 2018 grispos (ref13) 0 ref24 ref23 form (ref54) 2015 ref26 ref25 ref22 ref21 ref28 ref27 ref29 van der heijden (ref16) 0 (ref52) 2017 palacio-niño (ref55) 2019 |
| References_xml | – ident: ref2 doi: 10.1109/WI-IAT.2011.94 – ident: ref24 doi: 10.1016/j.jksuci.2014.03.014 – ident: ref38 doi: 10.1145/2851613.2851801 – ident: ref56 doi: 10.1145/1879141.1879147 – ident: ref11 doi: 10.1108/09685221011035241 – start-page: 1309 year: 0 ident: ref16 article-title: Cognitive triaging of phishing attacks publication-title: Proc 28th USENIX Security Symp – ident: ref45 doi: 10.1109/SURV.2013.030713.00020 – ident: ref29 doi: 10.26555/ijain.v7i1.605 – ident: ref15 doi: 10.1109/IMF.2011.15 – ident: ref53 doi: 10.1016/j.aasri.2013.10.020 – start-page: 1 year: 2009 ident: ref33 article-title: Establishing phishing provenance using orthographic features publication-title: Proceedings of ECrime Researchers Summit ACM – ident: ref26 doi: 10.1145/2611040.2611059 – year: 2020 ident: ref8 publication-title: 2020 Data Breach Investigations Report – ident: ref4 doi: 10.1080/10919392.2019.1552745 – ident: ref1 doi: 10.1145/3476079 – ident: ref27 doi: 10.1109/ISI.2013.6578788 – ident: ref19 doi: 10.1109/ARES.2014.46 – ident: ref22 doi: 10.4018/IJWLTT.2020040102 – year: 2019 ident: ref55 article-title: Evaluation metrics for unsupervised learning algorithms publication-title: arXiv 1905 05667 – start-page: 1 year: 0 ident: ref13 article-title: Security incident recognition and reporting (SIRR): An industrial perspective publication-title: Proc 23rd Americas Conf Inf Syst (AMCIS) – ident: ref23 doi: 10.1016/j.knosys.2014.08.007 – year: 2019 ident: ref10 publication-title: 2019 Dataenterprise Phishing Resiliency and Defense Report Breach Investigations Report – year: 2020 ident: ref7 publication-title: Official statistics cyber security breaches survey 2020-Chapter 5 Incidence and impact of breaches or attacks – ident: ref28 doi: 10.1109/ICPR.2010.1010 – start-page: 1 year: 2018 ident: ref58 article-title: Inside a phisher's mind: Understanding the anti-phishing ecosystem through phishing kit analysis publication-title: Proc APWG Symp Electron Crime Res (eCrime) – volume: 101 start-page: 25 year: 2009 ident: ref47 article-title: Applying clustering and ensemble clustering approaches to phishing profiling publication-title: Proc 8th Australas Data Mining Conf (AusDM) – ident: ref50 doi: 10.1080/19393555.2021.1959678 – ident: ref3 doi: 10.1109/TIFS.2018.2871744 – ident: ref35 doi: 10.14569/IJACSA.2017.081054 – ident: ref31 doi: 10.1007/s13278-011-0031-y – ident: ref17 doi: 10.1016/j.cose.2012.04.001 – volume: 12 start-page: 2825 year: 2011 ident: ref39 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: ref37 doi: 10.1109/eCRS.2013.6805777 – ident: ref49 doi: 10.1109/ACCESS.2019.2954791 – ident: ref46 doi: 10.1007/978-3-642-15037-1_20 – ident: ref30 doi: 10.1109/TrustCom.2013.76 – ident: ref44 doi: 10.1109/ACCESS.2020.2969780 – ident: ref40 doi: 10.1145/3068335 – start-page: 1 year: 2015 ident: ref54 article-title: Phishing email detection technique by using hybrid features publication-title: Proc 9th Int Conf IT Asia (CITA) – start-page: 1 year: 2021 ident: ref51 article-title: I don't need an expert! Making URL phishing features human comprehensible publication-title: Proc CHI Conf Hum Factors Comput Syst – ident: ref36 doi: 10.1007/s11063-017-9593-7 – ident: ref5 doi: 10.1109/34.1000236 – ident: ref34 doi: 10.1016/j.cose.2014.04.002 – ident: ref41 doi: 10.1007/978-3-662-44851-9_41 – ident: ref21 doi: 10.1007/s11227-008-0216-y – ident: ref59 doi: 10.1145/1242572.1242660 – volume: 1 start-page: 1 year: 2015 ident: ref42 article-title: Using internal validity measures to compare clustering algorithms publication-title: Proc ICML – ident: ref9 doi: 10.1109/ICIC53490.2021.9692960 – ident: ref25 doi: 10.1145/1557019.1557124 – ident: ref18 doi: 10.24251/HICSS.2017.520 – ident: ref48 doi: 10.1007/s10462-020-09814-9 – start-page: 226 year: 0 ident: ref6 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc 1st Intl Conf on Knowledge Discovery and Data Mining (KDD) – start-page: 1 year: 2015 ident: ref20 article-title: Poster: Apate: Anti-phishing analysing and triaging environment publication-title: Proc 36th IEEE Symp Security and Privacy – ident: ref43 doi: 10.1109/ISCIT.2012.6380857 – year: 2017 ident: ref52 publication-title: Enterprise Phishing Resiliency and Defense Report – volume: 549 start-page: 263 year: 2016 ident: ref32 article-title: Dynamic trackback strategy for email-born phishing using maximum dependency algorithm (MDA) publication-title: Proc 2nd Int Conf on Soft Computing and Data Mining (SCDM) – ident: ref12 doi: 10.1145/3319535.3354239 – ident: ref14 doi: 10.1007/978-3-642-27937-9_5 – ident: ref57 doi: 10.1109/ecrime.2010.5706698 |
| SSID | ssj0000816957 |
| Score | 2.3447616 |
| Snippet | Attackers attempt to create successful phishing campaigns by sending out trustworthy-looking emails with a range of variations, such as adding the recipient... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 96502 |
| SubjectTerms | Algorithms Clustering Clustering algorithms Cybercrime Electronic mail Electronic mail systems email clustering Homogeneity incident response handling Phishing phishing campaign phishing clustering Security Servers Uniform resource locators |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUK6qEc-kGpWKBVDhzJ4nzaPm5XRZwQhyJxs-zxGFZKN2g3i8S_r8cxq5WqVurNimLF9ovtmbHfG8bOoalNYTjk0Jgmr5WrcyW5zdFBa8Pi6I33MdmEuLmR9_fqNpHVIxcGEePlM5xSMZ7lux42FCq7JJmBRhFhek8IMZK1tgEVyiChGpGUhQquLmfzeejElBKET6tgxkiiye7sPlGkP2VV-WMpjvvL1Yf_bNlH9j4ZktlsRP4Te4PLQ3awIy_4mV3H-wDZvNuQGgIVZ91Dv1oMj7_W2dBns83QR8VW03Uv2UjZ9S_Z7eMYl8roXMIsHpbrI3Z39ePn_DpPmRNyCP7akDtALy03WJG_gaWvBEmTGQGFtXVpitrylvK_OhEwcSZYORBMEyu9NN7VUH1h-8t-iccsA2lNG0bPFA3UVSlo2qI3JYDj1nI_YeXriGpIsuKU3aLT0b3gSo8waIJBJxgm7GJb6WlU1fj3698Jqu2rJIkdHwQMdJphOvRTlYit8MGmCv02WIBAV3KUSqKqJ-yIcNv53gjZhJ29Iq_T_F3rUrZEuQ2-3Mlfqp2yd9TEMRpzxvaH1Qa_srfwPCzWq2_x1_wNT6fiVA priority: 102 providerName: IEEE |
| Title | Using Clustering Algorithms to Automatically Identify Phishing Campaigns |
| URI | https://ieeexplore.ieee.org/document/10235951 https://www.proquest.com/docview/2864343753 https://doaj.org/article/39e92ee67f584374ae1c7ed20e898e94 |
| Volume | 11 |
| WOSCitedRecordID | wos001067558600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOhB_InTOXrwaGea_khynMOxi2MHhd1CkiZTqJtsnbCLf7t5aTcKgl68lFJS0nx5Sd5L-r4PoVudJjKSWIc6lWmY8DwJOcMqNLnOlJscrbTWi03Q8ZhNp3zSkPqCf8IqeuAKuPuYG06Myah1S2VME2kiTU1OsGGcGe6ZQJ3X0wim_BzMooyntKYZijC_7w8GrkU9UAvvxc6nYZAz21iKPGN_LbHyY172i83wGB3VXmLQr77uBO2Z-Sk6bHAHnqGRP-wPBsUaqA7gtl_MFi7Uf31fBeUi6K_LhadjlUWxCap8XLsJJq_VplMAhw7ybTZfnaOX4ePzYBTWsgihdsFYGebaWKawNDEEE4bYmALvmKQ6UiohMkoUzkDcNacO8Fw6F0Y7v0Mxy6TNEx1foNZ8MTeXKNBMycyhIaNUJzGhMCaNlUTrHCuFbRuRLUJC15zhIF1RCB87YC4qWAXAKmpY2-hu99JHRZnxe_EHgH5XFPiu_QNnBaK2AvGXFbTROXRcoz4CGcdRG3W2PSnqwbkShGWQT-sCtav_qPsaHUB7qn2ZDmqVy7W5Qfv6s3xbLbveLt316eux67MLvwHrKubk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFBajG2w7rPvRsWxd58OOcyrLsi0ds7CSsi700EFvQj-e2oAbj8Qp9L-vnqyGwOhgN2EsLOmzpPee9H2PkK-24rrQ1Oa20lXOpeO5FNTk4GxtwuLotfcx2UQzn4vLS3meyOqRCwMA8fIZjLEYz_JdZzcYKjtGmYFKImH6acU5Kwa61jakgjkkZNUkbaGCyuPJdBq6McYU4eMyGDICibI7-0-U6U95Vf5ajOMOc7L_n217TV4lUzKbDNi_IU9g-Za83BEYfEdm8UZANm03qIeAxUl71a0W_fXNOuu7bLLpu6jZqtv2LhtIu_4uO78eIlMZnkzoxdVyfUB-n_y4mM7ylDsht8Fj63NnwQtDNZTocQDzZYPiZLqxhTGc6YIbWmMGWNcEVJwOdo4NxokRXmjvuC3fk71lt4QPJLPC6DqMni4qy0vW4MQFr5m1jhpD_YiwhxFVNgmLY36LVkUHg0o1wKAQBpVgGJFv20p_Bl2Nf7_-HaHavoqi2PFBwEClOaZCPyUDqBsfrKrQbw2FbcAxCkIKkHxEDhC3ne8NkI3I4QPyKs3gtWKiRtJt8OY-PlLtC3k-u_h1ps5O5z8_kRfY3CE2c0j2-tUGPpNn9rZfrFdH8Te9Bzrm5Zs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Clustering+Algorithms+to+Automatically+Identify+Phishing+Campaigns&rft.jtitle=IEEE+access&rft.au=Althobaiti%2C+Kholoud&rft.au=Wolters%2C+Maria+K.&rft.au=Alsufyani%2C+Nawal&rft.au=Vaniea%2C+Kami&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=96502&rft.epage=96513&rft_id=info:doi/10.1109%2FACCESS.2023.3310810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3310810 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |