Using Clustering Algorithms to Automatically Identify Phishing Campaigns

Attackers attempt to create successful phishing campaigns by sending out trustworthy-looking emails with a range of variations, such as adding the recipient name in the subject line or changing URLs in email body. These tactics are used to bypass filters and make it difficult for the information sys...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 96502 - 96513
Hlavní autoři: Althobaiti, Kholoud, Wolters, Maria K., Alsufyani, Nawal, Vaniea, Kami
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Attackers attempt to create successful phishing campaigns by sending out trustworthy-looking emails with a range of variations, such as adding the recipient name in the subject line or changing URLs in email body. These tactics are used to bypass filters and make it difficult for the information system teams to block all emails even when they are aware of an ongoing attack. Little is done about grouping emails into campaigns with the goal of better supporting staff who mitigate phishing using reported phishing. This paper explores the feasibility of using clustering algorithms to group emails into campaigns that IT staff would interpret as being similar. First, we applied Meanshift and DBSCAN algorithms with seven feature sets. Then, we evaluated the solutions with the Silhouette coefficient and homogeneity score and find that Mean Shift outperforms DBSCAN with email origin and URLs based features. We then run a user study to validate our clustering solution and find that clustering is a promising approach for campaign identification.
AbstractList Attackers attempt to create successful phishing campaigns by sending out trustworthy-looking emails with a range of variations, such as adding the recipient name in the subject line or changing URLs in email body. These tactics are used to bypass filters and make it difficult for the information system teams to block all emails even when they are aware of an ongoing attack. Little is done about grouping emails into campaigns with the goal of better supporting staff who mitigate phishing using reported phishing. This paper explores the feasibility of using clustering algorithms to group emails into campaigns that IT staff would interpret as being similar. First, we applied Meanshift and DBSCAN algorithms with seven feature sets. Then, we evaluated the solutions with the Silhouette coefficient and homogeneity score and find that Mean Shift outperforms DBSCAN with email origin and URLs based features. We then run a user study to validate our clustering solution and find that clustering is a promising approach for campaign identification.
Author Althobaiti, Kholoud
Wolters, Maria K.
Alsufyani, Nawal
Vaniea, Kami
Author_xml – sequence: 1
  givenname: Kholoud
  orcidid: 0000-0002-7299-7095
  surname: Althobaiti
  fullname: Althobaiti, Kholoud
  email: kholod.k@tu.edu.sa
  organization: Department of Computer Science, Taif University, Taif, Saudi Arabia
– sequence: 2
  givenname: Maria K.
  surname: Wolters
  fullname: Wolters, Maria K.
  organization: School of Informatics, The University of Edinburgh, Edinburgh, U.K
– sequence: 3
  givenname: Nawal
  surname: Alsufyani
  fullname: Alsufyani, Nawal
  organization: Department of Computer Science, Taif University, Taif, Saudi Arabia
– sequence: 4
  givenname: Kami
  surname: Vaniea
  fullname: Vaniea, Kami
  organization: School of Informatics, The University of Edinburgh, Edinburgh, U.K
BookMark eNqFkUtLAzEUhYMo-Oov0MWA66l5zCNZlkFtQVCoXYdM5k6bMp3UJLPovzd1iogbs8nlcr9zLvdco_Pe9oDQHcFTQrB4nFXV03I5pZiyKWMEc4LP0BUlhUhZzorzX_Ulmni_xfHx2MrLKzRfedOvk6obfAB3LGfd2joTNjufBJvMhmB3Khituu6QLBrog2kPyfvG-M03qHZ7Zda9v0UXreo8TE7_DVo9P31U8_T17WVRzV5TnWER0kZDy2usgJUZE0BbVtKclKrUpK4zqkhW47gZ5k3Z6KJRhOa6yFjNW67aJtPsBi1G3caqrdw7s1PuIK0y8rth3VoqF_ftQEZ9QQGKss15Fv0UEF1CQzFwwUFkUeth1No7-zmAD3JrB9fH9SXl0TVCOYtTbJzSznrvoP1xJVgeE5BjAvKYgDwlECnxh9ImxEPaPjhlun_Y-5E1APDLjbJc5IR9AWHklc0
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3555157
crossref_primary_10_7717_peerj_cs_2487
Cites_doi 10.1109/WI-IAT.2011.94
10.1016/j.jksuci.2014.03.014
10.1145/2851613.2851801
10.1145/1879141.1879147
10.1108/09685221011035241
10.1109/SURV.2013.030713.00020
10.26555/ijain.v7i1.605
10.1109/IMF.2011.15
10.1016/j.aasri.2013.10.020
10.1145/2611040.2611059
10.1080/10919392.2019.1552745
10.1145/3476079
10.1109/ISI.2013.6578788
10.1109/ARES.2014.46
10.4018/IJWLTT.2020040102
10.1016/j.knosys.2014.08.007
10.1109/ICPR.2010.1010
10.1080/19393555.2021.1959678
10.1109/TIFS.2018.2871744
10.14569/IJACSA.2017.081054
10.1007/s13278-011-0031-y
10.1016/j.cose.2012.04.001
10.1109/eCRS.2013.6805777
10.1109/ACCESS.2019.2954791
10.1007/978-3-642-15037-1_20
10.1109/TrustCom.2013.76
10.1109/ACCESS.2020.2969780
10.1145/3068335
10.1007/s11063-017-9593-7
10.1109/34.1000236
10.1016/j.cose.2014.04.002
10.1007/978-3-662-44851-9_41
10.1007/s11227-008-0216-y
10.1145/1242572.1242660
10.1109/ICIC53490.2021.9692960
10.1145/1557019.1557124
10.24251/HICSS.2017.520
10.1007/s10462-020-09814-9
10.1109/ISCIT.2012.6380857
10.1145/3319535.3354239
10.1007/978-3-642-27937-9_5
10.1109/ecrime.2010.5706698
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3310810
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 96513
ExternalDocumentID oai_doaj_org_article_39e92ee67f584374ae1c7ed20e898e94
10_1109_ACCESS_2023_3310810
10235951
Genre orig-research
GrantInformation_xml – fundername: Deanship of Scientific Research, Taif University
  funderid: 10.13039/501100006261
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-dcef8b0ae37439e2f372517a7c1bb42a14b069508d7dc6da125c643b8f8afd4c3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001067558600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:27 EDT 2025
Mon Jun 30 05:34:34 EDT 2025
Sat Nov 29 04:03:00 EST 2025
Tue Nov 18 21:49:38 EST 2025
Wed Aug 27 02:51:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-dcef8b0ae37439e2f372517a7c1bb42a14b069508d7dc6da125c643b8f8afd4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7299-7095
OpenAccessLink https://doaj.org/article/39e92ee67f584374ae1c7ed20e898e94
PQID 2864343753
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3310810
doaj_primary_oai_doaj_org_article_39e92ee67f584374ae1c7ed20e898e94
proquest_journals_2864343753
crossref_primary_10_1109_ACCESS_2023_3310810
ieee_primary_10235951
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref12
ref56
ref15
ref59
ref14
ref53
ref11
yearwood (ref47) 2009; 101
ref17
ma (ref33) 2009
ref19
ref18
lastdrager (ref20) 2015
pedregosa (ref39) 2011; 12
ref50
ref46
ref45
ref48
hamid (ref32) 2016; 549
ref41
ref44
ester (ref6) 0
van craenendonck (ref42) 2015; 1
ref43
(ref10) 2019
ref49
ref9
ref4
ref3
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
althobaiti (ref51) 2021
ref2
ref1
ref38
(ref7) 2020
(ref8) 2020
oest (ref58) 2018
grispos (ref13) 0
ref24
ref23
form (ref54) 2015
ref26
ref25
ref22
ref21
ref28
ref27
ref29
van der heijden (ref16) 0
(ref52) 2017
palacio-niño (ref55) 2019
References_xml – ident: ref2
  doi: 10.1109/WI-IAT.2011.94
– ident: ref24
  doi: 10.1016/j.jksuci.2014.03.014
– ident: ref38
  doi: 10.1145/2851613.2851801
– ident: ref56
  doi: 10.1145/1879141.1879147
– ident: ref11
  doi: 10.1108/09685221011035241
– start-page: 1309
  year: 0
  ident: ref16
  article-title: Cognitive triaging of phishing attacks
  publication-title: Proc 28th USENIX Security Symp
– ident: ref45
  doi: 10.1109/SURV.2013.030713.00020
– ident: ref29
  doi: 10.26555/ijain.v7i1.605
– ident: ref15
  doi: 10.1109/IMF.2011.15
– ident: ref53
  doi: 10.1016/j.aasri.2013.10.020
– start-page: 1
  year: 2009
  ident: ref33
  article-title: Establishing phishing provenance using orthographic features
  publication-title: Proceedings of ECrime Researchers Summit ACM
– ident: ref26
  doi: 10.1145/2611040.2611059
– year: 2020
  ident: ref8
  publication-title: 2020 Data Breach Investigations Report
– ident: ref4
  doi: 10.1080/10919392.2019.1552745
– ident: ref1
  doi: 10.1145/3476079
– ident: ref27
  doi: 10.1109/ISI.2013.6578788
– ident: ref19
  doi: 10.1109/ARES.2014.46
– ident: ref22
  doi: 10.4018/IJWLTT.2020040102
– year: 2019
  ident: ref55
  article-title: Evaluation metrics for unsupervised learning algorithms
  publication-title: arXiv 1905 05667
– start-page: 1
  year: 0
  ident: ref13
  article-title: Security incident recognition and reporting (SIRR): An industrial perspective
  publication-title: Proc 23rd Americas Conf Inf Syst (AMCIS)
– ident: ref23
  doi: 10.1016/j.knosys.2014.08.007
– year: 2019
  ident: ref10
  publication-title: 2019 Dataenterprise Phishing Resiliency and Defense Report Breach Investigations Report
– year: 2020
  ident: ref7
  publication-title: Official statistics cyber security breaches survey 2020-Chapter 5 Incidence and impact of breaches or attacks
– ident: ref28
  doi: 10.1109/ICPR.2010.1010
– start-page: 1
  year: 2018
  ident: ref58
  article-title: Inside a phisher's mind: Understanding the anti-phishing ecosystem through phishing kit analysis
  publication-title: Proc APWG Symp Electron Crime Res (eCrime)
– volume: 101
  start-page: 25
  year: 2009
  ident: ref47
  article-title: Applying clustering and ensemble clustering approaches to phishing profiling
  publication-title: Proc 8th Australas Data Mining Conf (AusDM)
– ident: ref50
  doi: 10.1080/19393555.2021.1959678
– ident: ref3
  doi: 10.1109/TIFS.2018.2871744
– ident: ref35
  doi: 10.14569/IJACSA.2017.081054
– ident: ref31
  doi: 10.1007/s13278-011-0031-y
– ident: ref17
  doi: 10.1016/j.cose.2012.04.001
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref39
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– ident: ref37
  doi: 10.1109/eCRS.2013.6805777
– ident: ref49
  doi: 10.1109/ACCESS.2019.2954791
– ident: ref46
  doi: 10.1007/978-3-642-15037-1_20
– ident: ref30
  doi: 10.1109/TrustCom.2013.76
– ident: ref44
  doi: 10.1109/ACCESS.2020.2969780
– ident: ref40
  doi: 10.1145/3068335
– start-page: 1
  year: 2015
  ident: ref54
  article-title: Phishing email detection technique by using hybrid features
  publication-title: Proc 9th Int Conf IT Asia (CITA)
– start-page: 1
  year: 2021
  ident: ref51
  article-title: I don't need an expert! Making URL phishing features human comprehensible
  publication-title: Proc CHI Conf Hum Factors Comput Syst
– ident: ref36
  doi: 10.1007/s11063-017-9593-7
– ident: ref5
  doi: 10.1109/34.1000236
– ident: ref34
  doi: 10.1016/j.cose.2014.04.002
– ident: ref41
  doi: 10.1007/978-3-662-44851-9_41
– ident: ref21
  doi: 10.1007/s11227-008-0216-y
– ident: ref59
  doi: 10.1145/1242572.1242660
– volume: 1
  start-page: 1
  year: 2015
  ident: ref42
  article-title: Using internal validity measures to compare clustering algorithms
  publication-title: Proc ICML
– ident: ref9
  doi: 10.1109/ICIC53490.2021.9692960
– ident: ref25
  doi: 10.1145/1557019.1557124
– ident: ref18
  doi: 10.24251/HICSS.2017.520
– ident: ref48
  doi: 10.1007/s10462-020-09814-9
– start-page: 226
  year: 0
  ident: ref6
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc 1st Intl Conf on Knowledge Discovery and Data Mining (KDD)
– start-page: 1
  year: 2015
  ident: ref20
  article-title: Poster: Apate: Anti-phishing analysing and triaging environment
  publication-title: Proc 36th IEEE Symp Security and Privacy
– ident: ref43
  doi: 10.1109/ISCIT.2012.6380857
– year: 2017
  ident: ref52
  publication-title: Enterprise Phishing Resiliency and Defense Report
– volume: 549
  start-page: 263
  year: 2016
  ident: ref32
  article-title: Dynamic trackback strategy for email-born phishing using maximum dependency algorithm (MDA)
  publication-title: Proc 2nd Int Conf on Soft Computing and Data Mining (SCDM)
– ident: ref12
  doi: 10.1145/3319535.3354239
– ident: ref14
  doi: 10.1007/978-3-642-27937-9_5
– ident: ref57
  doi: 10.1109/ecrime.2010.5706698
SSID ssj0000816957
Score 2.3447616
Snippet Attackers attempt to create successful phishing campaigns by sending out trustworthy-looking emails with a range of variations, such as adding the recipient...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 96502
SubjectTerms Algorithms
Clustering
Clustering algorithms
Cybercrime
Electronic mail
Electronic mail systems
email clustering
Homogeneity
incident response handling
Phishing
phishing campaign
phishing clustering
Security
Servers
Uniform resource locators
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUK6qEc-kGpWKBVDhzJ4nzaPm5XRZwQhyJxs-zxGFZKN2g3i8S_r8cxq5WqVurNimLF9ovtmbHfG8bOoalNYTjk0Jgmr5WrcyW5zdFBa8Pi6I33MdmEuLmR9_fqNpHVIxcGEePlM5xSMZ7lux42FCq7JJmBRhFhek8IMZK1tgEVyiChGpGUhQquLmfzeejElBKET6tgxkiiye7sPlGkP2VV-WMpjvvL1Yf_bNlH9j4ZktlsRP4Te4PLQ3awIy_4mV3H-wDZvNuQGgIVZ91Dv1oMj7_W2dBns83QR8VW03Uv2UjZ9S_Z7eMYl8roXMIsHpbrI3Z39ePn_DpPmRNyCP7akDtALy03WJG_gaWvBEmTGQGFtXVpitrylvK_OhEwcSZYORBMEyu9NN7VUH1h-8t-iccsA2lNG0bPFA3UVSlo2qI3JYDj1nI_YeXriGpIsuKU3aLT0b3gSo8waIJBJxgm7GJb6WlU1fj3698Jqu2rJIkdHwQMdJphOvRTlYit8MGmCv02WIBAV3KUSqKqJ-yIcNv53gjZhJ29Iq_T_F3rUrZEuQ2-3Mlfqp2yd9TEMRpzxvaH1Qa_srfwPCzWq2_x1_wNT6fiVA
  priority: 102
  providerName: IEEE
Title Using Clustering Algorithms to Automatically Identify Phishing Campaigns
URI https://ieeexplore.ieee.org/document/10235951
https://www.proquest.com/docview/2864343753
https://doaj.org/article/39e92ee67f584374ae1c7ed20e898e94
Volume 11
WOSCitedRecordID wos001067558600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yPOhB_InTOXrwaGea_khynMOxi2MHhd1CkiZTqJtsnbCLf7t5aTcKgl68lFJS0nx5Sd5L-r4PoVudJjKSWIc6lWmY8DwJOcMqNLnOlJscrbTWi03Q8ZhNp3zSkPqCf8IqeuAKuPuYG06Myah1S2VME2kiTU1OsGGcGe6ZQJ3X0wim_BzMooyntKYZijC_7w8GrkU9UAvvxc6nYZAz21iKPGN_LbHyY172i83wGB3VXmLQr77uBO2Z-Sk6bHAHnqGRP-wPBsUaqA7gtl_MFi7Uf31fBeUi6K_LhadjlUWxCap8XLsJJq_VplMAhw7ybTZfnaOX4ePzYBTWsgihdsFYGebaWKawNDEEE4bYmALvmKQ6UiohMkoUzkDcNacO8Fw6F0Y7v0Mxy6TNEx1foNZ8MTeXKNBMycyhIaNUJzGhMCaNlUTrHCuFbRuRLUJC15zhIF1RCB87YC4qWAXAKmpY2-hu99JHRZnxe_EHgH5XFPiu_QNnBaK2AvGXFbTROXRcoz4CGcdRG3W2PSnqwbkShGWQT-sCtav_qPsaHUB7qn2ZDmqVy7W5Qfv6s3xbLbveLt316eux67MLvwHrKubk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa9swFBajG2w7rPvRsWxd58OOcyrLsi0ds7CSsi700EFvQj-e2oAbj8Qp9L-vnqyGwOhgN2EsLOmzpPee9H2PkK-24rrQ1Oa20lXOpeO5FNTk4GxtwuLotfcx2UQzn4vLS3meyOqRCwMA8fIZjLEYz_JdZzcYKjtGmYFKImH6acU5Kwa61jakgjkkZNUkbaGCyuPJdBq6McYU4eMyGDICibI7-0-U6U95Vf5ajOMOc7L_n217TV4lUzKbDNi_IU9g-Za83BEYfEdm8UZANm03qIeAxUl71a0W_fXNOuu7bLLpu6jZqtv2LhtIu_4uO78eIlMZnkzoxdVyfUB-n_y4mM7ylDsht8Fj63NnwQtDNZTocQDzZYPiZLqxhTGc6YIbWmMGWNcEVJwOdo4NxokRXmjvuC3fk71lt4QPJLPC6DqMni4qy0vW4MQFr5m1jhpD_YiwhxFVNgmLY36LVkUHg0o1wKAQBpVgGJFv20p_Bl2Nf7_-HaHavoqi2PFBwEClOaZCPyUDqBsfrKrQbw2FbcAxCkIKkHxEDhC3ne8NkI3I4QPyKs3gtWKiRtJt8OY-PlLtC3k-u_h1ps5O5z8_kRfY3CE2c0j2-tUGPpNn9rZfrFdH8Te9Bzrm5Zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Clustering+Algorithms+to+Automatically+Identify+Phishing+Campaigns&rft.jtitle=IEEE+access&rft.au=Althobaiti%2C+Kholoud&rft.au=Wolters%2C+Maria+K.&rft.au=Alsufyani%2C+Nawal&rft.au=Vaniea%2C+Kami&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=96502&rft.epage=96513&rft_id=info:doi/10.1109%2FACCESS.2023.3310810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3310810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon