Machine learning for combinatorial optimization: A methodological tour d’horizon
•This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems.•Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making dec...
Saved in:
| Published in: | European journal of operational research Vol. 290; no. 2; pp. 405 - 421 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
16.04.2021
|
| Subjects: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems.•Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions which are otherwise too expensive to compute or mathematically not well-defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task. |
|---|---|
| AbstractList | •This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems.•Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions which are otherwise too expensive to compute or mathematically not well-defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task. |
| Author | Lodi, Andrea Prouvost, Antoine Bengio, Yoshua |
| Author_xml | – sequence: 1 givenname: Yoshua surname: Bengio fullname: Bengio, Yoshua email: yoshua.bengio@mila.quebec organization: Mila, Institut Québecois d’Intelligence Artificielle, Pavillon André-Aisenstadt 2920, Chemin de la TourMontreal, Qc, H3T 1J4 Canada – sequence: 2 givenname: Andrea surname: Lodi fullname: Lodi, Andrea email: andrea.lodi@polymtl.ca organization: Canada Excellence Research Chair in Data Science for Decision Making, École Polytechnique de Montréal, Pavillon André-Aisenstadt 2920, Chemin de la TourMontreal, Qc, H3T 1J4 Canada – sequence: 3 givenname: Antoine surname: Prouvost fullname: Prouvost, Antoine email: antoine.prouvost@polymtl.ca organization: Canada Excellence Research Chair in Data Science for Decision Making, École Polytechnique de Montréal, Pavillon André-Aisenstadt 2920, Chemin de la TourMontreal, Qc, H3T 1J4 Canada |
| BookMark | eNp9kM9Kw0AQhxepYFt9AU95gcTZTbJJxEsp_gNFED0v282knZDuls0q2JOv4ev5JKbWk4eehmHmG-b3TdjIOouMnXNIOHB50SbYOp8IEJBAkYBMj9iYl4WIZSlhxMaQFkUsBC9O2KTvWwDgOc_H7PlRmxVZjDrU3pJdRo3zkXHrBVkdnCfdRW4TaE1bHcjZy2gWrTGsXO06tyQzjIN781H9_fm1Gta3zp6y40Z3PZ791Sl7vbl-md_FD0-39_PZQ2wyqEJcL0qNaakF1KkRiLpohiezEoYO8spoCSZPK8llWXGDC2mkRBBppXXGIc_SKRP7u8a7vvfYqI2ntfYfioPaWVGt2llROysKCjVYGaDyH2Qo_CYLXlN3GL3aoziEeif0qjeE1mBNHk1QtaND-A_OfIIJ |
| CitedBy_id | crossref_primary_10_1109_TAES_2024_3418944 crossref_primary_10_1016_j_cie_2023_109686 crossref_primary_10_1088_2632_2153_ad33e0 crossref_primary_10_1016_j_tre_2022_102722 crossref_primary_10_1088_1367_2630_ac2d72 crossref_primary_10_1109_TSG_2023_3312225 crossref_primary_10_1016_j_cie_2021_107704 crossref_primary_10_1109_ACCESS_2022_3233852 crossref_primary_10_1109_TED_2021_3084910 crossref_primary_10_1007_s10479_022_04780_7 crossref_primary_10_1016_j_ejor_2021_11_050 crossref_primary_10_1016_j_cor_2025_107102 crossref_primary_10_1016_j_tre_2023_103095 crossref_primary_10_1007_s00521_023_08591_0 crossref_primary_10_1038_s41534_023_00710_y crossref_primary_10_32866_001c_74765 crossref_primary_10_1016_j_cie_2024_110837 crossref_primary_10_1109_TNNLS_2024_3371706 crossref_primary_10_1109_TCOMM_2024_3486982 crossref_primary_10_1016_j_jksuci_2023_101787 crossref_primary_10_1109_ACCESS_2024_3522020 crossref_primary_10_1007_s10489_021_02920_3 crossref_primary_10_1109_TPWRS_2024_3438769 crossref_primary_10_1016_j_artint_2022_103786 crossref_primary_10_1109_TPAMI_2024_3409634 crossref_primary_10_1111_exsy_13429 crossref_primary_10_1287_ijoc_2021_1110 crossref_primary_10_3390_electronics13163242 crossref_primary_10_1016_j_ejor_2023_06_016 crossref_primary_10_1038_s41598_024_60579_5 crossref_primary_10_1080_00207543_2023_2260896 crossref_primary_10_1109_OJCSYS_2025_3601435 crossref_primary_10_1145_3604559 crossref_primary_10_1093_comjnl_bxac187 crossref_primary_10_3389_fams_2023_1155356 crossref_primary_10_1016_j_compchemeng_2022_108100 crossref_primary_10_1016_j_eswa_2023_122814 crossref_primary_10_1016_j_eswa_2023_121844 crossref_primary_10_1016_j_tre_2025_104409 crossref_primary_10_1016_j_tcs_2025_115423 crossref_primary_10_1109_ACCESS_2022_3207559 crossref_primary_10_1016_j_cie_2024_110606 crossref_primary_10_1080_00207543_2021_2002962 crossref_primary_10_1155_2022_3553622 crossref_primary_10_1287_trsc_2022_1196 crossref_primary_10_1007_s11425_023_2364_2 crossref_primary_10_1155_2023_1832501 crossref_primary_10_3390_en15207754 crossref_primary_10_1155_2024_6616243 crossref_primary_10_1109_ACCESS_2022_3224808 crossref_primary_10_1111_mice_13146 crossref_primary_10_1007_s10601_022_09327_y crossref_primary_10_1007_s11063_022_11028_9 crossref_primary_10_3390_biomimetics10040231 crossref_primary_10_1287_ijoc_2022_1194 crossref_primary_10_1109_TEVC_2021_3050465 crossref_primary_10_1371_journal_pone_0319711 crossref_primary_10_1016_j_eswa_2025_127950 crossref_primary_10_1007_s41109_022_00500_z crossref_primary_10_1016_j_procs_2023_01_300 crossref_primary_10_1080_01605682_2023_2253852 crossref_primary_10_1109_TITS_2021_3131637 crossref_primary_10_1109_TWC_2021_3104743 crossref_primary_10_1016_j_ins_2022_07_150 crossref_primary_10_1007_s10994_021_06017_3 crossref_primary_10_1287_ijoc_2022_1181 crossref_primary_10_1287_ijoc_2022_0090 crossref_primary_10_3390_electronics11142253 crossref_primary_10_1016_j_mlwa_2025_100685 crossref_primary_10_1109_TR_2022_3200137 crossref_primary_10_1016_j_neunet_2025_107380 crossref_primary_10_1109_TITS_2023_3334976 crossref_primary_10_1016_j_engappai_2021_104422 crossref_primary_10_1109_TASE_2023_3246223 crossref_primary_10_1007_s10462_022_10342_x crossref_primary_10_1016_j_swevo_2025_102094 crossref_primary_10_1287_trsc_2021_1045 crossref_primary_10_1007_s11590_025_02208_2 crossref_primary_10_1016_j_cor_2022_105769 crossref_primary_10_1007_s10462_024_10991_0 crossref_primary_10_1007_s00521_023_09042_6 crossref_primary_10_1007_s40747_020_00205_9 crossref_primary_10_1016_j_compchemeng_2022_108131 crossref_primary_10_1016_j_knosys_2025_113335 crossref_primary_10_1109_TII_2020_3031409 crossref_primary_10_1109_TITS_2025_3535915 crossref_primary_10_3390_pr12122885 crossref_primary_10_1016_j_trc_2024_104662 crossref_primary_10_1103_PhysRevApplied_19_024027 crossref_primary_10_1016_j_cor_2025_107029 crossref_primary_10_1111_poms_13811 crossref_primary_10_1016_j_trc_2023_104149 crossref_primary_10_1016_j_tre_2023_103172 crossref_primary_10_1109_TII_2021_3074157 crossref_primary_10_1016_j_eswa_2025_127731 crossref_primary_10_1016_j_artint_2023_103918 crossref_primary_10_1287_ijoc_2021_0225 crossref_primary_10_1007_s11750_024_00672_0 crossref_primary_10_3390_modelling5040085 crossref_primary_10_1016_j_ifacol_2024_09_155 crossref_primary_10_1109_TII_2023_3268760 crossref_primary_10_1287_trsc_2022_1183 crossref_primary_10_1007_s40305_025_00632_w crossref_primary_10_1109_TII_2024_3353851 crossref_primary_10_1016_j_knosys_2022_109570 crossref_primary_10_1016_j_knosys_2022_109455 crossref_primary_10_1016_j_jmsy_2025_04_017 crossref_primary_10_1109_TNNLS_2023_3314375 crossref_primary_10_1016_j_engappai_2023_107790 crossref_primary_10_1111_poms_13801 crossref_primary_10_1016_j_cor_2022_105897 crossref_primary_10_1287_ijoc_2024_0775 crossref_primary_10_1016_j_compchemeng_2023_108523 crossref_primary_10_1016_j_vehcom_2023_100631 crossref_primary_10_1016_j_eswa_2025_128951 crossref_primary_10_1109_TETCI_2024_3354111 crossref_primary_10_1007_s10115_025_02472_9 crossref_primary_10_1109_TCYB_2021_3089179 crossref_primary_10_1007_s11590_022_01880_y crossref_primary_10_1016_j_engappai_2023_106664 crossref_primary_10_1016_j_eswa_2025_126429 crossref_primary_10_1287_opre_2023_0564 crossref_primary_10_1287_ijoc_2023_0424 crossref_primary_10_3390_aerospace11120966 crossref_primary_10_7232_JKIIE_2024_50_6_418 crossref_primary_10_1016_j_tre_2024_103683 crossref_primary_10_1016_j_ijpe_2022_108579 crossref_primary_10_3390_math11020298 crossref_primary_10_3390_app14198642 crossref_primary_10_1007_s10489_022_03456_w crossref_primary_10_1016_j_apenergy_2024_125037 crossref_primary_10_1007_s10514_021_09997_2 crossref_primary_10_1016_j_vlsi_2022_05_002 crossref_primary_10_1109_MDAT_2022_3161593 crossref_primary_10_1080_09537287_2024_2302479 crossref_primary_10_1109_TNNLS_2024_3483231 crossref_primary_10_1007_s10489_022_03992_5 crossref_primary_10_1007_s43069_024_00301_3 crossref_primary_10_3390_math8112018 crossref_primary_10_1016_j_neucom_2023_126848 crossref_primary_10_1287_ijoc_2024_0637 crossref_primary_10_1007_s12065_025_01045_7 crossref_primary_10_1109_TCAD_2021_3124762 crossref_primary_10_1016_j_tre_2023_103263 crossref_primary_10_1016_j_knosys_2025_114439 crossref_primary_10_1002_net_70003 crossref_primary_10_1007_s11704_024_40490_y crossref_primary_10_1016_j_compchemeng_2024_108725 crossref_primary_10_1016_j_ijepes_2024_110137 crossref_primary_10_1007_s43069_024_00336_6 crossref_primary_10_1038_s41598_025_94586_x crossref_primary_10_1007_s10601_024_09376_5 crossref_primary_10_1287_trsc_2022_0042 crossref_primary_10_1016_j_trb_2023_102846 crossref_primary_10_1109_TVT_2024_3508671 crossref_primary_10_1287_trsc_2021_1084 crossref_primary_10_1016_j_jatrs_2024_100014 crossref_primary_10_1080_03610918_2023_2234683 crossref_primary_10_1016_j_apenergy_2024_125139 crossref_primary_10_1007_s10489_022_03453_z crossref_primary_10_1080_13675567_2024_2436392 crossref_primary_10_3389_frobt_2024_1375393 crossref_primary_10_3390_a14090267 crossref_primary_10_1002_aaai_70032 crossref_primary_10_1109_ACCESS_2024_3435331 crossref_primary_10_1007_s10845_023_02209_x crossref_primary_10_1007_s00521_024_10352_6 crossref_primary_10_1109_TNSM_2024_3373606 crossref_primary_10_1109_TITS_2023_3253552 crossref_primary_10_1111_itor_13135 crossref_primary_10_1007_s10479_024_05943_4 crossref_primary_10_1080_00207543_2021_2013566 crossref_primary_10_1016_j_apenergy_2023_122278 crossref_primary_10_1029_2023JB026720 crossref_primary_10_1016_j_cor_2021_105554 crossref_primary_10_1007_s40305_023_00507_y crossref_primary_10_12720_jait_16_8_1178_1186 crossref_primary_10_3390_drones5040136 crossref_primary_10_1016_j_compchemeng_2023_108208 crossref_primary_10_1016_j_egyr_2023_04_210 crossref_primary_10_1515_revce_2024_0060 crossref_primary_10_1109_JIOT_2022_3142185 crossref_primary_10_1016_j_eswa_2025_128992 crossref_primary_10_1109_TEVC_2021_3130835 crossref_primary_10_1016_j_icte_2023_03_007 crossref_primary_10_1146_annurev_environ_020220_061831 crossref_primary_10_1007_s10601_024_09377_4 crossref_primary_10_1016_j_autcon_2024_105284 crossref_primary_10_1007_s00158_022_03425_4 crossref_primary_10_1016_j_engappai_2023_106740 crossref_primary_10_1016_j_fsidi_2023_301684 crossref_primary_10_1109_TGCN_2023_3296646 crossref_primary_10_1109_TITS_2024_3410691 crossref_primary_10_1109_TEVC_2024_3378911 crossref_primary_10_1109_TPAMI_2025_3562286 crossref_primary_10_1016_j_ejor_2021_08_007 crossref_primary_10_1016_j_engappai_2023_106508 crossref_primary_10_1109_JSAC_2021_3126076 crossref_primary_10_1287_trsc_2022_0029 crossref_primary_10_1016_j_nexus_2025_100448 crossref_primary_10_1016_j_ejor_2025_04_033 crossref_primary_10_1016_j_neunet_2022_08_008 crossref_primary_10_1080_23249935_2024_2444327 crossref_primary_10_1016_j_jksuci_2023_101723 crossref_primary_10_1007_s10462_025_11267_x crossref_primary_10_1145_3485128 crossref_primary_10_1016_j_trc_2025_105215 crossref_primary_10_1016_j_eswa_2025_127671 crossref_primary_10_1088_1402_4896_ad2b35 crossref_primary_10_1016_j_orl_2022_01_018 crossref_primary_10_1016_j_knosys_2023_110880 crossref_primary_10_3390_app122010530 crossref_primary_10_1016_j_cie_2023_109851 crossref_primary_10_1088_2632_2153_acb895 crossref_primary_10_3390_app15052679 crossref_primary_10_1109_JSTQE_2022_3151323 crossref_primary_10_1080_14606925_2024_2377455 crossref_primary_10_1002_net_22200 crossref_primary_10_1145_3695986 crossref_primary_10_1109_TII_2023_3272661 crossref_primary_10_1016_j_knosys_2020_106562 crossref_primary_10_1109_TNET_2022_3213970 crossref_primary_10_1109_TITS_2023_3265517 crossref_primary_10_1016_j_trc_2025_105208 crossref_primary_10_1093_nsr_nwae132 crossref_primary_10_1016_j_compchemeng_2024_108765 crossref_primary_10_1109_ACCESS_2024_3505678 crossref_primary_10_3390_electronics11040539 crossref_primary_10_1016_j_tre_2024_103519 crossref_primary_10_1109_TSTE_2023_3268140 crossref_primary_10_1109_TSMC_2024_3389751 crossref_primary_10_1016_j_ejor_2023_01_054 crossref_primary_10_1109_ACCESS_2024_3524176 crossref_primary_10_3389_fmars_2025_1614356 crossref_primary_10_1007_s10479_022_04612_8 crossref_primary_10_1109_JPROC_2022_3188337 crossref_primary_10_1109_TSG_2022_3207561 crossref_primary_10_3390_app15179630 crossref_primary_10_1016_j_jprocont_2024_103207 crossref_primary_10_3390_app13020806 crossref_primary_10_3390_math10010097 crossref_primary_10_1109_TSTE_2024_3421929 crossref_primary_10_1109_TEVC_2022_3219238 crossref_primary_10_1111_poms_13775 crossref_primary_10_1016_j_tre_2024_103866 crossref_primary_10_3233_JIFS_234536 crossref_primary_10_1007_s11705_022_2283_7 crossref_primary_10_1016_j_cor_2021_105400 crossref_primary_10_1145_3661308 crossref_primary_10_1007_s10462_024_11045_1 crossref_primary_10_1016_j_ijepes_2024_110445 crossref_primary_10_1109_TCYB_2025_3547565 crossref_primary_10_1145_3447879_3447883 crossref_primary_10_1109_TAES_2022_3231239 crossref_primary_10_1016_j_engappai_2022_105220 crossref_primary_10_1016_j_knosys_2023_110566 crossref_primary_10_1007_s12083_024_01898_2 crossref_primary_10_3390_sym17081236 crossref_primary_10_3390_app12084018 crossref_primary_10_1080_00207543_2024_2439369 crossref_primary_10_1287_trsc_2022_0015 crossref_primary_10_1016_j_ifacol_2025_07_140 crossref_primary_10_1177_14780771251316125 crossref_primary_10_1109_TEVC_2024_3357819 crossref_primary_10_1109_TITS_2025_3562860 crossref_primary_10_1109_TPWRS_2024_3406437 crossref_primary_10_1016_j_disopt_2025_100879 crossref_primary_10_1016_j_nucengdes_2020_110966 crossref_primary_10_1287_trsc_2023_1199 crossref_primary_10_1002_oca_3030 crossref_primary_10_1016_j_swevo_2024_101780 crossref_primary_10_1080_23302674_2023_2252321 crossref_primary_10_1109_TNSM_2023_3287433 crossref_primary_10_1016_j_jocs_2024_102281 crossref_primary_10_1016_j_tre_2025_104095 crossref_primary_10_1109_TKDE_2023_3279920 crossref_primary_10_1287_trsc_2024_0672 crossref_primary_10_1109_ACCESS_2021_3129709 crossref_primary_10_1109_ACCESS_2023_3324193 crossref_primary_10_1007_s12532_022_00230_4 crossref_primary_10_1016_j_knosys_2023_110562 crossref_primary_10_1016_j_geoen_2023_211771 crossref_primary_10_1016_j_asoc_2024_111947 crossref_primary_10_1016_j_compeleceng_2025_110411 crossref_primary_10_1016_j_neunet_2025_107446 crossref_primary_10_1109_ACCESS_2023_3268212 crossref_primary_10_1287_ijoc_2023_0255 crossref_primary_10_3390_electronics12153288 crossref_primary_10_1109_TITS_2023_3313688 crossref_primary_10_1002_net_22243 crossref_primary_10_1016_j_apenergy_2024_124332 crossref_primary_10_1287_inte_2021_1109 crossref_primary_10_1016_j_eng_2025_07_032 crossref_primary_10_1145_3589332 crossref_primary_10_1002_aisy_202300111 crossref_primary_10_1016_j_compchemeng_2024_108686 crossref_primary_10_1016_j_ins_2025_122112 crossref_primary_10_1016_j_cie_2025_111138 crossref_primary_10_1016_j_ejor_2024_03_020 crossref_primary_10_1016_j_eswa_2025_129542 crossref_primary_10_1016_j_iswa_2023_200321 crossref_primary_10_1016_j_neucom_2022_08_005 crossref_primary_10_1016_j_ejor_2024_12_014 crossref_primary_10_1109_JETCAS_2023_3290319 crossref_primary_10_1016_j_jag_2023_103526 crossref_primary_10_1016_j_nucengdes_2023_112423 crossref_primary_10_1016_j_knosys_2021_107526 crossref_primary_10_1287_ijoc_2022_0314 crossref_primary_10_1109_TSC_2024_3376231 crossref_primary_10_1016_j_heliyon_2023_e20550 crossref_primary_10_1088_1361_6501_add6c0 crossref_primary_10_1007_s11269_021_02872_w crossref_primary_10_1007_s13042_024_02327_9 crossref_primary_10_1287_ijoc_2022_0310 crossref_primary_10_1016_j_rser_2023_113873 crossref_primary_10_1016_j_asoc_2023_110680 crossref_primary_10_1109_MCI_2023_3277768 crossref_primary_10_1109_TMC_2025_3549757 crossref_primary_10_1016_j_engappai_2022_105439 crossref_primary_10_1080_00207543_2023_2172472 crossref_primary_10_26599_TST_2024_9010219 crossref_primary_10_1109_ACCESS_2022_3218908 crossref_primary_10_1007_s10107_024_02130_y crossref_primary_10_1007_s43069_025_00513_1 crossref_primary_10_1109_TSP_2023_3334396 crossref_primary_10_1007_s11063_022_10900_y crossref_primary_10_1080_24725854_2021_1934756 crossref_primary_10_1109_TNNLS_2024_3443413 crossref_primary_10_1007_s11277_023_10735_3 crossref_primary_10_1109_ACCESS_2024_3452511 crossref_primary_10_1016_j_ejor_2024_04_004 crossref_primary_10_1016_j_tre_2025_104083 crossref_primary_10_1109_JSTSP_2024_3427371 crossref_primary_10_1007_s10479_023_05508_x crossref_primary_10_1109_TWC_2021_3123620 crossref_primary_10_1016_j_asoc_2025_113280 crossref_primary_10_1002_solr_202500455 crossref_primary_10_1007_s10732_023_09512_z crossref_primary_10_1016_j_apenergy_2024_124431 crossref_primary_10_1016_j_cor_2023_106249 crossref_primary_10_1109_TPAMI_2024_3352096 crossref_primary_10_1111_poms_14018 crossref_primary_10_1109_TNNLS_2022_3148435 crossref_primary_10_1016_j_cor_2023_106360 crossref_primary_10_1016_j_eswa_2023_123106 crossref_primary_10_1088_2632_2153_ac0496 crossref_primary_10_1016_j_tre_2024_103819 crossref_primary_10_1287_ijoc_2023_0281 crossref_primary_10_1007_s10489_023_05013_5 crossref_primary_10_1109_TAI_2024_3497926 crossref_primary_10_1109_TNNLS_2022_3159671 crossref_primary_10_1145_3530894 crossref_primary_10_1007_s00521_022_07604_8 crossref_primary_10_1007_s00521_022_07989_6 crossref_primary_10_1103_PhysRevResearch_7_023299 crossref_primary_10_1109_TEVC_2023_3255246 crossref_primary_10_1109_ACCESS_2025_3555393 crossref_primary_10_1016_j_ifacol_2023_10_1242 crossref_primary_10_1109_ACCESS_2021_3131799 crossref_primary_10_1016_j_tre_2024_103805 crossref_primary_10_1016_j_ejor_2023_11_038 crossref_primary_10_2139_ssrn_5021721 crossref_primary_10_36401_IDDB_25_1 crossref_primary_10_1038_s42256_021_00401_3 crossref_primary_10_1080_19475705_2024_2383783 crossref_primary_10_3390_ai2020010 crossref_primary_10_1007_s43069_025_00449_6 crossref_primary_10_1016_j_neucom_2025_131361 crossref_primary_10_1080_23270012_2023_2229842 crossref_primary_10_1080_01605682_2024_2446655 crossref_primary_10_1007_s10845_023_02084_6 crossref_primary_10_1016_j_neucom_2024_128609 crossref_primary_10_1007_s10479_022_04547_0 crossref_primary_10_1088_1367_2630_add365 crossref_primary_10_1016_j_omega_2024_103039 crossref_primary_10_1016_j_cor_2024_106768 crossref_primary_10_1109_TCYB_2023_3312476 crossref_primary_10_1109_TSMC_2023_3289322 crossref_primary_10_1016_j_cor_2023_106349 crossref_primary_10_1007_s10844_021_00666_5 crossref_primary_10_1016_j_cor_2024_106881 crossref_primary_10_1057_s41272_023_00459_1 crossref_primary_10_1016_j_asoc_2020_106790 crossref_primary_10_1016_j_ejor_2022_01_034 crossref_primary_10_1142_S1793830924501088 crossref_primary_10_1287_ijoc_2023_1277 crossref_primary_10_1016_j_trc_2025_105163 crossref_primary_10_1109_TPAMI_2021_3078053 crossref_primary_10_1016_j_ejor_2023_10_045 crossref_primary_10_1109_JSTSP_2025_3558653 crossref_primary_10_1109_TSMC_2020_3027860 crossref_primary_10_3390_a16050223 crossref_primary_10_3390_electronics12040871 crossref_primary_10_1016_j_ijpe_2024_109325 crossref_primary_10_1080_24725854_2023_2294816 crossref_primary_10_1016_j_tre_2025_104278 crossref_primary_10_1007_s11548_022_02664_6 crossref_primary_10_1007_s12648_024_03179_3 crossref_primary_10_1016_j_engappai_2024_108472 crossref_primary_10_1287_trsc_2023_intro_v58_n1 crossref_primary_10_1038_s41596_024_01084_x crossref_primary_10_1016_j_ejor_2024_11_018 crossref_primary_10_1007_s11227_025_07792_9 crossref_primary_10_1016_j_ejor_2023_09_026 crossref_primary_10_1016_j_engappai_2022_105741 crossref_primary_10_3390_app15158522 crossref_primary_10_1007_s11047_022_09913_2 crossref_primary_10_1016_j_tre_2025_104281 crossref_primary_10_1016_j_knosys_2024_111559 crossref_primary_10_1007_s40747_024_01469_1 crossref_primary_10_1016_j_ijpe_2025_109731 crossref_primary_10_1016_j_tre_2025_104048 crossref_primary_10_1145_3618348 crossref_primary_10_1002_smll_202411833 crossref_primary_10_1016_j_jbusres_2023_113980 crossref_primary_10_1109_JIOT_2021_3074111 crossref_primary_10_3390_e24070957 crossref_primary_10_1016_j_jestch_2025_102012 crossref_primary_10_1016_j_asr_2023_12_036 crossref_primary_10_1145_3647644 crossref_primary_10_1016_j_ejor_2024_06_040 crossref_primary_10_1016_j_epsr_2024_110985 crossref_primary_10_1016_j_cmpb_2021_106399 crossref_primary_10_1137_22M1489332 crossref_primary_10_3390_make5040082 crossref_primary_10_1109_TWC_2025_3563529 crossref_primary_10_1007_s00500_023_08381_9 crossref_primary_10_1038_s41598_023_30391_8 crossref_primary_10_1016_j_comcom_2024_107993 crossref_primary_10_1287_opre_2021_0707 crossref_primary_10_1016_j_cor_2024_106791 crossref_primary_10_1007_s10479_025_06684_8 crossref_primary_10_1007_s11390_024_3773_5 crossref_primary_10_1016_j_ejor_2023_10_036 crossref_primary_10_3390_jmse12071187 crossref_primary_10_1016_j_cie_2024_110149 crossref_primary_10_1007_s10479_023_05738_z crossref_primary_10_1109_TNSM_2022_3177694 crossref_primary_10_1016_j_tre_2025_104386 crossref_primary_10_1080_00207543_2024_2361449 crossref_primary_10_1016_j_ejor_2023_04_041 crossref_primary_10_1109_JIOT_2021_3133278 crossref_primary_10_1016_j_ejor_2023_04_043 crossref_primary_10_1016_j_aei_2023_102005 crossref_primary_10_1016_j_petrol_2021_109208 crossref_primary_10_1109_TPWRS_2022_3170083 crossref_primary_10_1016_j_cor_2024_106683 crossref_primary_10_1016_j_knosys_2024_111661 crossref_primary_10_1080_0305215X_2021_2024177 crossref_primary_10_1080_0305215X_2025_2503950 crossref_primary_10_1016_j_tre_2025_104350 crossref_primary_10_1016_j_ejor_2023_08_031 crossref_primary_10_1016_j_ejor_2025_08_034 crossref_primary_10_1016_j_is_2025_102576 crossref_primary_10_1007_s11424_024_3141_0 crossref_primary_10_3390_app15063366 crossref_primary_10_1016_j_ejor_2025_08_029 crossref_primary_10_1016_j_physa_2023_129193 crossref_primary_10_3233_IDT_200217 crossref_primary_10_1109_JIOT_2024_3432911 crossref_primary_10_1016_j_ejor_2022_03_054 crossref_primary_10_1016_j_cor_2025_107182 crossref_primary_10_1049_cim2_12072 crossref_primary_10_1007_s11750_023_00657_5 crossref_primary_10_1287_ijoo_2024_0033 crossref_primary_10_1016_j_ijforecast_2023_05_004 crossref_primary_10_1007_s11227_024_06167_w crossref_primary_10_1016_j_ejor_2023_04_020 crossref_primary_10_1109_TPAMI_2024_3432716 crossref_primary_10_1016_j_scib_2025_06_035 crossref_primary_10_1080_23302674_2024_2424200 crossref_primary_10_1109_TCYB_2025_3594063 crossref_primary_10_1016_j_ins_2023_01_064 crossref_primary_10_1287_trsc_2023_0107 crossref_primary_10_1109_ACCESS_2025_3550518 crossref_primary_10_1007_s00291_024_00755_1 crossref_primary_10_1016_j_ejor_2024_09_013 crossref_primary_10_1016_j_swevo_2025_102058 crossref_primary_10_1016_j_eswa_2024_125895 crossref_primary_10_1016_j_ejor_2022_06_040 crossref_primary_10_1016_j_ejor_2025_01_024 crossref_primary_10_1016_j_trc_2022_103679 crossref_primary_10_1049_tje2_12368 crossref_primary_10_1109_TASE_2024_3399322 crossref_primary_10_1016_j_engappai_2022_104848 crossref_primary_10_1080_17460441_2022_2072288 crossref_primary_10_1016_j_patcog_2021_108353 crossref_primary_10_1016_j_ejor_2021_04_032 crossref_primary_10_1088_2632_2153_adf376 crossref_primary_10_1016_j_matcom_2025_02_026 crossref_primary_10_1287_ijoc_2022_0140 crossref_primary_10_1016_j_eswa_2022_117796 crossref_primary_10_1016_j_ces_2024_119763 crossref_primary_10_1016_j_physa_2021_126467 crossref_primary_10_1016_j_knosys_2024_111698 crossref_primary_10_1109_TPWRS_2023_3340674 crossref_primary_10_1016_j_ejor_2023_07_014 crossref_primary_10_1016_j_swevo_2025_102147 crossref_primary_10_1016_j_ejor_2025_01_012 crossref_primary_10_1016_j_cie_2021_107873 crossref_primary_10_1016_j_cie_2024_110104 crossref_primary_10_1016_j_patcog_2021_108466 crossref_primary_10_1016_j_ejor_2024_06_016 crossref_primary_10_1021_acs_iecr_4c03782 crossref_primary_10_1038_s42256_022_00589_y crossref_primary_10_1109_JIOT_2025_3534777 crossref_primary_10_1109_LCOMM_2021_3114118 crossref_primary_10_1109_TPWRS_2023_3262189 crossref_primary_10_1007_s11425_023_2290_y crossref_primary_10_1007_s00500_023_08886_3 crossref_primary_10_1016_j_ejor_2023_05_038 crossref_primary_10_1016_j_cor_2025_107076 crossref_primary_10_1155_2022_6808562 crossref_primary_10_1007_s12532_025_00278_y crossref_primary_10_1109_TETCI_2025_3540424 crossref_primary_10_1109_JAS_2023_124113 crossref_primary_10_1002_nav_22270 crossref_primary_10_1016_j_knosys_2022_109986 crossref_primary_10_1080_21650020_2023_2216768 crossref_primary_10_1016_j_ejor_2024_07_029 crossref_primary_10_1007_s12063_021_00201_3 crossref_primary_10_1016_j_patcog_2021_108254 crossref_primary_10_1287_trsc_2023_0407 crossref_primary_10_1109_JPROC_2022_3175942 crossref_primary_10_1109_TCSS_2023_3272331 crossref_primary_10_7717_peerj_cs_395 crossref_primary_10_1007_s11633_022_1396_2 crossref_primary_10_1007_s12083_023_01578_7 crossref_primary_10_1016_j_cor_2023_106450 crossref_primary_10_1016_j_ejor_2023_07_037 crossref_primary_10_3390_batteries9040219 crossref_primary_10_1109_TASE_2024_3456074 crossref_primary_10_1109_TETCI_2021_3139802 crossref_primary_10_1007_s00366_025_02114_2 crossref_primary_10_1109_TSMC_2024_3358383 crossref_primary_10_1287_ijoc_2022_0188 crossref_primary_10_1109_TMC_2022_3148208 crossref_primary_10_1080_21681015_2024_2358823 crossref_primary_10_1007_s10479_024_06100_7 crossref_primary_10_1016_j_procir_2022_09_099 crossref_primary_10_1016_j_energy_2022_126555 crossref_primary_10_1007_s12351_023_00756_y crossref_primary_10_2139_ssrn_3793042 crossref_primary_10_1109_TITS_2021_3105232 crossref_primary_10_3390_en16166050 crossref_primary_10_1109_TTE_2023_3266550 crossref_primary_10_1007_s40747_024_01716_5 crossref_primary_10_1016_j_ejor_2024_07_024 crossref_primary_10_1364_BOE_555206 crossref_primary_10_1109_JSYST_2022_3231346 crossref_primary_10_1177_10591478241282249 crossref_primary_10_3390_mining2040043 crossref_primary_10_1103_PhysRevResearch_5_013097 crossref_primary_10_1016_j_asoc_2022_108616 crossref_primary_10_1016_j_engappai_2023_107477 crossref_primary_10_1007_s12083_024_01815_7 crossref_primary_10_1109_TITS_2025_3556882 crossref_primary_10_1016_j_engappai_2021_104603 crossref_primary_10_1016_j_tre_2021_102302 crossref_primary_10_1016_j_asoc_2024_111266 crossref_primary_10_1007_s10957_024_02558_4 crossref_primary_10_1016_j_procs_2022_11_026 crossref_primary_10_1016_j_eswa_2022_118207 crossref_primary_10_1016_j_ejor_2022_11_034 crossref_primary_10_1007_s11590_024_02100_5 crossref_primary_10_1016_j_cie_2025_110856 crossref_primary_10_3233_IDA_230480 crossref_primary_10_1016_j_ejor_2025_09_006 crossref_primary_10_1109_TMECH_2024_3452509 crossref_primary_10_1016_j_ifacol_2025_03_012 crossref_primary_10_1016_j_tre_2022_102835 crossref_primary_10_1109_TITS_2023_3270334 crossref_primary_10_1016_j_jairtraman_2025_102755 crossref_primary_10_1038_s42005_024_01711_9 crossref_primary_10_1016_j_cor_2024_106604 crossref_primary_10_1016_j_cor_2024_106848 crossref_primary_10_1016_j_asoc_2025_113736 crossref_primary_10_1287_ijoc_2022_0175 crossref_primary_10_1007_s10951_025_00844_1 crossref_primary_10_1016_j_compchemeng_2025_109399 crossref_primary_10_1007_s11517_024_03194_w crossref_primary_10_3390_logistics8040096 crossref_primary_10_1007_s10489_022_03963_w crossref_primary_10_1016_j_ejor_2025_09_016 |
| Cites_doi | 10.1038/nature16961 10.1162/neco.1992.4.1.131 10.1007/s11750-017-0451-6 10.1007/s10107-018-1302-4 10.4018/978-1-4666-0270-0.ch003 10.1016/j.cor.2015.04.022 10.1093/jigpal/jzp049 10.1287/ijoc.11.1.15 10.1016/j.artint.2016.04.003 10.1007/BF01580665 10.1177/030631293023004001 10.1016/j.cor.2014.05.020 10.1109/MSP.2017.2765202 10.1287/opre.2014.1267 10.1016/j.ejor.2015.08.018 10.1016/j.ejor.2017.01.001 10.1287/opre.49.5.771.10607 10.1287/ijoc.2016.0723 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2020.07.063 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 421 |
| ExternalDocumentID | 10_1016_j_ejor_2020_07_063 S0377221720306895 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c409t-db8ae38a20d3c2eea7f0374803c2059ca60c539616891ceb6c66e0239aa410543 |
| ISICitedReferencesCount | 867 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000602863200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sat Nov 29 07:21:42 EST 2025 Tue Nov 18 22:22:11 EST 2025 Fri Feb 23 02:48:24 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Mixed-integer programming solvers Branch and bound Combinatorial optimization Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c409t-db8ae38a20d3c2eea7f0374803c2059ca60c539616891ceb6c66e0239aa410543 |
| OpenAccessLink | https://doi.org/10.48550/arxiv.1811.06128 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1016_j_ejor_2020_07_063 crossref_citationtrail_10_1016_j_ejor_2020_07_063 elsevier_sciencedirect_doi_10_1016_j_ejor_2020_07_063 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-16 |
| PublicationDateYYYYMMDD | 2021-04-16 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bello, Pham, Le, Norouzi, Bengio (bib0008) 2017 Wierstra, Förster, Peters, Schmidhuber (bib0069) 2010; 18 Conforti, Conrnuéjols, Zambelli (bib0014) 2014 Smith-Miles, Bowly (bib0062) 2015; 63 Hottung, Tanaka, Tierney (bib0030) 2017 Andrychowicz, Denil, Gómez, Hoffman, Pfau, Schaul, de Freitas (bib0002) 2016 Nair, Dvijotham, Dunning, Vinyals (bib0055) 2018 Silver, Huang, Maddison, Guez, Sifre, van den Driessche, Hassabis (bib0060) 2016; 529 Wichrowska, Maheswaranathan, Hoffman, Colmenarejo, Denil, de Freitas, Sohl-Dickstein (bib0068) 2017; 70 Ravi, Larochelle (bib0057) 2017 Creswell, White, Dumoulin, Arulkumaran, Sengupta, Bharath (bib0015) 2018; 35 Kool, Welling (bib0036) 2018 Khalil, Bodic, Song, Nemhauser, Dilkina (bib0034) 2016 Bengio, Bengio, Cloutier, Gecsei (bib0009) 1991 Larson, Odoni (bib0039) 1981 Mascia, López-Ibáñez, Dubois-Lacoste, Stützle (bib0051) 2014; 51 Ansótegui, Heymann, Pon, Sellmann, Tierney (bib0003) 2019 Fortun, Schweber (bib0022) 1993; 23 Nowak, Villar, Bandeira, Bruna (bib0056) 2017 Baltean-Lugojan, Misener, Bonami, Tramontani (bib0007) 2018 Bischl, Kerschke, Kotthoff, Lindauer, Malitsky, Fréchette, Vanschoren (bib0010) 2016; 237 Emami, Ranka (bib0018) 2018 Khalil, Dilkina, Nemhauser, Ahmed, Shao (bib0035) 2017 Bahdanau, Cho, Bengio (bib0006) 2015 Hoos (bib0029) 2012 Li, Malik (bib0040) 2017 Mahmood, Babier, McNiven, Diamant, Chan (bib0046) 2018; 85 Fitzgerald, Malitsky, O’Sullivan, Tierney (bib0021) 2014 Chan, Craig, Lee, Sharpe (bib0013) 2014; 62 Gasse, Chételat, Ferroni, Charlin, Lodi (bib0023) 2019 Malitsky, Merschformann, O’Sullivan, Tierney (bib0047) 2016 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Polosukhin (bib0065) 2017 Applegate, Bixby, Chvátal, Cook (bib0005) 2007 Dai, Dai, Song (bib0016) 2016; 48 (bib0064) 1998 Özcan, Misir, Ochoa, Burke (bib0071) 2012 He, Daume III, Eisner (bib0027) 2014 Marcos Alvarez, Louveaux, Wehenkel (bib0049) 2017; 29 Vinyals, Fortunato, Jaitly (bib0067) 2015 Lindauer, Hutter (bib0042) 2018 Ansótegui, Pon, Sellmann, Tierney (bib0004) 2017 Marcos Alvarez, Wehenkel, Louveaux (bib0050) 2016 Ahuja, Orlin (bib0001) 2001; 49 Veličković, Cucurull, Casanova, Romero, Lió, Bengio (bib0066) 2018 Hochreiter, Younger, Conwell (bib0028) 2001 Schmidhuber (bib0058) 1992; 4 Lodi (bib0043) 2009 Bonami, Lodi, Zarpellon (bib0012) 2018 Lombardi, Milano (bib0045) 2018 Marcos Alvarez, Louveaux, Wehenkel (bib0048) 2014 Khalil, Dai, Zhang, Dilkina, Song (bib0033) 2017 Nagarajan, Warnell, Stone (bib0054) 2019 Smith (bib0061) 1999; 11 Goodfellow, Bengio, Courville (bib0026) 2016 Bishop (bib0011) 2006 Gendreau, Potvin (bib0024) 2010 Larsen, Lachapelle, Bengio, Frejinger, Lacoste-Julien, Lodi (bib0038) 2018 Selsam, Lamm, Bünz, Liang, de Moura, Dill (bib0059) 2018 Dey, Molinaro (bib0017) 2018; 170 Lodi, Zarpellon (bib0044) 2017; 25 Fischetti, Lodi (bib0020) 2011; (vol.3 Liberto, Kadioglu, Leo, Malitsky (bib0041) 2016; 248 Finn, Abbeel, Levine (bib0019) 2017; 70 Wolsey (bib0070) 1998 Karapetyan, Punnen, Parkes (bib0032) 2017; 260 McCormick (bib0052) 1976; 10 Sutton, Barto (bib0063) 2018 Gilmer, Schoenholz, Riley, Vinyals, Dahl (bib0025) 2017; 70 Kruber, Lübbecke, Parmentier (bib0037) 2017 Hussein, Gaber, Elyan, Jayne (bib0031) 2017; 50 Murphy (bib0053) 2012 Bonami (10.1016/j.ejor.2020.07.063_bib0012) 2018 Karapetyan (10.1016/j.ejor.2020.07.063_sbref0032) 2017; 260 Bischl (10.1016/j.ejor.2020.07.063_sbref0010) 2016; 237 Creswell (10.1016/j.ejor.2020.07.063_bib0015) 2018; 35 Vaswani (10.1016/j.ejor.2020.07.063_bib0065) 2017 Ahuja (10.1016/j.ejor.2020.07.063_bib0001) 2001; 49 Dey (10.1016/j.ejor.2020.07.063_bib0017) 2018; 170 Ansótegui (10.1016/j.ejor.2020.07.063_sbref0004) 2017 Ravi (10.1016/j.ejor.2020.07.063_bib0057) 2017 Fitzgerald (10.1016/j.ejor.2020.07.063_sbref0021) 2014 Emami (10.1016/j.ejor.2020.07.063_sbref0018) 2018 Marcos Alvarez (10.1016/j.ejor.2020.07.063_bib0049) 2017; 29 Marcos Alvarez (10.1016/j.ejor.2020.07.063_bib0050) 2016 Nowak (10.1016/j.ejor.2020.07.063_bib0056) 2017 Nair (10.1016/j.ejor.2020.07.063_sbref0055) 2018 Dai (10.1016/j.ejor.2020.07.063_bib0016) 2016; 48 Finn (10.1016/j.ejor.2020.07.063_bib0019) 2017; 70 Baltean-Lugojan (10.1016/j.ejor.2020.07.063_bib0007) 2018 Ansótegui (10.1016/j.ejor.2020.07.063_bib0003) 2019 Gilmer (10.1016/j.ejor.2020.07.063_bib0025) 2017; 70 Lodi (10.1016/j.ejor.2020.07.063_bib0044) 2017; 25 Selsam (10.1016/j.ejor.2020.07.063_bib0059) 2018 Andrychowicz (10.1016/j.ejor.2020.07.063_bib0002) 2016 Smith-Miles (10.1016/j.ejor.2020.07.063_sbref0062) 2015; 63 Bengio (10.1016/j.ejor.2020.07.063_sbref0009) 1991 Mahmood (10.1016/j.ejor.2020.07.063_bib0046) 2018; 85 Nagarajan (10.1016/j.ejor.2020.07.063_bib0054) 2019 Larson (10.1016/j.ejor.2020.07.063_bib0039) 1981 Sutton (10.1016/j.ejor.2020.07.063_sbref0063) 2018 Kool (10.1016/j.ejor.2020.07.063_bib0036) 2018 Veličković (10.1016/j.ejor.2020.07.063_sbref0066) 2018 Vinyals (10.1016/j.ejor.2020.07.063_sbref0067) 2015 Khalil (10.1016/j.ejor.2020.07.063_bib0033) 2017 Fischetti (10.1016/j.ejor.2020.07.063_sbref0020) 2011; (vol.3 Smith (10.1016/j.ejor.2020.07.063_bib0061) 1999; 11 Wichrowska (10.1016/j.ejor.2020.07.063_bib0068) 2017; 70 Özcan (10.1016/j.ejor.2020.07.063_sbref0071) 2012 Hoos (10.1016/j.ejor.2020.07.063_bib0029) 2012 Liberto (10.1016/j.ejor.2020.07.063_sbref0041) 2016; 248 Lodi (10.1016/j.ejor.2020.07.063_bib0043) 2009 Malitsky (10.1016/j.ejor.2020.07.063_bib0047) 2016 Marcos Alvarez (10.1016/j.ejor.2020.07.063_bib0048) 2014 Gendreau (10.1016/j.ejor.2020.07.063_sbref0024) 2010 He (10.1016/j.ejor.2020.07.063_bib0027) 2014 Khalil (10.1016/j.ejor.2020.07.063_bib0034) 2016 Larsen (10.1016/j.ejor.2020.07.063_bib0038) 2018 Wierstra (10.1016/j.ejor.2020.07.063_bib0069) 2010; 18 Gasse (10.1016/j.ejor.2020.07.063_sbref0023) 2019 McCormick (10.1016/j.ejor.2020.07.063_bib0052) 1976; 10 Applegate (10.1016/j.ejor.2020.07.063_bib0005) 2007 Fortun (10.1016/j.ejor.2020.07.063_bib0022) 1993; 23 Wolsey (10.1016/j.ejor.2020.07.063_bib0070) 1998 Lindauer (10.1016/j.ejor.2020.07.063_bib0042) 2018 Conforti (10.1016/j.ejor.2020.07.063_bib0014) 2014 Schmidhuber (10.1016/j.ejor.2020.07.063_bib0058) 1992; 4 Bishop (10.1016/j.ejor.2020.07.063_bib0011) 2006 Goodfellow (10.1016/j.ejor.2020.07.063_bib0026) 2016 Li (10.1016/j.ejor.2020.07.063_bib0040) 2017 Chan (10.1016/j.ejor.2020.07.063_bib0013) 2014; 62 Hottung (10.1016/j.ejor.2020.07.063_sbref0030) 2017 Khalil (10.1016/j.ejor.2020.07.063_bib0035) 2017 (10.1016/j.ejor.2020.07.063_bib0064) 1998 Silver (10.1016/j.ejor.2020.07.063_bib0060) 2016; 529 Bello (10.1016/j.ejor.2020.07.063_sbref0008) 2017 Mascia (10.1016/j.ejor.2020.07.063_sbref0051) 2014; 51 Murphy (10.1016/j.ejor.2020.07.063_bib0053) 2012 Kruber (10.1016/j.ejor.2020.07.063_bib0037) 2017 Lombardi (10.1016/j.ejor.2020.07.063_sbref0045) 2018 Hochreiter (10.1016/j.ejor.2020.07.063_bib0028) 2001 Hussein (10.1016/j.ejor.2020.07.063_bib0031) 2017; 50 Bahdanau (10.1016/j.ejor.2020.07.063_bib0006) 2015 |
| References_xml | – year: 2017 ident: bib0008 article-title: Neural Combinatorial Optimization with Reinforcement Learning publication-title: International conference on learning representations – volume: 260 start-page: 494 year: 2017 end-page: 506 ident: bib0032 article-title: Markov chain methods for the bipartite boolean quadratic programming problem publication-title: European journal of operational research – year: 2014 ident: bib0048 article-title: A supervised machine learning approach to variable branching in branch-and-bound publication-title: Technical Report – year: 2007 ident: bib0005 publication-title: The Traveling Salesman Problem: A Computational Study – start-page: 3293 year: 2014 end-page: 3301 ident: bib0027 article-title: Learning to search in branch and bound algorithms publication-title: Advances in neural information processing systems 27 – volume: 49 start-page: 771 year: 2001 end-page: 783 ident: bib0001 article-title: Inverse optimization publication-title: Operations Research – start-page: 591 year: 2018 end-page: 600 ident: bib0055 article-title: Learning fast optimizers for contextual stochastic integer programs. publication-title: Conference on uncertainty in artifical intelligence – start-page: 2692 year: 2015 end-page: 2700 ident: bib0067 article-title: Pointer networks publication-title: Advances in neural information processing systems 28 – year: 2006 ident: bib0011 article-title: Pattern recognition and machine learning – year: 2014 ident: bib0014 article-title: Integer programming – start-page: 202 year: 2017 end-page: 210 ident: bib0037 article-title: Learning When to Use a Decomposition publication-title: Integration of AI and OR techniques in constraint programming – volume: 35 start-page: 53 year: 2018 end-page: 65 ident: bib0015 article-title: Generative adversarial networks: an overview publication-title: IEEE signal processing magazine – volume: 70 start-page: 3751 year: 2017 end-page: 3760 ident: bib0068 article-title: Learned Optimizers that Scale and Generalize publication-title: Proceedings of the 34th International Conference on Machine Learning – volume: 237 start-page: 41 year: 2016 end-page: 58 ident: bib0010 article-title: ASlib: A benchmark library for algorithm selection publication-title: Artificial intelligence – start-page: 619 year: 2009 end-page: 645 ident: bib0043 article-title: MIP Computation publication-title: 50 years of integer programming 1958–2008 – start-page: 37 year: 2012 end-page: 71 ident: bib0029 article-title: Automated algorithm configuration and parameter tuning publication-title: Autonomous search – year: 2012 ident: bib0053 article-title: Machine learning: A Probabilistic perspective – start-page: 3981 year: 2016 end-page: 3989 ident: bib0002 article-title: Learning to learn by gradient descent by gradient descent publication-title: Advances in neural information processing systems 29 – volume: 11 start-page: 15 year: 1999 end-page: 34 ident: bib0061 article-title: Neural networks for combinatorial optimization: a review of more than a decade of research publication-title: INFORMS journal on computing – start-page: 123 year: 2016 end-page: 140 ident: bib0047 article-title: Structure-Preserving Instance Generation publication-title: Learning and Intelligent Optimization – year: 2018 ident: bib0007 article-title: Strong Sparse Cut Selection via Trained Neural Nets for Quadratic Semidefinite Outer-Approximations publication-title: Technical Report – start-page: 309 year: 2019 end-page: 325 ident: bib0003 article-title: Hyper-Reactive Tabu Search for MaxSAT publication-title: Learning and intelligent optimization – start-page: 5472 year: 2018 end-page: 5478 ident: bib0045 article-title: Boosting combinatorial problem modeling with machine learning publication-title: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI-18 – volume: 23 start-page: 595 year: 1993 end-page: 642 ident: bib0022 article-title: Scientists and the legacy of world war ii: The case of operations research (or) publication-title: Social studies of science – volume: 170 start-page: 237 year: 2018 end-page: 266 ident: bib0017 article-title: Theoretical challenges towards cutting-plane selection publication-title: Mathematical programming – volume: 70 start-page: 1126 year: 2017 end-page: 1135 ident: bib0019 article-title: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks publication-title: Proceedings of the 34th International Conference on Machine Learning – year: 2018 ident: bib0018 article-title: Learning permutations with sinkhorn policy gradient – start-page: 6348 year: 2017 end-page: 6358 ident: bib0033 article-title: Learning combinatorial optimization algorithms over graphs publication-title: Advances in Neural Information Processing Systems 30 – volume: 18 start-page: 620 year: 2010 end-page: 634 ident: bib0069 article-title: Recurrent policy gradients publication-title: Logic Journal of the IGPL – volume: 62 start-page: 680 year: 2014 end-page: 695 ident: bib0013 article-title: Generalized inverse multiobjective optimization with application to cancer therapy publication-title: Operations research – start-page: 595 year: 2018 end-page: 604 ident: bib0012 article-title: Learning a Classification of Mixed-Integer Quadratic Programming Problems publication-title: Integration of constraint programming, artificial intelligence, and operations research – year: 2017 ident: bib0040 article-title: Learning to optimize neural nets publication-title: arXiv:1703.00441 [cs, math, stat] – volume: 48 start-page: 2702 year: 2016 end-page: 2711 ident: bib0016 article-title: Discriminative Embeddings of Latent Variable Models for Structured Data publication-title: Proceedings of The 33rd International Conference on Machine Learning – volume: 51 start-page: 190 year: 2014 end-page: 199 ident: bib0051 article-title: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools publication-title: Computers & Operations Research – year: 2010 ident: bib0024 article-title: Handbook of metaheuristics (vol. 2) – year: 2018 ident: bib0063 article-title: Reinforcement learning: an introduction – start-page: 5998 year: 2017 end-page: 6008 ident: bib0065 article-title: Attention is all you need publication-title: Advances in neural information processing systems 30 – volume: 10 start-page: 147 year: 1976 end-page: 175 ident: bib0052 article-title: Computability of global solutions to factorable nonconvex programs: part i — convex underestimating problems publication-title: Mathematical programming – year: 2018 ident: bib0036 article-title: Attention solves your TSP, approximately publication-title: arXiv:1803.08475 [cs, stat] – year: 1991 ident: bib0009 article-title: Learning a synaptic learning rule publication-title: Ijcnn – year: 2018 ident: bib0042 article-title: Warmstarting of Model-Based Algorithm Configuration publication-title: thirty-Second AAAI conference on artificial intelligence – year: 2016 ident: bib0026 article-title: Deep learning – volume: 25 start-page: 207 year: 2017 end-page: 236 ident: bib0044 article-title: On learning and branching: A survey publication-title: TOP – start-page: 659 year: 2017 end-page: 666 ident: bib0035 article-title: Learning to Run Heuristics in Tree Search publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17 – year: 1998 ident: bib0064 article-title: Learning to learn – year: 2017 ident: bib0056 article-title: A note on learning algorithms for quadratic assignment with graph neural networks publication-title: arXiv:1706.07450 [cs, stat] – start-page: 724 year: 2016 end-page: 731 ident: bib0034 article-title: Learning to Branch in Mixed Integer Programming publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence – year: 2014 ident: bib0021 article-title: ReACT: Real-Time Algorithm Configuration through Tournaments publication-title: Seventh annual symposium on combinatorial search – volume: 50 start-page: 21:1 year: 2017 end-page: 21:35 ident: bib0031 article-title: Imitation learning: a survey of learning methods publication-title: ACM computing surveys – year: 2017 ident: bib0004 article-title: Reactive Dialectic Search Portfolios for MaxSAT publication-title: Thirty-first AAAI conference on artificial intelligence – year: 2015 ident: bib0006 article-title: Neural machine translation by jointly learning to align and translate publication-title: Iclr’2015, arxiv:1409.0473 – volume: 248 start-page: 943 year: 2016 end-page: 953 ident: bib0041 article-title: DASH: Dynamic approach for switching heuristics publication-title: European journal of operational research – year: 2017 ident: bib0057 article-title: Optimization as a model for few-shot learning publication-title: International conference on learning representations – year: 2018 ident: bib0038 article-title: Predicting solution summaries to integer linear programs under imperfect information with machine learning publication-title: arXiv:1807.11876 [cs, stat] – volume: 29 start-page: 185 year: 2017 end-page: 195 ident: bib0049 article-title: A machine learning-based approximation of strong branching publication-title: INFORMS journal on computing – year: 2018 ident: bib0059 article-title: Learning a SAT solver from single-bit supervision publication-title: arXiv:1802.03685 [cs] – volume: 85 year: 2018 ident: bib0046 article-title: Automated treatment planning in radiation therapy using generative adversarial networks publication-title: Proceedings of machine learning for health care – year: 2018 ident: bib0066 article-title: Graph attention networks publication-title: International conference on learning representations – volume: (vol.3 start-page: 2199 year: 2011 end-page: 2204) ident: bib0020 article-title: Heuristics in mixed integer programming – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: bib0060 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature – start-page: 87 year: 2001 end-page: 94 ident: bib0028 article-title: Learning to learn using gradient descent publication-title: Artificial neural networks — ICANN 2001 – year: 2017 ident: bib0030 article-title: Deep learning assisted heuristic tree search for the container pre-marshalling problem publication-title: arXiv:1709.09972 [cs] – start-page: 34 year: 2012 end-page: 55 ident: bib0071 article-title: A reinforcement learning: Great-deluge hyper-heuristic for examination timetabling publication-title: Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends – year: 2019 ident: bib0054 article-title: Deterministic implementations for reproducibility in deep reinforcement learning publication-title: AAAI 2019 workshop on reproducible AI – start-page: 15554 year: 2019 end-page: 15566 ident: bib0023 article-title: Exact combinatorial optimization with graph convolutional neural networks publication-title: Advances in Neural Information Processing Systems 32 (NIPS 2019) – year: 1998 ident: bib0070 article-title: Integer programming – year: 1981 ident: bib0039 article-title: Urban operations research – volume: 70 start-page: 1263 year: 2017 end-page: 1272 ident: bib0025 article-title: Neural Message Passing for Quantum Chemistry publication-title: Proceedings of the 34th international conference on machine learning – year: 2016 ident: bib0050 article-title: Online Learning for Strong Branching Approximation in Branch-and-Bound publication-title: Technical Report – volume: 4 start-page: 131 year: 1992 end-page: 139 ident: bib0058 article-title: Learning to control fast-weight memories: An alternative to dynamic recurrent networks publication-title: Neural computation – volume: 63 start-page: 102 year: 2015 end-page: 113 ident: bib0062 article-title: Generating new test instances by evolving in instance space publication-title: Computers & Operations Research – year: 1991 ident: 10.1016/j.ejor.2020.07.063_sbref0009 article-title: Learning a synaptic learning rule – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 10.1016/j.ejor.2020.07.063_bib0060 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – start-page: 724 year: 2016 ident: 10.1016/j.ejor.2020.07.063_bib0034 article-title: Learning to Branch in Mixed Integer Programming – volume: 4 start-page: 131 issue: 1 year: 1992 ident: 10.1016/j.ejor.2020.07.063_bib0058 article-title: Learning to control fast-weight memories: An alternative to dynamic recurrent networks publication-title: Neural computation doi: 10.1162/neco.1992.4.1.131 – volume: 70 start-page: 3751 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0068 article-title: Learned Optimizers that Scale and Generalize – volume: 25 start-page: 207 issue: 2 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0044 article-title: On learning and branching: A survey publication-title: TOP doi: 10.1007/s11750-017-0451-6 – year: 2017 ident: 10.1016/j.ejor.2020.07.063_sbref0008 article-title: Neural Combinatorial Optimization with Reinforcement Learning – volume: 170 start-page: 237 year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0017 article-title: Theoretical challenges towards cutting-plane selection publication-title: Mathematical programming doi: 10.1007/s10107-018-1302-4 – volume: 70 start-page: 1263 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0025 article-title: Neural Message Passing for Quantum Chemistry – start-page: 6348 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0033 article-title: Learning combinatorial optimization algorithms over graphs – volume: (vol.3 start-page: 2199 year: 2011 ident: 10.1016/j.ejor.2020.07.063_sbref0020 article-title: Heuristics in mixed integer programming – year: 2014 ident: 10.1016/j.ejor.2020.07.063_sbref0021 article-title: ReACT: Real-Time Algorithm Configuration through Tournaments – start-page: 37 year: 2012 ident: 10.1016/j.ejor.2020.07.063_bib0029 article-title: Automated algorithm configuration and parameter tuning – year: 2018 ident: 10.1016/j.ejor.2020.07.063_sbref0018 – year: 2018 ident: 10.1016/j.ejor.2020.07.063_sbref0063 – year: 1998 ident: 10.1016/j.ejor.2020.07.063_bib0070 – start-page: 34 year: 2012 ident: 10.1016/j.ejor.2020.07.063_sbref0071 article-title: A reinforcement learning: Great-deluge hyper-heuristic for examination timetabling publication-title: Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends doi: 10.4018/978-1-4666-0270-0.ch003 – volume: 63 start-page: 102 year: 2015 ident: 10.1016/j.ejor.2020.07.063_sbref0062 article-title: Generating new test instances by evolving in instance space publication-title: Computers & Operations Research doi: 10.1016/j.cor.2015.04.022 – start-page: 595 year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0012 article-title: Learning a Classification of Mixed-Integer Quadratic Programming Problems – start-page: 202 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0037 article-title: Learning When to Use a Decomposition – volume: 18 start-page: 620 issue: 5 year: 2010 ident: 10.1016/j.ejor.2020.07.063_bib0069 article-title: Recurrent policy gradients publication-title: Logic Journal of the IGPL doi: 10.1093/jigpal/jzp049 – start-page: 3981 year: 2016 ident: 10.1016/j.ejor.2020.07.063_bib0002 article-title: Learning to learn by gradient descent by gradient descent – year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0007 article-title: Strong Sparse Cut Selection via Trained Neural Nets for Quadratic Semidefinite Outer-Approximations – start-page: 3293 year: 2014 ident: 10.1016/j.ejor.2020.07.063_bib0027 article-title: Learning to search in branch and bound algorithms – year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0040 article-title: Learning to optimize neural nets publication-title: arXiv:1703.00441 [cs, math, stat] – start-page: 2692 year: 2015 ident: 10.1016/j.ejor.2020.07.063_sbref0067 article-title: Pointer networks – year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0038 article-title: Predicting solution summaries to integer linear programs under imperfect information with machine learning publication-title: arXiv:1807.11876 [cs, stat] – year: 2006 ident: 10.1016/j.ejor.2020.07.063_bib0011 – year: 2018 ident: 10.1016/j.ejor.2020.07.063_sbref0066 article-title: Graph attention networks – start-page: 87 year: 2001 ident: 10.1016/j.ejor.2020.07.063_bib0028 article-title: Learning to learn using gradient descent – volume: 11 start-page: 15 issue: 1 year: 1999 ident: 10.1016/j.ejor.2020.07.063_bib0061 article-title: Neural networks for combinatorial optimization: a review of more than a decade of research publication-title: INFORMS journal on computing doi: 10.1287/ijoc.11.1.15 – start-page: 619 year: 2009 ident: 10.1016/j.ejor.2020.07.063_bib0043 article-title: MIP Computation – volume: 237 start-page: 41 year: 2016 ident: 10.1016/j.ejor.2020.07.063_sbref0010 article-title: ASlib: A benchmark library for algorithm selection publication-title: Artificial intelligence doi: 10.1016/j.artint.2016.04.003 – volume: 50 start-page: 21:1 issue: 2 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0031 article-title: Imitation learning: a survey of learning methods publication-title: ACM computing surveys – volume: 10 start-page: 147 issue: 1 year: 1976 ident: 10.1016/j.ejor.2020.07.063_bib0052 article-title: Computability of global solutions to factorable nonconvex programs: part i — convex underestimating problems publication-title: Mathematical programming doi: 10.1007/BF01580665 – year: 2017 ident: 10.1016/j.ejor.2020.07.063_sbref0030 article-title: Deep learning assisted heuristic tree search for the container pre-marshalling problem publication-title: arXiv:1709.09972 [cs] – year: 2014 ident: 10.1016/j.ejor.2020.07.063_bib0014 – start-page: 309 year: 2019 ident: 10.1016/j.ejor.2020.07.063_bib0003 article-title: Hyper-Reactive Tabu Search for MaxSAT – year: 2010 ident: 10.1016/j.ejor.2020.07.063_sbref0024 – year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0056 article-title: A note on learning algorithms for quadratic assignment with graph neural networks publication-title: arXiv:1706.07450 [cs, stat] – start-page: 123 year: 2016 ident: 10.1016/j.ejor.2020.07.063_bib0047 article-title: Structure-Preserving Instance Generation – volume: 23 start-page: 595 issue: 4 year: 1993 ident: 10.1016/j.ejor.2020.07.063_bib0022 article-title: Scientists and the legacy of world war ii: The case of operations research (or) publication-title: Social studies of science doi: 10.1177/030631293023004001 – volume: 51 start-page: 190 year: 2014 ident: 10.1016/j.ejor.2020.07.063_sbref0051 article-title: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools publication-title: Computers & Operations Research doi: 10.1016/j.cor.2014.05.020 – volume: 35 start-page: 53 issue: 1 year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0015 article-title: Generative adversarial networks: an overview publication-title: IEEE signal processing magazine doi: 10.1109/MSP.2017.2765202 – year: 2016 ident: 10.1016/j.ejor.2020.07.063_bib0050 article-title: Online Learning for Strong Branching Approximation in Branch-and-Bound – year: 2015 ident: 10.1016/j.ejor.2020.07.063_bib0006 article-title: Neural machine translation by jointly learning to align and translate – start-page: 659 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0035 article-title: Learning to Run Heuristics in Tree Search – year: 1998 ident: 10.1016/j.ejor.2020.07.063_bib0064 article-title: Learning to learn – volume: 62 start-page: 680 issue: 3 year: 2014 ident: 10.1016/j.ejor.2020.07.063_bib0013 article-title: Generalized inverse multiobjective optimization with application to cancer therapy publication-title: Operations research doi: 10.1287/opre.2014.1267 – year: 2019 ident: 10.1016/j.ejor.2020.07.063_bib0054 article-title: Deterministic implementations for reproducibility in deep reinforcement learning – start-page: 5998 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0065 article-title: Attention is all you need – start-page: 15554 year: 2019 ident: 10.1016/j.ejor.2020.07.063_sbref0023 article-title: Exact combinatorial optimization with graph convolutional neural networks – volume: 248 start-page: 943 issue: 3 year: 2016 ident: 10.1016/j.ejor.2020.07.063_sbref0041 article-title: DASH: Dynamic approach for switching heuristics publication-title: European journal of operational research doi: 10.1016/j.ejor.2015.08.018 – year: 2014 ident: 10.1016/j.ejor.2020.07.063_bib0048 article-title: A supervised machine learning approach to variable branching in branch-and-bound – year: 2016 ident: 10.1016/j.ejor.2020.07.063_bib0026 – volume: 48 start-page: 2702 year: 2016 ident: 10.1016/j.ejor.2020.07.063_bib0016 article-title: Discriminative Embeddings of Latent Variable Models for Structured Data – year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0059 article-title: Learning a SAT solver from single-bit supervision publication-title: arXiv:1802.03685 [cs] – volume: 260 start-page: 494 issue: 2 year: 2017 ident: 10.1016/j.ejor.2020.07.063_sbref0032 article-title: Markov chain methods for the bipartite boolean quadratic programming problem publication-title: European journal of operational research doi: 10.1016/j.ejor.2017.01.001 – year: 2017 ident: 10.1016/j.ejor.2020.07.063_sbref0004 article-title: Reactive Dialectic Search Portfolios for MaxSAT – volume: 70 start-page: 1126 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0019 article-title: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks – year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0042 article-title: Warmstarting of Model-Based Algorithm Configuration – volume: 49 start-page: 771 issue: 5 year: 2001 ident: 10.1016/j.ejor.2020.07.063_bib0001 article-title: Inverse optimization publication-title: Operations Research doi: 10.1287/opre.49.5.771.10607 – year: 1981 ident: 10.1016/j.ejor.2020.07.063_bib0039 – year: 2012 ident: 10.1016/j.ejor.2020.07.063_bib0053 – start-page: 591 year: 2018 ident: 10.1016/j.ejor.2020.07.063_sbref0055 article-title: Learning fast optimizers for contextual stochastic integer programs. – year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0036 article-title: Attention solves your TSP, approximately publication-title: arXiv:1803.08475 [cs, stat] – start-page: 5472 year: 2018 ident: 10.1016/j.ejor.2020.07.063_sbref0045 article-title: Boosting combinatorial problem modeling with machine learning – year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0057 article-title: Optimization as a model for few-shot learning – volume: 29 start-page: 185 issue: 1 year: 2017 ident: 10.1016/j.ejor.2020.07.063_bib0049 article-title: A machine learning-based approximation of strong branching publication-title: INFORMS journal on computing doi: 10.1287/ijoc.2016.0723 – volume: 85 year: 2018 ident: 10.1016/j.ejor.2020.07.063_bib0046 article-title: Automated treatment planning in radiation therapy using generative adversarial networks – year: 2007 ident: 10.1016/j.ejor.2020.07.063_bib0005 |
| SSID | ssj0001515 |
| Score | 2.7472394 |
| SecondaryResourceType | review_article |
| Snippet | •This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 405 |
| SubjectTerms | Branch and bound Combinatorial optimization Machine learning Mixed-integer programming solvers |
| Title | Machine learning for combinatorial optimization: A methodological tour d’horizon |
| URI | https://dx.doi.org/10.1016/j.ejor.2020.07.063 |
| Volume | 290 |
| WOSCitedRecordID | wos000602863200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfKhhA8DCggxj_5gbfJk-M4ccxbQZsAjWmCgcpT5DguazWSqUuriSe-A098PT4J59gOKZsmQOIlaq26Tn2_nu8u97tD6Cl4CAK0XkHAnRCEc0WJKhNN4GSJeMHTWLSd5z7sif39bDyWB4PBt8CFWR6LqsrOzuTJfxU1jIGwLXX2L8TdfSkMwGsQOlxB7HD9I8G_adMjTegH4fIkYSFwga2DbSPkNeiJz56A6ajprpF0pwgbWGirDIkQ8gimffHyuyiK7y1aGJiH2KIvItQFm5-b6tO0Dct-rE-PFt1hsFeX0y6xshs9mNeLpaejjKqmDg__fXiCRfZJi2NPupjZOd6M42oJQRhzrM1t41RvJhhJM9ddIOhm5nqJehCynqblNOkd2tzRrM-dBy40Mds2s9oWf2W0rdTqVepqne139qbsPTHrRmUyuYLWmUgkqMr10aud8evugLc2YPtwyv8Iz8VyaYO_r3SxvdOzYQ5voQ3vfOCRA81tNDDVEF0L3Ichuhl6fGCv8ofoRq9g5R301oMLB3BhABdeARfug-sZHuFVaGELLVz--Prdg-ouer-7c_jiJfFdOYjmVDakLDJl4kwxWsaaGaPEpK1hROEd2OpapVQnsUwj2MNImyLVaWoshVopm1LM43toraorcx9hI6WaaPAoTKI5HDbgq2vw-FRRMjqJC7GJorB3ufYl623nlOM85CbOcrvfud3vnIoc9nsTbXVzTlzBlks_nQSR5N7kdKZkDgi6ZN6Df5z3EF3_9Sd5hNaa-cI8Rlf1spmezp94oP0EAO-mtg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+combinatorial+optimization%3A+A+methodological+tour+d%E2%80%99horizon&rft.jtitle=European+journal+of+operational+research&rft.au=Bengio%2C+Yoshua&rft.au=Lodi%2C+Andrea&rft.au=Prouvost%2C+Antoine&rft.date=2021-04-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=290&rft.issue=2&rft.spage=405&rft.epage=421&rft_id=info:doi/10.1016%2Fj.ejor.2020.07.063&rft.externalDocID=S0377221720306895 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |