Machine learning for combinatorial optimization: A methodological tour d’horizon

•This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems.•Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making dec...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 290; no. 2; pp. 405 - 421
Main Authors: Bengio, Yoshua, Lodi, Andrea, Prouvost, Antoine
Format: Journal Article
Language:English
Published: Elsevier B.V 16.04.2021
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems.•Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions which are otherwise too expensive to compute or mathematically not well-defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task. This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
AbstractList •This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems.•Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions which are otherwise too expensive to compute or mathematically not well-defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task. This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
Author Lodi, Andrea
Prouvost, Antoine
Bengio, Yoshua
Author_xml – sequence: 1
  givenname: Yoshua
  surname: Bengio
  fullname: Bengio, Yoshua
  email: yoshua.bengio@mila.quebec
  organization: Mila, Institut Québecois d’Intelligence Artificielle, Pavillon André-Aisenstadt 2920, Chemin de la TourMontreal, Qc, H3T 1J4 Canada
– sequence: 2
  givenname: Andrea
  surname: Lodi
  fullname: Lodi, Andrea
  email: andrea.lodi@polymtl.ca
  organization: Canada Excellence Research Chair in Data Science for Decision Making, École Polytechnique de Montréal, Pavillon André-Aisenstadt 2920, Chemin de la TourMontreal, Qc, H3T 1J4 Canada
– sequence: 3
  givenname: Antoine
  surname: Prouvost
  fullname: Prouvost, Antoine
  email: antoine.prouvost@polymtl.ca
  organization: Canada Excellence Research Chair in Data Science for Decision Making, École Polytechnique de Montréal, Pavillon André-Aisenstadt 2920, Chemin de la TourMontreal, Qc, H3T 1J4 Canada
BookMark eNp9kM9Kw0AQhxepYFt9AU95gcTZTbJJxEsp_gNFED0v282knZDuls0q2JOv4ev5JKbWk4eehmHmG-b3TdjIOouMnXNIOHB50SbYOp8IEJBAkYBMj9iYl4WIZSlhxMaQFkUsBC9O2KTvWwDgOc_H7PlRmxVZjDrU3pJdRo3zkXHrBVkdnCfdRW4TaE1bHcjZy2gWrTGsXO06tyQzjIN781H9_fm1Gta3zp6y40Z3PZ791Sl7vbl-md_FD0-39_PZQ2wyqEJcL0qNaakF1KkRiLpohiezEoYO8spoCSZPK8llWXGDC2mkRBBppXXGIc_SKRP7u8a7vvfYqI2ntfYfioPaWVGt2llROysKCjVYGaDyH2Qo_CYLXlN3GL3aoziEeif0qjeE1mBNHk1QtaND-A_OfIIJ
CitedBy_id crossref_primary_10_1109_TAES_2024_3418944
crossref_primary_10_1016_j_cie_2023_109686
crossref_primary_10_1088_2632_2153_ad33e0
crossref_primary_10_1016_j_tre_2022_102722
crossref_primary_10_1088_1367_2630_ac2d72
crossref_primary_10_1109_TSG_2023_3312225
crossref_primary_10_1016_j_cie_2021_107704
crossref_primary_10_1109_ACCESS_2022_3233852
crossref_primary_10_1109_TED_2021_3084910
crossref_primary_10_1007_s10479_022_04780_7
crossref_primary_10_1016_j_ejor_2021_11_050
crossref_primary_10_1016_j_cor_2025_107102
crossref_primary_10_1016_j_tre_2023_103095
crossref_primary_10_1007_s00521_023_08591_0
crossref_primary_10_1038_s41534_023_00710_y
crossref_primary_10_32866_001c_74765
crossref_primary_10_1016_j_cie_2024_110837
crossref_primary_10_1109_TNNLS_2024_3371706
crossref_primary_10_1109_TCOMM_2024_3486982
crossref_primary_10_1016_j_jksuci_2023_101787
crossref_primary_10_1109_ACCESS_2024_3522020
crossref_primary_10_1007_s10489_021_02920_3
crossref_primary_10_1109_TPWRS_2024_3438769
crossref_primary_10_1016_j_artint_2022_103786
crossref_primary_10_1109_TPAMI_2024_3409634
crossref_primary_10_1111_exsy_13429
crossref_primary_10_1287_ijoc_2021_1110
crossref_primary_10_3390_electronics13163242
crossref_primary_10_1016_j_ejor_2023_06_016
crossref_primary_10_1038_s41598_024_60579_5
crossref_primary_10_1080_00207543_2023_2260896
crossref_primary_10_1109_OJCSYS_2025_3601435
crossref_primary_10_1145_3604559
crossref_primary_10_1093_comjnl_bxac187
crossref_primary_10_3389_fams_2023_1155356
crossref_primary_10_1016_j_compchemeng_2022_108100
crossref_primary_10_1016_j_eswa_2023_122814
crossref_primary_10_1016_j_eswa_2023_121844
crossref_primary_10_1016_j_tre_2025_104409
crossref_primary_10_1016_j_tcs_2025_115423
crossref_primary_10_1109_ACCESS_2022_3207559
crossref_primary_10_1016_j_cie_2024_110606
crossref_primary_10_1080_00207543_2021_2002962
crossref_primary_10_1155_2022_3553622
crossref_primary_10_1287_trsc_2022_1196
crossref_primary_10_1007_s11425_023_2364_2
crossref_primary_10_1155_2023_1832501
crossref_primary_10_3390_en15207754
crossref_primary_10_1155_2024_6616243
crossref_primary_10_1109_ACCESS_2022_3224808
crossref_primary_10_1111_mice_13146
crossref_primary_10_1007_s10601_022_09327_y
crossref_primary_10_1007_s11063_022_11028_9
crossref_primary_10_3390_biomimetics10040231
crossref_primary_10_1287_ijoc_2022_1194
crossref_primary_10_1109_TEVC_2021_3050465
crossref_primary_10_1371_journal_pone_0319711
crossref_primary_10_1016_j_eswa_2025_127950
crossref_primary_10_1007_s41109_022_00500_z
crossref_primary_10_1016_j_procs_2023_01_300
crossref_primary_10_1080_01605682_2023_2253852
crossref_primary_10_1109_TITS_2021_3131637
crossref_primary_10_1109_TWC_2021_3104743
crossref_primary_10_1016_j_ins_2022_07_150
crossref_primary_10_1007_s10994_021_06017_3
crossref_primary_10_1287_ijoc_2022_1181
crossref_primary_10_1287_ijoc_2022_0090
crossref_primary_10_3390_electronics11142253
crossref_primary_10_1016_j_mlwa_2025_100685
crossref_primary_10_1109_TR_2022_3200137
crossref_primary_10_1016_j_neunet_2025_107380
crossref_primary_10_1109_TITS_2023_3334976
crossref_primary_10_1016_j_engappai_2021_104422
crossref_primary_10_1109_TASE_2023_3246223
crossref_primary_10_1007_s10462_022_10342_x
crossref_primary_10_1016_j_swevo_2025_102094
crossref_primary_10_1287_trsc_2021_1045
crossref_primary_10_1007_s11590_025_02208_2
crossref_primary_10_1016_j_cor_2022_105769
crossref_primary_10_1007_s10462_024_10991_0
crossref_primary_10_1007_s00521_023_09042_6
crossref_primary_10_1007_s40747_020_00205_9
crossref_primary_10_1016_j_compchemeng_2022_108131
crossref_primary_10_1016_j_knosys_2025_113335
crossref_primary_10_1109_TII_2020_3031409
crossref_primary_10_1109_TITS_2025_3535915
crossref_primary_10_3390_pr12122885
crossref_primary_10_1016_j_trc_2024_104662
crossref_primary_10_1103_PhysRevApplied_19_024027
crossref_primary_10_1016_j_cor_2025_107029
crossref_primary_10_1111_poms_13811
crossref_primary_10_1016_j_trc_2023_104149
crossref_primary_10_1016_j_tre_2023_103172
crossref_primary_10_1109_TII_2021_3074157
crossref_primary_10_1016_j_eswa_2025_127731
crossref_primary_10_1016_j_artint_2023_103918
crossref_primary_10_1287_ijoc_2021_0225
crossref_primary_10_1007_s11750_024_00672_0
crossref_primary_10_3390_modelling5040085
crossref_primary_10_1016_j_ifacol_2024_09_155
crossref_primary_10_1109_TII_2023_3268760
crossref_primary_10_1287_trsc_2022_1183
crossref_primary_10_1007_s40305_025_00632_w
crossref_primary_10_1109_TII_2024_3353851
crossref_primary_10_1016_j_knosys_2022_109570
crossref_primary_10_1016_j_knosys_2022_109455
crossref_primary_10_1016_j_jmsy_2025_04_017
crossref_primary_10_1109_TNNLS_2023_3314375
crossref_primary_10_1016_j_engappai_2023_107790
crossref_primary_10_1111_poms_13801
crossref_primary_10_1016_j_cor_2022_105897
crossref_primary_10_1287_ijoc_2024_0775
crossref_primary_10_1016_j_compchemeng_2023_108523
crossref_primary_10_1016_j_vehcom_2023_100631
crossref_primary_10_1016_j_eswa_2025_128951
crossref_primary_10_1109_TETCI_2024_3354111
crossref_primary_10_1007_s10115_025_02472_9
crossref_primary_10_1109_TCYB_2021_3089179
crossref_primary_10_1007_s11590_022_01880_y
crossref_primary_10_1016_j_engappai_2023_106664
crossref_primary_10_1016_j_eswa_2025_126429
crossref_primary_10_1287_opre_2023_0564
crossref_primary_10_1287_ijoc_2023_0424
crossref_primary_10_3390_aerospace11120966
crossref_primary_10_7232_JKIIE_2024_50_6_418
crossref_primary_10_1016_j_tre_2024_103683
crossref_primary_10_1016_j_ijpe_2022_108579
crossref_primary_10_3390_math11020298
crossref_primary_10_3390_app14198642
crossref_primary_10_1007_s10489_022_03456_w
crossref_primary_10_1016_j_apenergy_2024_125037
crossref_primary_10_1007_s10514_021_09997_2
crossref_primary_10_1016_j_vlsi_2022_05_002
crossref_primary_10_1109_MDAT_2022_3161593
crossref_primary_10_1080_09537287_2024_2302479
crossref_primary_10_1109_TNNLS_2024_3483231
crossref_primary_10_1007_s10489_022_03992_5
crossref_primary_10_1007_s43069_024_00301_3
crossref_primary_10_3390_math8112018
crossref_primary_10_1016_j_neucom_2023_126848
crossref_primary_10_1287_ijoc_2024_0637
crossref_primary_10_1007_s12065_025_01045_7
crossref_primary_10_1109_TCAD_2021_3124762
crossref_primary_10_1016_j_tre_2023_103263
crossref_primary_10_1016_j_knosys_2025_114439
crossref_primary_10_1002_net_70003
crossref_primary_10_1007_s11704_024_40490_y
crossref_primary_10_1016_j_compchemeng_2024_108725
crossref_primary_10_1016_j_ijepes_2024_110137
crossref_primary_10_1007_s43069_024_00336_6
crossref_primary_10_1038_s41598_025_94586_x
crossref_primary_10_1007_s10601_024_09376_5
crossref_primary_10_1287_trsc_2022_0042
crossref_primary_10_1016_j_trb_2023_102846
crossref_primary_10_1109_TVT_2024_3508671
crossref_primary_10_1287_trsc_2021_1084
crossref_primary_10_1016_j_jatrs_2024_100014
crossref_primary_10_1080_03610918_2023_2234683
crossref_primary_10_1016_j_apenergy_2024_125139
crossref_primary_10_1007_s10489_022_03453_z
crossref_primary_10_1080_13675567_2024_2436392
crossref_primary_10_3389_frobt_2024_1375393
crossref_primary_10_3390_a14090267
crossref_primary_10_1002_aaai_70032
crossref_primary_10_1109_ACCESS_2024_3435331
crossref_primary_10_1007_s10845_023_02209_x
crossref_primary_10_1007_s00521_024_10352_6
crossref_primary_10_1109_TNSM_2024_3373606
crossref_primary_10_1109_TITS_2023_3253552
crossref_primary_10_1111_itor_13135
crossref_primary_10_1007_s10479_024_05943_4
crossref_primary_10_1080_00207543_2021_2013566
crossref_primary_10_1016_j_apenergy_2023_122278
crossref_primary_10_1029_2023JB026720
crossref_primary_10_1016_j_cor_2021_105554
crossref_primary_10_1007_s40305_023_00507_y
crossref_primary_10_12720_jait_16_8_1178_1186
crossref_primary_10_3390_drones5040136
crossref_primary_10_1016_j_compchemeng_2023_108208
crossref_primary_10_1016_j_egyr_2023_04_210
crossref_primary_10_1515_revce_2024_0060
crossref_primary_10_1109_JIOT_2022_3142185
crossref_primary_10_1016_j_eswa_2025_128992
crossref_primary_10_1109_TEVC_2021_3130835
crossref_primary_10_1016_j_icte_2023_03_007
crossref_primary_10_1146_annurev_environ_020220_061831
crossref_primary_10_1007_s10601_024_09377_4
crossref_primary_10_1016_j_autcon_2024_105284
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_engappai_2023_106740
crossref_primary_10_1016_j_fsidi_2023_301684
crossref_primary_10_1109_TGCN_2023_3296646
crossref_primary_10_1109_TITS_2024_3410691
crossref_primary_10_1109_TEVC_2024_3378911
crossref_primary_10_1109_TPAMI_2025_3562286
crossref_primary_10_1016_j_ejor_2021_08_007
crossref_primary_10_1016_j_engappai_2023_106508
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_1287_trsc_2022_0029
crossref_primary_10_1016_j_nexus_2025_100448
crossref_primary_10_1016_j_ejor_2025_04_033
crossref_primary_10_1016_j_neunet_2022_08_008
crossref_primary_10_1080_23249935_2024_2444327
crossref_primary_10_1016_j_jksuci_2023_101723
crossref_primary_10_1007_s10462_025_11267_x
crossref_primary_10_1145_3485128
crossref_primary_10_1016_j_trc_2025_105215
crossref_primary_10_1016_j_eswa_2025_127671
crossref_primary_10_1088_1402_4896_ad2b35
crossref_primary_10_1016_j_orl_2022_01_018
crossref_primary_10_1016_j_knosys_2023_110880
crossref_primary_10_3390_app122010530
crossref_primary_10_1016_j_cie_2023_109851
crossref_primary_10_1088_2632_2153_acb895
crossref_primary_10_3390_app15052679
crossref_primary_10_1109_JSTQE_2022_3151323
crossref_primary_10_1080_14606925_2024_2377455
crossref_primary_10_1002_net_22200
crossref_primary_10_1145_3695986
crossref_primary_10_1109_TII_2023_3272661
crossref_primary_10_1016_j_knosys_2020_106562
crossref_primary_10_1109_TNET_2022_3213970
crossref_primary_10_1109_TITS_2023_3265517
crossref_primary_10_1016_j_trc_2025_105208
crossref_primary_10_1093_nsr_nwae132
crossref_primary_10_1016_j_compchemeng_2024_108765
crossref_primary_10_1109_ACCESS_2024_3505678
crossref_primary_10_3390_electronics11040539
crossref_primary_10_1016_j_tre_2024_103519
crossref_primary_10_1109_TSTE_2023_3268140
crossref_primary_10_1109_TSMC_2024_3389751
crossref_primary_10_1016_j_ejor_2023_01_054
crossref_primary_10_1109_ACCESS_2024_3524176
crossref_primary_10_3389_fmars_2025_1614356
crossref_primary_10_1007_s10479_022_04612_8
crossref_primary_10_1109_JPROC_2022_3188337
crossref_primary_10_1109_TSG_2022_3207561
crossref_primary_10_3390_app15179630
crossref_primary_10_1016_j_jprocont_2024_103207
crossref_primary_10_3390_app13020806
crossref_primary_10_3390_math10010097
crossref_primary_10_1109_TSTE_2024_3421929
crossref_primary_10_1109_TEVC_2022_3219238
crossref_primary_10_1111_poms_13775
crossref_primary_10_1016_j_tre_2024_103866
crossref_primary_10_3233_JIFS_234536
crossref_primary_10_1007_s11705_022_2283_7
crossref_primary_10_1016_j_cor_2021_105400
crossref_primary_10_1145_3661308
crossref_primary_10_1007_s10462_024_11045_1
crossref_primary_10_1016_j_ijepes_2024_110445
crossref_primary_10_1109_TCYB_2025_3547565
crossref_primary_10_1145_3447879_3447883
crossref_primary_10_1109_TAES_2022_3231239
crossref_primary_10_1016_j_engappai_2022_105220
crossref_primary_10_1016_j_knosys_2023_110566
crossref_primary_10_1007_s12083_024_01898_2
crossref_primary_10_3390_sym17081236
crossref_primary_10_3390_app12084018
crossref_primary_10_1080_00207543_2024_2439369
crossref_primary_10_1287_trsc_2022_0015
crossref_primary_10_1016_j_ifacol_2025_07_140
crossref_primary_10_1177_14780771251316125
crossref_primary_10_1109_TEVC_2024_3357819
crossref_primary_10_1109_TITS_2025_3562860
crossref_primary_10_1109_TPWRS_2024_3406437
crossref_primary_10_1016_j_disopt_2025_100879
crossref_primary_10_1016_j_nucengdes_2020_110966
crossref_primary_10_1287_trsc_2023_1199
crossref_primary_10_1002_oca_3030
crossref_primary_10_1016_j_swevo_2024_101780
crossref_primary_10_1080_23302674_2023_2252321
crossref_primary_10_1109_TNSM_2023_3287433
crossref_primary_10_1016_j_jocs_2024_102281
crossref_primary_10_1016_j_tre_2025_104095
crossref_primary_10_1109_TKDE_2023_3279920
crossref_primary_10_1287_trsc_2024_0672
crossref_primary_10_1109_ACCESS_2021_3129709
crossref_primary_10_1109_ACCESS_2023_3324193
crossref_primary_10_1007_s12532_022_00230_4
crossref_primary_10_1016_j_knosys_2023_110562
crossref_primary_10_1016_j_geoen_2023_211771
crossref_primary_10_1016_j_asoc_2024_111947
crossref_primary_10_1016_j_compeleceng_2025_110411
crossref_primary_10_1016_j_neunet_2025_107446
crossref_primary_10_1109_ACCESS_2023_3268212
crossref_primary_10_1287_ijoc_2023_0255
crossref_primary_10_3390_electronics12153288
crossref_primary_10_1109_TITS_2023_3313688
crossref_primary_10_1002_net_22243
crossref_primary_10_1016_j_apenergy_2024_124332
crossref_primary_10_1287_inte_2021_1109
crossref_primary_10_1016_j_eng_2025_07_032
crossref_primary_10_1145_3589332
crossref_primary_10_1002_aisy_202300111
crossref_primary_10_1016_j_compchemeng_2024_108686
crossref_primary_10_1016_j_ins_2025_122112
crossref_primary_10_1016_j_cie_2025_111138
crossref_primary_10_1016_j_ejor_2024_03_020
crossref_primary_10_1016_j_eswa_2025_129542
crossref_primary_10_1016_j_iswa_2023_200321
crossref_primary_10_1016_j_neucom_2022_08_005
crossref_primary_10_1016_j_ejor_2024_12_014
crossref_primary_10_1109_JETCAS_2023_3290319
crossref_primary_10_1016_j_jag_2023_103526
crossref_primary_10_1016_j_nucengdes_2023_112423
crossref_primary_10_1016_j_knosys_2021_107526
crossref_primary_10_1287_ijoc_2022_0314
crossref_primary_10_1109_TSC_2024_3376231
crossref_primary_10_1016_j_heliyon_2023_e20550
crossref_primary_10_1088_1361_6501_add6c0
crossref_primary_10_1007_s11269_021_02872_w
crossref_primary_10_1007_s13042_024_02327_9
crossref_primary_10_1287_ijoc_2022_0310
crossref_primary_10_1016_j_rser_2023_113873
crossref_primary_10_1016_j_asoc_2023_110680
crossref_primary_10_1109_MCI_2023_3277768
crossref_primary_10_1109_TMC_2025_3549757
crossref_primary_10_1016_j_engappai_2022_105439
crossref_primary_10_1080_00207543_2023_2172472
crossref_primary_10_26599_TST_2024_9010219
crossref_primary_10_1109_ACCESS_2022_3218908
crossref_primary_10_1007_s10107_024_02130_y
crossref_primary_10_1007_s43069_025_00513_1
crossref_primary_10_1109_TSP_2023_3334396
crossref_primary_10_1007_s11063_022_10900_y
crossref_primary_10_1080_24725854_2021_1934756
crossref_primary_10_1109_TNNLS_2024_3443413
crossref_primary_10_1007_s11277_023_10735_3
crossref_primary_10_1109_ACCESS_2024_3452511
crossref_primary_10_1016_j_ejor_2024_04_004
crossref_primary_10_1016_j_tre_2025_104083
crossref_primary_10_1109_JSTSP_2024_3427371
crossref_primary_10_1007_s10479_023_05508_x
crossref_primary_10_1109_TWC_2021_3123620
crossref_primary_10_1016_j_asoc_2025_113280
crossref_primary_10_1002_solr_202500455
crossref_primary_10_1007_s10732_023_09512_z
crossref_primary_10_1016_j_apenergy_2024_124431
crossref_primary_10_1016_j_cor_2023_106249
crossref_primary_10_1109_TPAMI_2024_3352096
crossref_primary_10_1111_poms_14018
crossref_primary_10_1109_TNNLS_2022_3148435
crossref_primary_10_1016_j_cor_2023_106360
crossref_primary_10_1016_j_eswa_2023_123106
crossref_primary_10_1088_2632_2153_ac0496
crossref_primary_10_1016_j_tre_2024_103819
crossref_primary_10_1287_ijoc_2023_0281
crossref_primary_10_1007_s10489_023_05013_5
crossref_primary_10_1109_TAI_2024_3497926
crossref_primary_10_1109_TNNLS_2022_3159671
crossref_primary_10_1145_3530894
crossref_primary_10_1007_s00521_022_07604_8
crossref_primary_10_1007_s00521_022_07989_6
crossref_primary_10_1103_PhysRevResearch_7_023299
crossref_primary_10_1109_TEVC_2023_3255246
crossref_primary_10_1109_ACCESS_2025_3555393
crossref_primary_10_1016_j_ifacol_2023_10_1242
crossref_primary_10_1109_ACCESS_2021_3131799
crossref_primary_10_1016_j_tre_2024_103805
crossref_primary_10_1016_j_ejor_2023_11_038
crossref_primary_10_2139_ssrn_5021721
crossref_primary_10_36401_IDDB_25_1
crossref_primary_10_1038_s42256_021_00401_3
crossref_primary_10_1080_19475705_2024_2383783
crossref_primary_10_3390_ai2020010
crossref_primary_10_1007_s43069_025_00449_6
crossref_primary_10_1016_j_neucom_2025_131361
crossref_primary_10_1080_23270012_2023_2229842
crossref_primary_10_1080_01605682_2024_2446655
crossref_primary_10_1007_s10845_023_02084_6
crossref_primary_10_1016_j_neucom_2024_128609
crossref_primary_10_1007_s10479_022_04547_0
crossref_primary_10_1088_1367_2630_add365
crossref_primary_10_1016_j_omega_2024_103039
crossref_primary_10_1016_j_cor_2024_106768
crossref_primary_10_1109_TCYB_2023_3312476
crossref_primary_10_1109_TSMC_2023_3289322
crossref_primary_10_1016_j_cor_2023_106349
crossref_primary_10_1007_s10844_021_00666_5
crossref_primary_10_1016_j_cor_2024_106881
crossref_primary_10_1057_s41272_023_00459_1
crossref_primary_10_1016_j_asoc_2020_106790
crossref_primary_10_1016_j_ejor_2022_01_034
crossref_primary_10_1142_S1793830924501088
crossref_primary_10_1287_ijoc_2023_1277
crossref_primary_10_1016_j_trc_2025_105163
crossref_primary_10_1109_TPAMI_2021_3078053
crossref_primary_10_1016_j_ejor_2023_10_045
crossref_primary_10_1109_JSTSP_2025_3558653
crossref_primary_10_1109_TSMC_2020_3027860
crossref_primary_10_3390_a16050223
crossref_primary_10_3390_electronics12040871
crossref_primary_10_1016_j_ijpe_2024_109325
crossref_primary_10_1080_24725854_2023_2294816
crossref_primary_10_1016_j_tre_2025_104278
crossref_primary_10_1007_s11548_022_02664_6
crossref_primary_10_1007_s12648_024_03179_3
crossref_primary_10_1016_j_engappai_2024_108472
crossref_primary_10_1287_trsc_2023_intro_v58_n1
crossref_primary_10_1038_s41596_024_01084_x
crossref_primary_10_1016_j_ejor_2024_11_018
crossref_primary_10_1007_s11227_025_07792_9
crossref_primary_10_1016_j_ejor_2023_09_026
crossref_primary_10_1016_j_engappai_2022_105741
crossref_primary_10_3390_app15158522
crossref_primary_10_1007_s11047_022_09913_2
crossref_primary_10_1016_j_tre_2025_104281
crossref_primary_10_1016_j_knosys_2024_111559
crossref_primary_10_1007_s40747_024_01469_1
crossref_primary_10_1016_j_ijpe_2025_109731
crossref_primary_10_1016_j_tre_2025_104048
crossref_primary_10_1145_3618348
crossref_primary_10_1002_smll_202411833
crossref_primary_10_1016_j_jbusres_2023_113980
crossref_primary_10_1109_JIOT_2021_3074111
crossref_primary_10_3390_e24070957
crossref_primary_10_1016_j_jestch_2025_102012
crossref_primary_10_1016_j_asr_2023_12_036
crossref_primary_10_1145_3647644
crossref_primary_10_1016_j_ejor_2024_06_040
crossref_primary_10_1016_j_epsr_2024_110985
crossref_primary_10_1016_j_cmpb_2021_106399
crossref_primary_10_1137_22M1489332
crossref_primary_10_3390_make5040082
crossref_primary_10_1109_TWC_2025_3563529
crossref_primary_10_1007_s00500_023_08381_9
crossref_primary_10_1038_s41598_023_30391_8
crossref_primary_10_1016_j_comcom_2024_107993
crossref_primary_10_1287_opre_2021_0707
crossref_primary_10_1016_j_cor_2024_106791
crossref_primary_10_1007_s10479_025_06684_8
crossref_primary_10_1007_s11390_024_3773_5
crossref_primary_10_1016_j_ejor_2023_10_036
crossref_primary_10_3390_jmse12071187
crossref_primary_10_1016_j_cie_2024_110149
crossref_primary_10_1007_s10479_023_05738_z
crossref_primary_10_1109_TNSM_2022_3177694
crossref_primary_10_1016_j_tre_2025_104386
crossref_primary_10_1080_00207543_2024_2361449
crossref_primary_10_1016_j_ejor_2023_04_041
crossref_primary_10_1109_JIOT_2021_3133278
crossref_primary_10_1016_j_ejor_2023_04_043
crossref_primary_10_1016_j_aei_2023_102005
crossref_primary_10_1016_j_petrol_2021_109208
crossref_primary_10_1109_TPWRS_2022_3170083
crossref_primary_10_1016_j_cor_2024_106683
crossref_primary_10_1016_j_knosys_2024_111661
crossref_primary_10_1080_0305215X_2021_2024177
crossref_primary_10_1080_0305215X_2025_2503950
crossref_primary_10_1016_j_tre_2025_104350
crossref_primary_10_1016_j_ejor_2023_08_031
crossref_primary_10_1016_j_ejor_2025_08_034
crossref_primary_10_1016_j_is_2025_102576
crossref_primary_10_1007_s11424_024_3141_0
crossref_primary_10_3390_app15063366
crossref_primary_10_1016_j_ejor_2025_08_029
crossref_primary_10_1016_j_physa_2023_129193
crossref_primary_10_3233_IDT_200217
crossref_primary_10_1109_JIOT_2024_3432911
crossref_primary_10_1016_j_ejor_2022_03_054
crossref_primary_10_1016_j_cor_2025_107182
crossref_primary_10_1049_cim2_12072
crossref_primary_10_1007_s11750_023_00657_5
crossref_primary_10_1287_ijoo_2024_0033
crossref_primary_10_1016_j_ijforecast_2023_05_004
crossref_primary_10_1007_s11227_024_06167_w
crossref_primary_10_1016_j_ejor_2023_04_020
crossref_primary_10_1109_TPAMI_2024_3432716
crossref_primary_10_1016_j_scib_2025_06_035
crossref_primary_10_1080_23302674_2024_2424200
crossref_primary_10_1109_TCYB_2025_3594063
crossref_primary_10_1016_j_ins_2023_01_064
crossref_primary_10_1287_trsc_2023_0107
crossref_primary_10_1109_ACCESS_2025_3550518
crossref_primary_10_1007_s00291_024_00755_1
crossref_primary_10_1016_j_ejor_2024_09_013
crossref_primary_10_1016_j_swevo_2025_102058
crossref_primary_10_1016_j_eswa_2024_125895
crossref_primary_10_1016_j_ejor_2022_06_040
crossref_primary_10_1016_j_ejor_2025_01_024
crossref_primary_10_1016_j_trc_2022_103679
crossref_primary_10_1049_tje2_12368
crossref_primary_10_1109_TASE_2024_3399322
crossref_primary_10_1016_j_engappai_2022_104848
crossref_primary_10_1080_17460441_2022_2072288
crossref_primary_10_1016_j_patcog_2021_108353
crossref_primary_10_1016_j_ejor_2021_04_032
crossref_primary_10_1088_2632_2153_adf376
crossref_primary_10_1016_j_matcom_2025_02_026
crossref_primary_10_1287_ijoc_2022_0140
crossref_primary_10_1016_j_eswa_2022_117796
crossref_primary_10_1016_j_ces_2024_119763
crossref_primary_10_1016_j_physa_2021_126467
crossref_primary_10_1016_j_knosys_2024_111698
crossref_primary_10_1109_TPWRS_2023_3340674
crossref_primary_10_1016_j_ejor_2023_07_014
crossref_primary_10_1016_j_swevo_2025_102147
crossref_primary_10_1016_j_ejor_2025_01_012
crossref_primary_10_1016_j_cie_2021_107873
crossref_primary_10_1016_j_cie_2024_110104
crossref_primary_10_1016_j_patcog_2021_108466
crossref_primary_10_1016_j_ejor_2024_06_016
crossref_primary_10_1021_acs_iecr_4c03782
crossref_primary_10_1038_s42256_022_00589_y
crossref_primary_10_1109_JIOT_2025_3534777
crossref_primary_10_1109_LCOMM_2021_3114118
crossref_primary_10_1109_TPWRS_2023_3262189
crossref_primary_10_1007_s11425_023_2290_y
crossref_primary_10_1007_s00500_023_08886_3
crossref_primary_10_1016_j_ejor_2023_05_038
crossref_primary_10_1016_j_cor_2025_107076
crossref_primary_10_1155_2022_6808562
crossref_primary_10_1007_s12532_025_00278_y
crossref_primary_10_1109_TETCI_2025_3540424
crossref_primary_10_1109_JAS_2023_124113
crossref_primary_10_1002_nav_22270
crossref_primary_10_1016_j_knosys_2022_109986
crossref_primary_10_1080_21650020_2023_2216768
crossref_primary_10_1016_j_ejor_2024_07_029
crossref_primary_10_1007_s12063_021_00201_3
crossref_primary_10_1016_j_patcog_2021_108254
crossref_primary_10_1287_trsc_2023_0407
crossref_primary_10_1109_JPROC_2022_3175942
crossref_primary_10_1109_TCSS_2023_3272331
crossref_primary_10_7717_peerj_cs_395
crossref_primary_10_1007_s11633_022_1396_2
crossref_primary_10_1007_s12083_023_01578_7
crossref_primary_10_1016_j_cor_2023_106450
crossref_primary_10_1016_j_ejor_2023_07_037
crossref_primary_10_3390_batteries9040219
crossref_primary_10_1109_TASE_2024_3456074
crossref_primary_10_1109_TETCI_2021_3139802
crossref_primary_10_1007_s00366_025_02114_2
crossref_primary_10_1109_TSMC_2024_3358383
crossref_primary_10_1287_ijoc_2022_0188
crossref_primary_10_1109_TMC_2022_3148208
crossref_primary_10_1080_21681015_2024_2358823
crossref_primary_10_1007_s10479_024_06100_7
crossref_primary_10_1016_j_procir_2022_09_099
crossref_primary_10_1016_j_energy_2022_126555
crossref_primary_10_1007_s12351_023_00756_y
crossref_primary_10_2139_ssrn_3793042
crossref_primary_10_1109_TITS_2021_3105232
crossref_primary_10_3390_en16166050
crossref_primary_10_1109_TTE_2023_3266550
crossref_primary_10_1007_s40747_024_01716_5
crossref_primary_10_1016_j_ejor_2024_07_024
crossref_primary_10_1364_BOE_555206
crossref_primary_10_1109_JSYST_2022_3231346
crossref_primary_10_1177_10591478241282249
crossref_primary_10_3390_mining2040043
crossref_primary_10_1103_PhysRevResearch_5_013097
crossref_primary_10_1016_j_asoc_2022_108616
crossref_primary_10_1016_j_engappai_2023_107477
crossref_primary_10_1007_s12083_024_01815_7
crossref_primary_10_1109_TITS_2025_3556882
crossref_primary_10_1016_j_engappai_2021_104603
crossref_primary_10_1016_j_tre_2021_102302
crossref_primary_10_1016_j_asoc_2024_111266
crossref_primary_10_1007_s10957_024_02558_4
crossref_primary_10_1016_j_procs_2022_11_026
crossref_primary_10_1016_j_eswa_2022_118207
crossref_primary_10_1016_j_ejor_2022_11_034
crossref_primary_10_1007_s11590_024_02100_5
crossref_primary_10_1016_j_cie_2025_110856
crossref_primary_10_3233_IDA_230480
crossref_primary_10_1016_j_ejor_2025_09_006
crossref_primary_10_1109_TMECH_2024_3452509
crossref_primary_10_1016_j_ifacol_2025_03_012
crossref_primary_10_1016_j_tre_2022_102835
crossref_primary_10_1109_TITS_2023_3270334
crossref_primary_10_1016_j_jairtraman_2025_102755
crossref_primary_10_1038_s42005_024_01711_9
crossref_primary_10_1016_j_cor_2024_106604
crossref_primary_10_1016_j_cor_2024_106848
crossref_primary_10_1016_j_asoc_2025_113736
crossref_primary_10_1287_ijoc_2022_0175
crossref_primary_10_1007_s10951_025_00844_1
crossref_primary_10_1016_j_compchemeng_2025_109399
crossref_primary_10_1007_s11517_024_03194_w
crossref_primary_10_3390_logistics8040096
crossref_primary_10_1007_s10489_022_03963_w
crossref_primary_10_1016_j_ejor_2025_09_016
Cites_doi 10.1038/nature16961
10.1162/neco.1992.4.1.131
10.1007/s11750-017-0451-6
10.1007/s10107-018-1302-4
10.4018/978-1-4666-0270-0.ch003
10.1016/j.cor.2015.04.022
10.1093/jigpal/jzp049
10.1287/ijoc.11.1.15
10.1016/j.artint.2016.04.003
10.1007/BF01580665
10.1177/030631293023004001
10.1016/j.cor.2014.05.020
10.1109/MSP.2017.2765202
10.1287/opre.2014.1267
10.1016/j.ejor.2015.08.018
10.1016/j.ejor.2017.01.001
10.1287/opre.49.5.771.10607
10.1287/ijoc.2016.0723
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2020.07.063
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 421
ExternalDocumentID 10_1016_j_ejor_2020_07_063
S0377221720306895
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
ID FETCH-LOGICAL-c409t-db8ae38a20d3c2eea7f0374803c2059ca60c539616891ceb6c66e0239aa410543
ISICitedReferencesCount 867
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000602863200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 07:21:42 EST 2025
Tue Nov 18 22:22:11 EST 2025
Fri Feb 23 02:48:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Mixed-integer programming solvers
Branch and bound
Combinatorial optimization
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-db8ae38a20d3c2eea7f0374803c2059ca60c539616891ceb6c66e0239aa410543
OpenAccessLink https://doi.org/10.48550/arxiv.1811.06128
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_ejor_2020_07_063
crossref_citationtrail_10_1016_j_ejor_2020_07_063
elsevier_sciencedirect_doi_10_1016_j_ejor_2020_07_063
PublicationCentury 2000
PublicationDate 2021-04-16
PublicationDateYYYYMMDD 2021-04-16
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-16
  day: 16
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bello, Pham, Le, Norouzi, Bengio (bib0008) 2017
Wierstra, Förster, Peters, Schmidhuber (bib0069) 2010; 18
Conforti, Conrnuéjols, Zambelli (bib0014) 2014
Smith-Miles, Bowly (bib0062) 2015; 63
Hottung, Tanaka, Tierney (bib0030) 2017
Andrychowicz, Denil, Gómez, Hoffman, Pfau, Schaul, de Freitas (bib0002) 2016
Nair, Dvijotham, Dunning, Vinyals (bib0055) 2018
Silver, Huang, Maddison, Guez, Sifre, van den Driessche, Hassabis (bib0060) 2016; 529
Wichrowska, Maheswaranathan, Hoffman, Colmenarejo, Denil, de Freitas, Sohl-Dickstein (bib0068) 2017; 70
Ravi, Larochelle (bib0057) 2017
Creswell, White, Dumoulin, Arulkumaran, Sengupta, Bharath (bib0015) 2018; 35
Kool, Welling (bib0036) 2018
Khalil, Bodic, Song, Nemhauser, Dilkina (bib0034) 2016
Bengio, Bengio, Cloutier, Gecsei (bib0009) 1991
Larson, Odoni (bib0039) 1981
Mascia, López-Ibáñez, Dubois-Lacoste, Stützle (bib0051) 2014; 51
Ansótegui, Heymann, Pon, Sellmann, Tierney (bib0003) 2019
Fortun, Schweber (bib0022) 1993; 23
Nowak, Villar, Bandeira, Bruna (bib0056) 2017
Baltean-Lugojan, Misener, Bonami, Tramontani (bib0007) 2018
Bischl, Kerschke, Kotthoff, Lindauer, Malitsky, Fréchette, Vanschoren (bib0010) 2016; 237
Emami, Ranka (bib0018) 2018
Khalil, Dilkina, Nemhauser, Ahmed, Shao (bib0035) 2017
Bahdanau, Cho, Bengio (bib0006) 2015
Hoos (bib0029) 2012
Li, Malik (bib0040) 2017
Mahmood, Babier, McNiven, Diamant, Chan (bib0046) 2018; 85
Fitzgerald, Malitsky, O’Sullivan, Tierney (bib0021) 2014
Chan, Craig, Lee, Sharpe (bib0013) 2014; 62
Gasse, Chételat, Ferroni, Charlin, Lodi (bib0023) 2019
Malitsky, Merschformann, O’Sullivan, Tierney (bib0047) 2016
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Polosukhin (bib0065) 2017
Applegate, Bixby, Chvátal, Cook (bib0005) 2007
Dai, Dai, Song (bib0016) 2016; 48
(bib0064) 1998
Özcan, Misir, Ochoa, Burke (bib0071) 2012
He, Daume III, Eisner (bib0027) 2014
Marcos Alvarez, Louveaux, Wehenkel (bib0049) 2017; 29
Vinyals, Fortunato, Jaitly (bib0067) 2015
Lindauer, Hutter (bib0042) 2018
Ansótegui, Pon, Sellmann, Tierney (bib0004) 2017
Marcos Alvarez, Wehenkel, Louveaux (bib0050) 2016
Ahuja, Orlin (bib0001) 2001; 49
Veličković, Cucurull, Casanova, Romero, Lió, Bengio (bib0066) 2018
Hochreiter, Younger, Conwell (bib0028) 2001
Schmidhuber (bib0058) 1992; 4
Lodi (bib0043) 2009
Bonami, Lodi, Zarpellon (bib0012) 2018
Lombardi, Milano (bib0045) 2018
Marcos Alvarez, Louveaux, Wehenkel (bib0048) 2014
Khalil, Dai, Zhang, Dilkina, Song (bib0033) 2017
Nagarajan, Warnell, Stone (bib0054) 2019
Smith (bib0061) 1999; 11
Goodfellow, Bengio, Courville (bib0026) 2016
Bishop (bib0011) 2006
Gendreau, Potvin (bib0024) 2010
Larsen, Lachapelle, Bengio, Frejinger, Lacoste-Julien, Lodi (bib0038) 2018
Selsam, Lamm, Bünz, Liang, de Moura, Dill (bib0059) 2018
Dey, Molinaro (bib0017) 2018; 170
Lodi, Zarpellon (bib0044) 2017; 25
Fischetti, Lodi (bib0020) 2011; (vol.3
Liberto, Kadioglu, Leo, Malitsky (bib0041) 2016; 248
Finn, Abbeel, Levine (bib0019) 2017; 70
Wolsey (bib0070) 1998
Karapetyan, Punnen, Parkes (bib0032) 2017; 260
McCormick (bib0052) 1976; 10
Sutton, Barto (bib0063) 2018
Gilmer, Schoenholz, Riley, Vinyals, Dahl (bib0025) 2017; 70
Kruber, Lübbecke, Parmentier (bib0037) 2017
Hussein, Gaber, Elyan, Jayne (bib0031) 2017; 50
Murphy (bib0053) 2012
Bonami (10.1016/j.ejor.2020.07.063_bib0012) 2018
Karapetyan (10.1016/j.ejor.2020.07.063_sbref0032) 2017; 260
Bischl (10.1016/j.ejor.2020.07.063_sbref0010) 2016; 237
Creswell (10.1016/j.ejor.2020.07.063_bib0015) 2018; 35
Vaswani (10.1016/j.ejor.2020.07.063_bib0065) 2017
Ahuja (10.1016/j.ejor.2020.07.063_bib0001) 2001; 49
Dey (10.1016/j.ejor.2020.07.063_bib0017) 2018; 170
Ansótegui (10.1016/j.ejor.2020.07.063_sbref0004) 2017
Ravi (10.1016/j.ejor.2020.07.063_bib0057) 2017
Fitzgerald (10.1016/j.ejor.2020.07.063_sbref0021) 2014
Emami (10.1016/j.ejor.2020.07.063_sbref0018) 2018
Marcos Alvarez (10.1016/j.ejor.2020.07.063_bib0049) 2017; 29
Marcos Alvarez (10.1016/j.ejor.2020.07.063_bib0050) 2016
Nowak (10.1016/j.ejor.2020.07.063_bib0056) 2017
Nair (10.1016/j.ejor.2020.07.063_sbref0055) 2018
Dai (10.1016/j.ejor.2020.07.063_bib0016) 2016; 48
Finn (10.1016/j.ejor.2020.07.063_bib0019) 2017; 70
Baltean-Lugojan (10.1016/j.ejor.2020.07.063_bib0007) 2018
Ansótegui (10.1016/j.ejor.2020.07.063_bib0003) 2019
Gilmer (10.1016/j.ejor.2020.07.063_bib0025) 2017; 70
Lodi (10.1016/j.ejor.2020.07.063_bib0044) 2017; 25
Selsam (10.1016/j.ejor.2020.07.063_bib0059) 2018
Andrychowicz (10.1016/j.ejor.2020.07.063_bib0002) 2016
Smith-Miles (10.1016/j.ejor.2020.07.063_sbref0062) 2015; 63
Bengio (10.1016/j.ejor.2020.07.063_sbref0009) 1991
Mahmood (10.1016/j.ejor.2020.07.063_bib0046) 2018; 85
Nagarajan (10.1016/j.ejor.2020.07.063_bib0054) 2019
Larson (10.1016/j.ejor.2020.07.063_bib0039) 1981
Sutton (10.1016/j.ejor.2020.07.063_sbref0063) 2018
Kool (10.1016/j.ejor.2020.07.063_bib0036) 2018
Veličković (10.1016/j.ejor.2020.07.063_sbref0066) 2018
Vinyals (10.1016/j.ejor.2020.07.063_sbref0067) 2015
Khalil (10.1016/j.ejor.2020.07.063_bib0033) 2017
Fischetti (10.1016/j.ejor.2020.07.063_sbref0020) 2011; (vol.3
Smith (10.1016/j.ejor.2020.07.063_bib0061) 1999; 11
Wichrowska (10.1016/j.ejor.2020.07.063_bib0068) 2017; 70
Özcan (10.1016/j.ejor.2020.07.063_sbref0071) 2012
Hoos (10.1016/j.ejor.2020.07.063_bib0029) 2012
Liberto (10.1016/j.ejor.2020.07.063_sbref0041) 2016; 248
Lodi (10.1016/j.ejor.2020.07.063_bib0043) 2009
Malitsky (10.1016/j.ejor.2020.07.063_bib0047) 2016
Marcos Alvarez (10.1016/j.ejor.2020.07.063_bib0048) 2014
Gendreau (10.1016/j.ejor.2020.07.063_sbref0024) 2010
He (10.1016/j.ejor.2020.07.063_bib0027) 2014
Khalil (10.1016/j.ejor.2020.07.063_bib0034) 2016
Larsen (10.1016/j.ejor.2020.07.063_bib0038) 2018
Wierstra (10.1016/j.ejor.2020.07.063_bib0069) 2010; 18
Gasse (10.1016/j.ejor.2020.07.063_sbref0023) 2019
McCormick (10.1016/j.ejor.2020.07.063_bib0052) 1976; 10
Applegate (10.1016/j.ejor.2020.07.063_bib0005) 2007
Fortun (10.1016/j.ejor.2020.07.063_bib0022) 1993; 23
Wolsey (10.1016/j.ejor.2020.07.063_bib0070) 1998
Lindauer (10.1016/j.ejor.2020.07.063_bib0042) 2018
Conforti (10.1016/j.ejor.2020.07.063_bib0014) 2014
Schmidhuber (10.1016/j.ejor.2020.07.063_bib0058) 1992; 4
Bishop (10.1016/j.ejor.2020.07.063_bib0011) 2006
Goodfellow (10.1016/j.ejor.2020.07.063_bib0026) 2016
Li (10.1016/j.ejor.2020.07.063_bib0040) 2017
Chan (10.1016/j.ejor.2020.07.063_bib0013) 2014; 62
Hottung (10.1016/j.ejor.2020.07.063_sbref0030) 2017
Khalil (10.1016/j.ejor.2020.07.063_bib0035) 2017
(10.1016/j.ejor.2020.07.063_bib0064) 1998
Silver (10.1016/j.ejor.2020.07.063_bib0060) 2016; 529
Bello (10.1016/j.ejor.2020.07.063_sbref0008) 2017
Mascia (10.1016/j.ejor.2020.07.063_sbref0051) 2014; 51
Murphy (10.1016/j.ejor.2020.07.063_bib0053) 2012
Kruber (10.1016/j.ejor.2020.07.063_bib0037) 2017
Lombardi (10.1016/j.ejor.2020.07.063_sbref0045) 2018
Hochreiter (10.1016/j.ejor.2020.07.063_bib0028) 2001
Hussein (10.1016/j.ejor.2020.07.063_bib0031) 2017; 50
Bahdanau (10.1016/j.ejor.2020.07.063_bib0006) 2015
References_xml – year: 2017
  ident: bib0008
  article-title: Neural Combinatorial Optimization with Reinforcement Learning
  publication-title: International conference on learning representations
– volume: 260
  start-page: 494
  year: 2017
  end-page: 506
  ident: bib0032
  article-title: Markov chain methods for the bipartite boolean quadratic programming problem
  publication-title: European journal of operational research
– year: 2014
  ident: bib0048
  article-title: A supervised machine learning approach to variable branching in branch-and-bound
  publication-title: Technical Report
– year: 2007
  ident: bib0005
  publication-title: The Traveling Salesman Problem: A Computational Study
– start-page: 3293
  year: 2014
  end-page: 3301
  ident: bib0027
  article-title: Learning to search in branch and bound algorithms
  publication-title: Advances in neural information processing systems 27
– volume: 49
  start-page: 771
  year: 2001
  end-page: 783
  ident: bib0001
  article-title: Inverse optimization
  publication-title: Operations Research
– start-page: 591
  year: 2018
  end-page: 600
  ident: bib0055
  article-title: Learning fast optimizers for contextual stochastic integer programs.
  publication-title: Conference on uncertainty in artifical intelligence
– start-page: 2692
  year: 2015
  end-page: 2700
  ident: bib0067
  article-title: Pointer networks
  publication-title: Advances in neural information processing systems 28
– year: 2006
  ident: bib0011
  article-title: Pattern recognition and machine learning
– year: 2014
  ident: bib0014
  article-title: Integer programming
– start-page: 202
  year: 2017
  end-page: 210
  ident: bib0037
  article-title: Learning When to Use a Decomposition
  publication-title: Integration of AI and OR techniques in constraint programming
– volume: 35
  start-page: 53
  year: 2018
  end-page: 65
  ident: bib0015
  article-title: Generative adversarial networks: an overview
  publication-title: IEEE signal processing magazine
– volume: 70
  start-page: 3751
  year: 2017
  end-page: 3760
  ident: bib0068
  article-title: Learned Optimizers that Scale and Generalize
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 237
  start-page: 41
  year: 2016
  end-page: 58
  ident: bib0010
  article-title: ASlib: A benchmark library for algorithm selection
  publication-title: Artificial intelligence
– start-page: 619
  year: 2009
  end-page: 645
  ident: bib0043
  article-title: MIP Computation
  publication-title: 50 years of integer programming 1958–2008
– start-page: 37
  year: 2012
  end-page: 71
  ident: bib0029
  article-title: Automated algorithm configuration and parameter tuning
  publication-title: Autonomous search
– year: 2012
  ident: bib0053
  article-title: Machine learning: A Probabilistic perspective
– start-page: 3981
  year: 2016
  end-page: 3989
  ident: bib0002
  article-title: Learning to learn by gradient descent by gradient descent
  publication-title: Advances in neural information processing systems 29
– volume: 11
  start-page: 15
  year: 1999
  end-page: 34
  ident: bib0061
  article-title: Neural networks for combinatorial optimization: a review of more than a decade of research
  publication-title: INFORMS journal on computing
– start-page: 123
  year: 2016
  end-page: 140
  ident: bib0047
  article-title: Structure-Preserving Instance Generation
  publication-title: Learning and Intelligent Optimization
– year: 2018
  ident: bib0007
  article-title: Strong Sparse Cut Selection via Trained Neural Nets for Quadratic Semidefinite Outer-Approximations
  publication-title: Technical Report
– start-page: 309
  year: 2019
  end-page: 325
  ident: bib0003
  article-title: Hyper-Reactive Tabu Search for MaxSAT
  publication-title: Learning and intelligent optimization
– start-page: 5472
  year: 2018
  end-page: 5478
  ident: bib0045
  article-title: Boosting combinatorial problem modeling with machine learning
  publication-title: Proceedings of the twenty-seventh international joint conference on artificial intelligence, IJCAI-18
– volume: 23
  start-page: 595
  year: 1993
  end-page: 642
  ident: bib0022
  article-title: Scientists and the legacy of world war ii: The case of operations research (or)
  publication-title: Social studies of science
– volume: 170
  start-page: 237
  year: 2018
  end-page: 266
  ident: bib0017
  article-title: Theoretical challenges towards cutting-plane selection
  publication-title: Mathematical programming
– volume: 70
  start-page: 1126
  year: 2017
  end-page: 1135
  ident: bib0019
  article-title: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– year: 2018
  ident: bib0018
  article-title: Learning permutations with sinkhorn policy gradient
– start-page: 6348
  year: 2017
  end-page: 6358
  ident: bib0033
  article-title: Learning combinatorial optimization algorithms over graphs
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 18
  start-page: 620
  year: 2010
  end-page: 634
  ident: bib0069
  article-title: Recurrent policy gradients
  publication-title: Logic Journal of the IGPL
– volume: 62
  start-page: 680
  year: 2014
  end-page: 695
  ident: bib0013
  article-title: Generalized inverse multiobjective optimization with application to cancer therapy
  publication-title: Operations research
– start-page: 595
  year: 2018
  end-page: 604
  ident: bib0012
  article-title: Learning a Classification of Mixed-Integer Quadratic Programming Problems
  publication-title: Integration of constraint programming, artificial intelligence, and operations research
– year: 2017
  ident: bib0040
  article-title: Learning to optimize neural nets
  publication-title: arXiv:1703.00441 [cs, math, stat]
– volume: 48
  start-page: 2702
  year: 2016
  end-page: 2711
  ident: bib0016
  article-title: Discriminative Embeddings of Latent Variable Models for Structured Data
  publication-title: Proceedings of The 33rd International Conference on Machine Learning
– volume: 51
  start-page: 190
  year: 2014
  end-page: 199
  ident: bib0051
  article-title: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools
  publication-title: Computers & Operations Research
– year: 2010
  ident: bib0024
  article-title: Handbook of metaheuristics (vol. 2)
– year: 2018
  ident: bib0063
  article-title: Reinforcement learning: an introduction
– start-page: 5998
  year: 2017
  end-page: 6008
  ident: bib0065
  article-title: Attention is all you need
  publication-title: Advances in neural information processing systems 30
– volume: 10
  start-page: 147
  year: 1976
  end-page: 175
  ident: bib0052
  article-title: Computability of global solutions to factorable nonconvex programs: part i — convex underestimating problems
  publication-title: Mathematical programming
– year: 2018
  ident: bib0036
  article-title: Attention solves your TSP, approximately
  publication-title: arXiv:1803.08475 [cs, stat]
– year: 1991
  ident: bib0009
  article-title: Learning a synaptic learning rule
  publication-title: Ijcnn
– year: 2018
  ident: bib0042
  article-title: Warmstarting of Model-Based Algorithm Configuration
  publication-title: thirty-Second AAAI conference on artificial intelligence
– year: 2016
  ident: bib0026
  article-title: Deep learning
– volume: 25
  start-page: 207
  year: 2017
  end-page: 236
  ident: bib0044
  article-title: On learning and branching: A survey
  publication-title: TOP
– start-page: 659
  year: 2017
  end-page: 666
  ident: bib0035
  article-title: Learning to Run Heuristics in Tree Search
  publication-title: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17
– year: 1998
  ident: bib0064
  article-title: Learning to learn
– year: 2017
  ident: bib0056
  article-title: A note on learning algorithms for quadratic assignment with graph neural networks
  publication-title: arXiv:1706.07450 [cs, stat]
– start-page: 724
  year: 2016
  end-page: 731
  ident: bib0034
  article-title: Learning to Branch in Mixed Integer Programming
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
– year: 2014
  ident: bib0021
  article-title: ReACT: Real-Time Algorithm Configuration through Tournaments
  publication-title: Seventh annual symposium on combinatorial search
– volume: 50
  start-page: 21:1
  year: 2017
  end-page: 21:35
  ident: bib0031
  article-title: Imitation learning: a survey of learning methods
  publication-title: ACM computing surveys
– year: 2017
  ident: bib0004
  article-title: Reactive Dialectic Search Portfolios for MaxSAT
  publication-title: Thirty-first AAAI conference on artificial intelligence
– year: 2015
  ident: bib0006
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Iclr’2015, arxiv:1409.0473
– volume: 248
  start-page: 943
  year: 2016
  end-page: 953
  ident: bib0041
  article-title: DASH: Dynamic approach for switching heuristics
  publication-title: European journal of operational research
– year: 2017
  ident: bib0057
  article-title: Optimization as a model for few-shot learning
  publication-title: International conference on learning representations
– year: 2018
  ident: bib0038
  article-title: Predicting solution summaries to integer linear programs under imperfect information with machine learning
  publication-title: arXiv:1807.11876 [cs, stat]
– volume: 29
  start-page: 185
  year: 2017
  end-page: 195
  ident: bib0049
  article-title: A machine learning-based approximation of strong branching
  publication-title: INFORMS journal on computing
– year: 2018
  ident: bib0059
  article-title: Learning a SAT solver from single-bit supervision
  publication-title: arXiv:1802.03685 [cs]
– volume: 85
  year: 2018
  ident: bib0046
  article-title: Automated treatment planning in radiation therapy using generative adversarial networks
  publication-title: Proceedings of machine learning for health care
– year: 2018
  ident: bib0066
  article-title: Graph attention networks
  publication-title: International conference on learning representations
– volume: (vol.3
  start-page: 2199
  year: 2011
  end-page: 2204)
  ident: bib0020
  article-title: Heuristics in mixed integer programming
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: bib0060
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
– start-page: 87
  year: 2001
  end-page: 94
  ident: bib0028
  article-title: Learning to learn using gradient descent
  publication-title: Artificial neural networks — ICANN 2001
– year: 2017
  ident: bib0030
  article-title: Deep learning assisted heuristic tree search for the container pre-marshalling problem
  publication-title: arXiv:1709.09972 [cs]
– start-page: 34
  year: 2012
  end-page: 55
  ident: bib0071
  article-title: A reinforcement learning: Great-deluge hyper-heuristic for examination timetabling
  publication-title: Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends
– year: 2019
  ident: bib0054
  article-title: Deterministic implementations for reproducibility in deep reinforcement learning
  publication-title: AAAI 2019 workshop on reproducible AI
– start-page: 15554
  year: 2019
  end-page: 15566
  ident: bib0023
  article-title: Exact combinatorial optimization with graph convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems 32 (NIPS 2019)
– year: 1998
  ident: bib0070
  article-title: Integer programming
– year: 1981
  ident: bib0039
  article-title: Urban operations research
– volume: 70
  start-page: 1263
  year: 2017
  end-page: 1272
  ident: bib0025
  article-title: Neural Message Passing for Quantum Chemistry
  publication-title: Proceedings of the 34th international conference on machine learning
– year: 2016
  ident: bib0050
  article-title: Online Learning for Strong Branching Approximation in Branch-and-Bound
  publication-title: Technical Report
– volume: 4
  start-page: 131
  year: 1992
  end-page: 139
  ident: bib0058
  article-title: Learning to control fast-weight memories: An alternative to dynamic recurrent networks
  publication-title: Neural computation
– volume: 63
  start-page: 102
  year: 2015
  end-page: 113
  ident: bib0062
  article-title: Generating new test instances by evolving in instance space
  publication-title: Computers & Operations Research
– year: 1991
  ident: 10.1016/j.ejor.2020.07.063_sbref0009
  article-title: Learning a synaptic learning rule
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 10.1016/j.ejor.2020.07.063_bib0060
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– start-page: 724
  year: 2016
  ident: 10.1016/j.ejor.2020.07.063_bib0034
  article-title: Learning to Branch in Mixed Integer Programming
– volume: 4
  start-page: 131
  issue: 1
  year: 1992
  ident: 10.1016/j.ejor.2020.07.063_bib0058
  article-title: Learning to control fast-weight memories: An alternative to dynamic recurrent networks
  publication-title: Neural computation
  doi: 10.1162/neco.1992.4.1.131
– volume: 70
  start-page: 3751
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0068
  article-title: Learned Optimizers that Scale and Generalize
– volume: 25
  start-page: 207
  issue: 2
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0044
  article-title: On learning and branching: A survey
  publication-title: TOP
  doi: 10.1007/s11750-017-0451-6
– year: 2017
  ident: 10.1016/j.ejor.2020.07.063_sbref0008
  article-title: Neural Combinatorial Optimization with Reinforcement Learning
– volume: 170
  start-page: 237
  year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0017
  article-title: Theoretical challenges towards cutting-plane selection
  publication-title: Mathematical programming
  doi: 10.1007/s10107-018-1302-4
– volume: 70
  start-page: 1263
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0025
  article-title: Neural Message Passing for Quantum Chemistry
– start-page: 6348
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0033
  article-title: Learning combinatorial optimization algorithms over graphs
– volume: (vol.3
  start-page: 2199
  year: 2011
  ident: 10.1016/j.ejor.2020.07.063_sbref0020
  article-title: Heuristics in mixed integer programming
– year: 2014
  ident: 10.1016/j.ejor.2020.07.063_sbref0021
  article-title: ReACT: Real-Time Algorithm Configuration through Tournaments
– start-page: 37
  year: 2012
  ident: 10.1016/j.ejor.2020.07.063_bib0029
  article-title: Automated algorithm configuration and parameter tuning
– year: 2018
  ident: 10.1016/j.ejor.2020.07.063_sbref0018
– year: 2018
  ident: 10.1016/j.ejor.2020.07.063_sbref0063
– year: 1998
  ident: 10.1016/j.ejor.2020.07.063_bib0070
– start-page: 34
  year: 2012
  ident: 10.1016/j.ejor.2020.07.063_sbref0071
  article-title: A reinforcement learning: Great-deluge hyper-heuristic for examination timetabling
  publication-title: Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends
  doi: 10.4018/978-1-4666-0270-0.ch003
– volume: 63
  start-page: 102
  year: 2015
  ident: 10.1016/j.ejor.2020.07.063_sbref0062
  article-title: Generating new test instances by evolving in instance space
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2015.04.022
– start-page: 595
  year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0012
  article-title: Learning a Classification of Mixed-Integer Quadratic Programming Problems
– start-page: 202
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0037
  article-title: Learning When to Use a Decomposition
– volume: 18
  start-page: 620
  issue: 5
  year: 2010
  ident: 10.1016/j.ejor.2020.07.063_bib0069
  article-title: Recurrent policy gradients
  publication-title: Logic Journal of the IGPL
  doi: 10.1093/jigpal/jzp049
– start-page: 3981
  year: 2016
  ident: 10.1016/j.ejor.2020.07.063_bib0002
  article-title: Learning to learn by gradient descent by gradient descent
– year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0007
  article-title: Strong Sparse Cut Selection via Trained Neural Nets for Quadratic Semidefinite Outer-Approximations
– start-page: 3293
  year: 2014
  ident: 10.1016/j.ejor.2020.07.063_bib0027
  article-title: Learning to search in branch and bound algorithms
– year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0040
  article-title: Learning to optimize neural nets
  publication-title: arXiv:1703.00441 [cs, math, stat]
– start-page: 2692
  year: 2015
  ident: 10.1016/j.ejor.2020.07.063_sbref0067
  article-title: Pointer networks
– year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0038
  article-title: Predicting solution summaries to integer linear programs under imperfect information with machine learning
  publication-title: arXiv:1807.11876 [cs, stat]
– year: 2006
  ident: 10.1016/j.ejor.2020.07.063_bib0011
– year: 2018
  ident: 10.1016/j.ejor.2020.07.063_sbref0066
  article-title: Graph attention networks
– start-page: 87
  year: 2001
  ident: 10.1016/j.ejor.2020.07.063_bib0028
  article-title: Learning to learn using gradient descent
– volume: 11
  start-page: 15
  issue: 1
  year: 1999
  ident: 10.1016/j.ejor.2020.07.063_bib0061
  article-title: Neural networks for combinatorial optimization: a review of more than a decade of research
  publication-title: INFORMS journal on computing
  doi: 10.1287/ijoc.11.1.15
– start-page: 619
  year: 2009
  ident: 10.1016/j.ejor.2020.07.063_bib0043
  article-title: MIP Computation
– volume: 237
  start-page: 41
  year: 2016
  ident: 10.1016/j.ejor.2020.07.063_sbref0010
  article-title: ASlib: A benchmark library for algorithm selection
  publication-title: Artificial intelligence
  doi: 10.1016/j.artint.2016.04.003
– volume: 50
  start-page: 21:1
  issue: 2
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0031
  article-title: Imitation learning: a survey of learning methods
  publication-title: ACM computing surveys
– volume: 10
  start-page: 147
  issue: 1
  year: 1976
  ident: 10.1016/j.ejor.2020.07.063_bib0052
  article-title: Computability of global solutions to factorable nonconvex programs: part i — convex underestimating problems
  publication-title: Mathematical programming
  doi: 10.1007/BF01580665
– year: 2017
  ident: 10.1016/j.ejor.2020.07.063_sbref0030
  article-title: Deep learning assisted heuristic tree search for the container pre-marshalling problem
  publication-title: arXiv:1709.09972 [cs]
– year: 2014
  ident: 10.1016/j.ejor.2020.07.063_bib0014
– start-page: 309
  year: 2019
  ident: 10.1016/j.ejor.2020.07.063_bib0003
  article-title: Hyper-Reactive Tabu Search for MaxSAT
– year: 2010
  ident: 10.1016/j.ejor.2020.07.063_sbref0024
– year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0056
  article-title: A note on learning algorithms for quadratic assignment with graph neural networks
  publication-title: arXiv:1706.07450 [cs, stat]
– start-page: 123
  year: 2016
  ident: 10.1016/j.ejor.2020.07.063_bib0047
  article-title: Structure-Preserving Instance Generation
– volume: 23
  start-page: 595
  issue: 4
  year: 1993
  ident: 10.1016/j.ejor.2020.07.063_bib0022
  article-title: Scientists and the legacy of world war ii: The case of operations research (or)
  publication-title: Social studies of science
  doi: 10.1177/030631293023004001
– volume: 51
  start-page: 190
  year: 2014
  ident: 10.1016/j.ejor.2020.07.063_sbref0051
  article-title: Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2014.05.020
– volume: 35
  start-page: 53
  issue: 1
  year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0015
  article-title: Generative adversarial networks: an overview
  publication-title: IEEE signal processing magazine
  doi: 10.1109/MSP.2017.2765202
– year: 2016
  ident: 10.1016/j.ejor.2020.07.063_bib0050
  article-title: Online Learning for Strong Branching Approximation in Branch-and-Bound
– year: 2015
  ident: 10.1016/j.ejor.2020.07.063_bib0006
  article-title: Neural machine translation by jointly learning to align and translate
– start-page: 659
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0035
  article-title: Learning to Run Heuristics in Tree Search
– year: 1998
  ident: 10.1016/j.ejor.2020.07.063_bib0064
  article-title: Learning to learn
– volume: 62
  start-page: 680
  issue: 3
  year: 2014
  ident: 10.1016/j.ejor.2020.07.063_bib0013
  article-title: Generalized inverse multiobjective optimization with application to cancer therapy
  publication-title: Operations research
  doi: 10.1287/opre.2014.1267
– year: 2019
  ident: 10.1016/j.ejor.2020.07.063_bib0054
  article-title: Deterministic implementations for reproducibility in deep reinforcement learning
– start-page: 5998
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0065
  article-title: Attention is all you need
– start-page: 15554
  year: 2019
  ident: 10.1016/j.ejor.2020.07.063_sbref0023
  article-title: Exact combinatorial optimization with graph convolutional neural networks
– volume: 248
  start-page: 943
  issue: 3
  year: 2016
  ident: 10.1016/j.ejor.2020.07.063_sbref0041
  article-title: DASH: Dynamic approach for switching heuristics
  publication-title: European journal of operational research
  doi: 10.1016/j.ejor.2015.08.018
– year: 2014
  ident: 10.1016/j.ejor.2020.07.063_bib0048
  article-title: A supervised machine learning approach to variable branching in branch-and-bound
– year: 2016
  ident: 10.1016/j.ejor.2020.07.063_bib0026
– volume: 48
  start-page: 2702
  year: 2016
  ident: 10.1016/j.ejor.2020.07.063_bib0016
  article-title: Discriminative Embeddings of Latent Variable Models for Structured Data
– year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0059
  article-title: Learning a SAT solver from single-bit supervision
  publication-title: arXiv:1802.03685 [cs]
– volume: 260
  start-page: 494
  issue: 2
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_sbref0032
  article-title: Markov chain methods for the bipartite boolean quadratic programming problem
  publication-title: European journal of operational research
  doi: 10.1016/j.ejor.2017.01.001
– year: 2017
  ident: 10.1016/j.ejor.2020.07.063_sbref0004
  article-title: Reactive Dialectic Search Portfolios for MaxSAT
– volume: 70
  start-page: 1126
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0019
  article-title: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
– year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0042
  article-title: Warmstarting of Model-Based Algorithm Configuration
– volume: 49
  start-page: 771
  issue: 5
  year: 2001
  ident: 10.1016/j.ejor.2020.07.063_bib0001
  article-title: Inverse optimization
  publication-title: Operations Research
  doi: 10.1287/opre.49.5.771.10607
– year: 1981
  ident: 10.1016/j.ejor.2020.07.063_bib0039
– year: 2012
  ident: 10.1016/j.ejor.2020.07.063_bib0053
– start-page: 591
  year: 2018
  ident: 10.1016/j.ejor.2020.07.063_sbref0055
  article-title: Learning fast optimizers for contextual stochastic integer programs.
– year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0036
  article-title: Attention solves your TSP, approximately
  publication-title: arXiv:1803.08475 [cs, stat]
– start-page: 5472
  year: 2018
  ident: 10.1016/j.ejor.2020.07.063_sbref0045
  article-title: Boosting combinatorial problem modeling with machine learning
– year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0057
  article-title: Optimization as a model for few-shot learning
– volume: 29
  start-page: 185
  issue: 1
  year: 2017
  ident: 10.1016/j.ejor.2020.07.063_bib0049
  article-title: A machine learning-based approximation of strong branching
  publication-title: INFORMS journal on computing
  doi: 10.1287/ijoc.2016.0723
– volume: 85
  year: 2018
  ident: 10.1016/j.ejor.2020.07.063_bib0046
  article-title: Automated treatment planning in radiation therapy using generative adversarial networks
– year: 2007
  ident: 10.1016/j.ejor.2020.07.063_bib0005
SSID ssj0001515
Score 2.7472394
SecondaryResourceType review_article
Snippet •This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 405
SubjectTerms Branch and bound
Combinatorial optimization
Machine learning
Mixed-integer programming solvers
Title Machine learning for combinatorial optimization: A methodological tour d’horizon
URI https://dx.doi.org/10.1016/j.ejor.2020.07.063
Volume 290
WOSCitedRecordID wos000602863200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfKhhA8DCggxj_5gbfJk-M4ccxbQZsAjWmCgcpT5DguazWSqUuriSe-A098PT4J59gOKZsmQOIlaq26Tn2_nu8u97tD6Cl4CAK0XkHAnRCEc0WJKhNN4GSJeMHTWLSd5z7sif39bDyWB4PBt8CFWR6LqsrOzuTJfxU1jIGwLXX2L8TdfSkMwGsQOlxB7HD9I8G_adMjTegH4fIkYSFwga2DbSPkNeiJz56A6ajprpF0pwgbWGirDIkQ8gimffHyuyiK7y1aGJiH2KIvItQFm5-b6tO0Dct-rE-PFt1hsFeX0y6xshs9mNeLpaejjKqmDg__fXiCRfZJi2NPupjZOd6M42oJQRhzrM1t41RvJhhJM9ddIOhm5nqJehCynqblNOkd2tzRrM-dBy40Mds2s9oWf2W0rdTqVepqne139qbsPTHrRmUyuYLWmUgkqMr10aud8evugLc2YPtwyv8Iz8VyaYO_r3SxvdOzYQ5voQ3vfOCRA81tNDDVEF0L3Ichuhl6fGCv8ofoRq9g5R301oMLB3BhABdeARfug-sZHuFVaGELLVz--Prdg-ouer-7c_jiJfFdOYjmVDakLDJl4kwxWsaaGaPEpK1hROEd2OpapVQnsUwj2MNImyLVaWoshVopm1LM43toraorcx9hI6WaaPAoTKI5HDbgq2vw-FRRMjqJC7GJorB3ufYl623nlOM85CbOcrvfud3vnIoc9nsTbXVzTlzBlks_nQSR5N7kdKZkDgi6ZN6Df5z3EF3_9Sd5hNaa-cI8Rlf1spmezp94oP0EAO-mtg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+combinatorial+optimization%3A+A+methodological+tour+d%E2%80%99horizon&rft.jtitle=European+journal+of+operational+research&rft.au=Bengio%2C+Yoshua&rft.au=Lodi%2C+Andrea&rft.au=Prouvost%2C+Antoine&rft.date=2021-04-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=290&rft.issue=2&rft.spage=405&rft.epage=421&rft_id=info:doi/10.1016%2Fj.ejor.2020.07.063&rft.externalDocID=S0377221720306895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon