Classifying and Benchmarking Quantum Annealing Algorithms Based on Quadratic Unconstrained Binary Optimization for Solving NP-Hard Problems

Quantum annealing has the potential to outperform classical transistor-based computer technologies in tackling intricate combinatorial optimization problems. However, ongoing scientific debates cast doubts on whether quantum annealing devices (or quantum annealers) can genuinely provide better probl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 104165 - 104178
Hlavní autoři: Jiang, Jehn-Ruey, Chu, Chun-Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Quantum annealing has the potential to outperform classical transistor-based computer technologies in tackling intricate combinatorial optimization problems. However, ongoing scientific debates cast doubts on whether quantum annealing devices (or quantum annealers) can genuinely provide better problem-solving capabilities than classical computers. The question of whether quantum annealing algorithms (QAAs) running on quantum annealers have computational advantages over classical algorithms (CAs) running on classical computers still remains unclear. This paper aims to clarify the question by classifying and benchmarking QAAs that utilize quadratic unconstrained binary optimization (QUBO) formulas to solve NP-hard problems. It proposes a four-class classification of QUBO formulas and exemplifies each class by QUBO formulas used by QAAs for solving specific NP-hard problems, such as the subset sum, maximum cut, vertex cover, 0/1 knapsack, graph coloring, Hamiltonian cycle, traveling salesperson, and job shop scheduling problems. The classification is based on the following two criteria: (i) Does the number of QUBO variables scale linearly with the problem input size? (ii) Does the QUBO formula have both the constraint term and the optimization term? QAAs are implemented and run on a D-Wave quantum annealer for benchmarking. They are benchmarked against related CAs in terms of the quality of the solution and the time to the solution. The benchmarking results reveal which classes of QUBO formulas are likely to provide advantages to QAAs over CAs. Furthermore, based on the benchmarking results, observations and suggestions are given for each class of QUBO formulas, facilitating the adoption of appropriate actions to improve the performance of QAAs.
AbstractList Quantum annealing has the potential to outperform classical transistor-based computer technologies in tackling intricate combinatorial optimization problems. However, ongoing scientific debates cast doubts on whether quantum annealing devices (or quantum annealers) can genuinely provide better problem-solving capabilities than classical computers. The question of whether quantum annealing algorithms (QAAs) running on quantum annealers have computational advantages over classical algorithms (CAs) running on classical computers still remains unclear. This paper aims to clarify the question by classifying and benchmarking QAAs that utilize quadratic unconstrained binary optimization (QUBO) formulas to solve NP-hard problems. It proposes a four-class classification of QUBO formulas and exemplifies each class by QUBO formulas used by QAAs for solving specific NP-hard problems, such as the subset sum, maximum cut, vertex cover, 0/1 knapsack, graph coloring, Hamiltonian cycle, traveling salesperson, and job shop scheduling problems. The classification is based on the following two criteria: (i) Does the number of QUBO variables scale linearly with the problem input size? (ii) Does the QUBO formula have both the constraint term and the optimization term? QAAs are implemented and run on a D-Wave quantum annealer for benchmarking. They are benchmarked against related CAs in terms of the quality of the solution and the time to the solution. The benchmarking results reveal which classes of QUBO formulas are likely to provide advantages to QAAs over CAs. Furthermore, based on the benchmarking results, observations and suggestions are given for each class of QUBO formulas, facilitating the adoption of appropriate actions to improve the performance of QAAs.
Author Jiang, Jehn-Ruey
Chu, Chun-Wei
Author_xml – sequence: 1
  givenname: Jehn-Ruey
  orcidid: 0000-0002-0650-3683
  surname: Jiang
  fullname: Jiang, Jehn-Ruey
  email: jrjiang@csie.ncu.edu.tw
  organization: Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
– sequence: 2
  givenname: Chun-Wei
  surname: Chu
  fullname: Chu, Chun-Wei
  organization: Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
BookMark eNqFUcFu3CAUtKpUaprmC9qDpZ69wWBsfNy1kiZS1KTa9IzewmPD1oYteCttf6E_HRxHVdRLuQDDzDzem_fZifMOs-xjSRZlSdqLZdddrtcLSihbMFYKSuo32Skt67ZgnNUnr87vsvMYdyQtkSDenGZ_uh5itOZo3TYHp_MVOvU4QPgxAd8O4MbDkC-dQ-gnZNlvfbDj4xDzFUTUuXcTSwcYrcq_O-VdHANYl55W1kE45nf70Q72dyIkrvEhX_v-1-T19b64hqDz--A3PQ7xQ_bWQB_x_GU_yx6uLh-66-L27stNt7wtVEXasdCCGoOgKmqEwdqYxiBlsKkqJRiKipumNenGUVHDmnpTNUJBqQRvQWDNzrKb2VZ72Ml9sKnbo_Rg5TPgw1ZCSN30KHmrsaStEFrRCqkGppC3CRWaISc8eX2evfbB_zxgHOXOH4JLv5dUNLTioqY0sdjMUsHHGND8rVoSOWUo5wzllKF8yTCp2n9Uyo7PU5wG3P9H-2nWWkR8VY3WJSWEPQESDa74
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11128_024_04512_9
crossref_primary_10_1038_s42005_024_01705_7
crossref_primary_10_3390_e27090953
crossref_primary_10_3390_math13010090
crossref_primary_10_1038_s41598_025_93552_x
crossref_primary_10_1007_s42484_024_00179_8
crossref_primary_10_1155_etep_5460409
crossref_primary_10_1016_j_rinp_2023_107236
crossref_primary_10_1109_ACCESS_2024_3514162
crossref_primary_10_1103_PhysRevResearch_6_043325
crossref_primary_10_1109_ACCESS_2024_3455436
crossref_primary_10_3390_math13183005
Cites_doi 10.1016/j.eswa.2022.116512
10.1109/ACCESS.2022.3190897
10.1007/s42484-021-00047-9
10.1007/s42484-021-00039-9
10.1038/s41586-019-1666-5
10.3390/math11163451
10.1088/2058-9565/aab6ba
10.1038/s41598-023-30910-7
10.1007/BF01580072
10.1007/978-3-031-04148-8_11
10.1016/j.engappai.2021.104282
10.1038/s41598-023-33828-2
10.1038/nphys2900
10.1073/pnas.1002116107
10.1088/2058-9565/aab859
10.1016/j.disopt.2020.100594
10.1038/s41598-023-33232-w
10.1007/s12532-013-0059-2
10.1007/s11128-017-1586-y
10.1103/PhysRevD.103.016008
10.3390/math7070603
10.1088/1361-6633/ac8c54
10.1145/800157.805047
10.1007/s11128-014-0892-x
10.1126/sciadv.abh0952
10.22331/q-2018-08-06-79
10.1007/978-1-4684-2001-2_9
10.1088/1361-6633/ab85b8
10.1016/j.mfglet.2022.03.003
10.3390/app122312288
10.1016/j.physletb.2023.138000
10.1140/epjst/e2015-02347-y
10.1109/ECICE55674.2022.10042862
10.1126/science.1252319
10.1016/j.asoc.2022.109367
10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G
10.1038/nature24047
10.1145/3394486.3403138
10.1103/PhysRevApplied.12.014004
10.1038/s41534-018-0060-8
10.1088/2058-9565/aada1f
10.3389/fphy.2014.00005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3318206
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 104178
ExternalDocumentID oai_doaj_org_article_59de12988dc24e2da3ce5959d8d3e505
10_1109_ACCESS_2023_3318206
10261200
Genre orig-research
GrantInformation_xml – fundername: National Central University, Taiwan
  funderid: 10.13039/501100005319
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-d82ffeac42f8fe6ff7fe23ab44c83e845f79fb445ec2f376b478ca1c859a8e63
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001081638700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:45:26 EDT 2025
Mon Jun 30 02:33:48 EDT 2025
Tue Nov 18 22:23:55 EST 2025
Sat Nov 29 06:25:07 EST 2025
Wed Aug 27 02:50:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-d82ffeac42f8fe6ff7fe23ab44c83e845f79fb445ec2f376b478ca1c859a8e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0650-3683
OpenAccessLink https://ieeexplore.ieee.org/document/10261200
PQID 2872458622
PQPubID 4845423
PageCount 14
ParticipantIDs crossref_primary_10_1109_ACCESS_2023_3318206
doaj_primary_oai_doaj_org_article_59de12988dc24e2da3ce5959d8d3e505
crossref_citationtrail_10_1109_ACCESS_2023_3318206
ieee_primary_10261200
proquest_journals_2872458622
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref11
ref55
ref10
ref17
ref16
ref19
mcgeoch (ref4) 2020
reinhelt (ref59) 2023
ref51
mattesi (ref18) 2023
razavy (ref37) 2013
ref47
ref41
ref43
(ref50) 2023
ref8
ref7
lezana (ref58) 2021
ref9
ref6
ref5
(ref53) 2023
pelofske (ref44) 2022
ref35
ref34
ref36
ref31
ref30
(ref48) 2022
ref32
ref1
ref39
ref38
šeker (ref61) 2022; 127
bozzo-rey (ref2) 2018
cheng (ref52) 2023
wald (ref40) 2017
ref24
ref23
glover (ref42) 2018
abughanem (ref3) 0
ref26
ref25
ref20
ref22
lee (ref33) 2005
ref21
(ref60) 2023
(ref54) 2023
garey (ref45) 1979; 174
ref28
ref27
(ref49) 2023
ref29
(ref46) 2023
ref62
References_xml – ident: ref9
  doi: 10.1016/j.eswa.2022.116512
– ident: ref16
  doi: 10.1109/ACCESS.2022.3190897
– ident: ref10
  doi: 10.1007/s42484-021-00047-9
– year: 2023
  ident: ref46
  publication-title: Subset-sum problem
– ident: ref43
  doi: 10.1007/s42484-021-00039-9
– year: 0
  ident: ref3
  article-title: A quantum state tomography study of Google's Sycamore gate on an IBM's quantum computer
– ident: ref1
  doi: 10.1038/s41586-019-1666-5
– ident: ref24
  doi: 10.3390/math11163451
– ident: ref30
  doi: 10.1088/2058-9565/aab6ba
– ident: ref11
  doi: 10.1038/s41598-023-30910-7
– year: 2023
  ident: ref52
  publication-title: A new genetic algorithm for solving optimization problems
– start-page: 410
  year: 2018
  ident: ref2
  article-title: Introduction to the IBM Q experience and quantum computing
  publication-title: Proc 28th Annu Int Conf Comput Sci Softw Eng
– year: 2023
  ident: ref49
  publication-title: D-Wave Decomposer
– ident: ref47
  doi: 10.1007/BF01580072
– ident: ref39
  doi: 10.1007/978-3-031-04148-8_11
– year: 2023
  ident: ref50
  publication-title: Network Repository A Scientific Network Data Repository With Interactive Visualization and Mining Tools
– ident: ref55
  doi: 10.1016/j.engappai.2021.104282
– ident: ref25
  doi: 10.1038/s41598-023-33828-2
– ident: ref28
  doi: 10.1038/nphys2900
– year: 2022
  ident: ref44
  article-title: Solving larger maximum clique problems using parallel quantum annealing
  publication-title: arXiv 2205 12165
– ident: ref27
  doi: 10.1073/pnas.1002116107
– ident: ref7
  doi: 10.1088/2058-9565/aab859
– year: 2020
  ident: ref4
  article-title: The D-Wave advantage system: An overview
– ident: ref38
  doi: 10.1016/j.disopt.2020.100594
– ident: ref23
  doi: 10.1038/s41598-023-33232-w
– year: 2013
  ident: ref37
  publication-title: Quantum Theory of Tunneling
– ident: ref57
  doi: 10.1007/s12532-013-0059-2
– year: 2017
  ident: ref40
  article-title: Thermalisation and relaxation of quantum systems
– year: 2023
  ident: ref59
  publication-title: TSPLIB A Library of Sample Instances for the TSP (and Related Problems) from Various Sources and of Various Types
– year: 2021
  ident: ref58
  article-title: A Python implementation of the snakes and ladders for solving the Hamiltonian cycle problem using a graphical interface
– volume: 174
  year: 1979
  ident: ref45
  publication-title: Computers and Intractability
– ident: ref6
  doi: 10.1007/s11128-017-1586-y
– year: 2023
  ident: ref18
  article-title: Financial portfolio optimization: A QUBO formulation for Sharpe ratio maximization
  publication-title: arXiv 2302 12291
– ident: ref5
  doi: 10.1103/PhysRevD.103.016008
– ident: ref51
  doi: 10.3390/math7070603
– ident: ref36
  doi: 10.1088/1361-6633/ac8c54
– ident: ref34
  doi: 10.1145/800157.805047
– year: 2022
  ident: ref48
  publication-title: Meta-Analytics Max Cut Benchmarks
– year: 2023
  ident: ref60
  publication-title: OR-Library
– ident: ref19
  doi: 10.1007/s11128-014-0892-x
– ident: ref62
  doi: 10.1126/sciadv.abh0952
– ident: ref32
  doi: 10.22331/q-2018-08-06-79
– ident: ref35
  doi: 10.1007/978-1-4684-2001-2_9
– ident: ref26
  doi: 10.1088/1361-6633/ab85b8
– ident: ref20
  doi: 10.1016/j.mfglet.2022.03.003
– year: 2018
  ident: ref42
  article-title: A tutorial on formulating and using QUBO models
  publication-title: arXiv 1811 11538
– ident: ref17
  doi: 10.3390/app122312288
– year: 2023
  ident: ref53
  publication-title: Google OR-Tools
– ident: ref22
  doi: 10.1016/j.physletb.2023.138000
– ident: ref15
  doi: 10.1140/epjst/e2015-02347-y
– ident: ref31
  doi: 10.1109/ECICE55674.2022.10042862
– ident: ref29
  doi: 10.1126/science.1252319
– volume: 127
  year: 2022
  ident: ref61
  article-title: Digital annealer for quadratic unconstrained binary optimization: A comparative performance analysis
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109367
– ident: ref56
  doi: 10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G
– ident: ref21
  doi: 10.1038/nature24047
– ident: ref13
  doi: 10.1145/3394486.3403138
– ident: ref14
  doi: 10.1103/PhysRevApplied.12.014004
– ident: ref8
  doi: 10.1038/s41534-018-0060-8
– year: 2023
  ident: ref54
  publication-title: Graph Coloring Instances
– ident: ref12
  doi: 10.1088/2058-9565/aada1f
– ident: ref41
  doi: 10.3389/fphy.2014.00005
– year: 2005
  ident: ref33
  publication-title: Introduction to the Design and Analysis of Algorithms
SSID ssj0000816957
Score 2.3597152
Snippet Quantum annealing has the potential to outperform classical transistor-based computer technologies in tackling intricate combinatorial optimization problems....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104165
SubjectTerms Algorithms
Annealing
Benchmark testing
Benchmarks
Classification
Combinatorial analysis
Graph coloring
Job shop scheduling
Linear programming
Noisy intermediate-scale quantum
NP-hard problem
Optimization
Problem solving
Quadratic programming
quadratic unconstrained binary optimization
Quantum annealing
quantum computer
Quantum computing
Questions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKE9IKAgtkDlA8cGEtuJnePuCtQDWhYVJG6W40dZaTdb7YM_wZ9mxjFoK6T2wiVSHEeOPZN5OJnvI-TMyqpSPpjMFnAQ3BaZMjJkTnHVGFBoayNrybUcjdTDQz3eoPrCf8I6eOBu4S7K2nnwSUo5y4RnznAsHIJW5bgvO_TSXNYbyVS0waqo6lImmKEiry_6wyHM6BzZws85j7Dlf7miiNifKFbe2eXobK52yU6KEmm_e7o98sm3--TLBnbgV_Ic6SwnsUyJmtbRAejb48zEvW96u4YVW89oH8yowYpz2p_-ni8mq8fZkg7Aczk6b7GXQw2w9L61GCgiXwRcGsQiXXoD5mSW6jQpBLf013yK-w90NM7wiz8dd2w0ywNyd3V5N_yZJWaFzEI-twJJsBDA5AoWVPBVCDJ4xk0jhFXcK1EGWQc4K71lAUxQI6SyprCqrI3yFT8kW-289UeEcmc8RAgcAhMpGki3oIEXPg85Nyavmh5hr2usbUIdx8lMdcw-8lp3gtEoGJ0E0yM_3m7604Fu_Lv7AIX31hURs2MD6JFOeqT_p0c9coCi3xgPwdXyvEdOXnVBp9d7qSHNZKKEZJB9-4ixj8lnnE-3s3NCtlaLtT8l2_ZpNVkuvkfNfgEpTP1F
  priority: 102
  providerName: Directory of Open Access Journals
Title Classifying and Benchmarking Quantum Annealing Algorithms Based on Quadratic Unconstrained Binary Optimization for Solving NP-Hard Problems
URI https://ieeexplore.ieee.org/document/10261200
https://www.proquest.com/docview/2872458622
https://doaj.org/article/59de12988dc24e2da3ce5959d8d3e505
Volume 11
WOSCitedRecordID wos001081638700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgxQEOPBdtYVn5wJGUxE5i59hWu-IApYhF2pvl2GO2UpugPjjyB_jTzDjeahECiYuVOLZi5xuPZyaeGcZeO1XXGoLNXIFFKV2RaatC5rXUrUWCdi5mLXmv5nN9ddUskrN69IUBgHj4DMZ0Gf_l-97tyVSGK5wCXuWood9Vqh6ctQ4GFcog0VQqRRYq8ubtZDbDSYwpQfhYyhip_LfdJwbpT1lV_mDFcX-5ePSfI3vMHiZBkk8G5J-wO9A9ZQ9uhRd8xn7GjJfL6MnEbef5FEnyem2jeZx_2uNH3a_5BDmtJad0Pll97TfL3fV6y6e4uXned9TKE5E4_qVzJEtSSgl8NI1-vPwjcpx1cuXkKP_yz_2KTBR8vsjoUABfDAlrtsfs8uL8cvYuS8kXMocq3w7BEiEgVy5F0AHqEFQAIW1blk5L0GUVVBPwrgInAnKptlTa2cLpqrEaavmcHXV9ByeMS28BhQiJsosqW9TIsEIWkIdcWpvX7YiJG0yMS4HJaTIrExWUvDEDkIaANAnIEXtz6PRtiMvx7-ZTAvvQlIJqxwpE0aQ1aqrGA4o_WnsnShA4SvJRw1rtJaCkOGLHhPyt9w2gj9jpDe2YxAG2BjVRUVaoL4oXf-n2kt2nIQ72nFN2tNvs4RW7577vltvNWTQOYPnhx_lZJPRfd7_8mA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQggQceC6isIAPHElJbCdxjm3FahGlFFGkvVmOM2Yrtcmqj_0T_GlmHG-1CIHEJUocR7HzTcYzk8w3jL11ZVFo8DZxGW6UdFmibemTRktdWxRo50LVkmk5m-nz82oek9VDLgwAhJ_PYEi74Vt-07k9hcrwDSfCqxQ99Nu5UiLt07UOIRWqIVHlZeQWytLq_WgywWkMqUT4UMrAVf7b-hNo-mNdlT-UcVhhTh_-59gesQfRlOSjHvvH7Ba0T9j9GwSDT9nPUPNyGXKZuG0bPkahvFjbECDnX_f4WPdrPkJdayktnY9WP7rNcnex3vIxLm8N71rq1ZCYOP69dWRNUlEJPDUOmbz8C-qcdUzm5GgB82_dioIUfDZP6LcAPu9L1myP2eL0w2JylsTyC4lDp2-HcAnvUS8r4bWHwvvSg5C2VsppCVrlvqw8HuXghEc9VatSO5s5nVdWQyGfsaO2a-E547KxgGaEROulVDX6ZNggM0h9Kq1Ni3rAxDUmxkVqcprMygQXJa1MD6QhIE0EcsDeHS667Jk5_t19TGAfuhKtdmhAFE18S01eNYAGkNaNEwoEjpKy1LBVNxLQVhywY0L-xv160Afs5Fp2TNQBW4O-qFA5eozixV8ue8Puni0-T8304-zTS3aPhttHd07Y0W6zh1fsjrvaLbeb10HQfwHSDP25
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+and+Benchmarking+Quantum+Annealing+Algorithms+Based+on+Quadratic+Unconstrained+Binary+Optimization+for+Solving+NP-Hard+Problems&rft.jtitle=IEEE+access&rft.au=Jiang%2C+Jehn-Ruey&rft.au=Chu%2C+Chun-Wei&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=104165&rft.epage=104178&rft_id=info:doi/10.1109%2FACCESS.2023.3318206&rft.externalDocID=10261200
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon