Gas Leak Real-Time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms
Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification a...
Uložené v:
| Vydané v: | IEEE access Ročník 13; s. 7284 - 7292 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field. |
|---|---|
| AbstractList | Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those with small flow rates by only utilizing economical equipments. In this paper, we present a strategy for automating real-time identification and quantification of gases in the mid-infrared band by combining an infrared camera combined with a series optimized algorithms. A basic network DeepLabV3+ is first modified by replacing its Xception backbone with MobileNetv2 for real-time gas detection and segmentation. Then special attention mechanisms tailored to the characteristics of the gas are added into the network to enhance the perception and recognition of the gas edges. The optimized Kmeans clustering algorithm is integrated to identify the Region of Interest (ROI) in the image containing the target gas. The quantification of the volume flow rate within the ROI is realized by integrating the radiation transfer model with the optical flow method. The experimental results indicate that the quantification limit of the gas flow rate can reach 0.01 L/min, which is comparable to that obtained by the methods with complicated instruments. Our detection and quantification strategy can find vast applications in hazardous gas monitoring field. |
| Author | Dong, Zheng Yan, Man Wu, Xiaosong Liun, Yiming Chen, Liyun Wu, Lijun Li, Zhou |
| Author_xml | – sequence: 1 givenname: Man surname: Yan fullname: Yan, Man organization: Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China – sequence: 2 givenname: Zhou surname: Li fullname: Li, Zhou organization: Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China – sequence: 3 givenname: Zheng surname: Dong fullname: Dong, Zheng organization: Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China – sequence: 4 givenname: Yiming surname: Liun fullname: Liun, Yiming organization: Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China – sequence: 5 givenname: Liyun orcidid: 0000-0002-2890-9406 surname: Chen fullname: Chen, Liyun organization: Guangzhou Keii Electro Optics Technology Company Ltd., Guangzhou, China – sequence: 6 givenname: Xiaosong surname: Wu fullname: Wu, Xiaosong organization: Guangzhou Keii Electro Optics Technology Company Ltd., Guangzhou, China – sequence: 7 givenname: Lijun orcidid: 0000-0002-0877-0689 surname: Wu fullname: Wu, Lijun email: ljwu@scnu.edu.cn organization: Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China |
| BookMark | eNp9UcFu3CAURFEqJU3zBe3BUs_ePjC24bjdJulKK1Vp0l7RM4YtW9ukwCbK35esUynqIVwYDW9Gw5u35HjykyHkPYUFpSA_LVeri5ubBQNWL6qa1W3Dj8gpo40sq7pqjl_gE3Ie4w7yEZmq21MyXmEsNgZ_F98NDuWtG03xxSSjk_NTgVNf_PTDPpOXg38orvc4JWedxsPzZ4ymLzJYTzZgyHg94tZN24Nw2d_jpDO5HLY-uPRrjO_IG4tDNOfP9xn5cXlxu_pabr5drVfLTak5yFT2vJMArOFCAO0oa0XbUaGhraDSjWg6i7zhrQTWaRRGWJ1_A7bXzKCw0lZnZD379h536i64EcOj8ujUgfBhqzAkpwejULbcGol5cw0HYZEBaAE1ZCA7zrPXx9nrLvg_exOT2vl9mHJ8VdG6FlRAy_KUnKd08DEGY5V26bClFNANioJ6KkvNZamnstRzWVlb_af9l_h11YdZ5YwxLxSC8Zyo-gvLq6CT |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3389_fphy_2025_1603047 |
| Cites_doi | 10.48550/arXiv.1802.02611 10.1016/j.ins.2017.08.001 10.3390/rs15112721 10.3390/electronics11172718 10.1109/ICCV.2017.74 10.1109/CVPR.2018.00474 10.1117/12.919245 10.1021/es101823z 10.1109/ACCESS.2022.3176712 10.5194/amt-11-781-2018 10.1016/j.foodcont.2024.110823 10.1117/12.884360 10.1364/OE.20.020318 10.1109/ACCESS.2024.3397324 10.3788/LOP57.021001 10.1007/3-540-45103-X_50 10.1109/TIP.2021.3069318 10.1109/SAS.2017.7894047 10.1021/acs.est.6b04303 10.15278/isms.2017.TJ09 10.3390/photonics10050490 10.3390/en15093304 10.1007/BF02478259 10.1364/AO.419942 10.1109/CVPR42600.2020.01155 10.1088/2040-8986/ac45d3 10.1109/CVPR46437.2021.01350 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3525764 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 7292 |
| ExternalDocumentID | oai_doaj_org_article_a974fe9a3526408fa200c8050a209b44 10_1109_ACCESS_2025_3525764 10824807 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 12274148 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-d4b9002648801b12787b18c07303c686bfa4647902bca8e8fc1690fdc2ea8f9f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001397806100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Mon Nov 10 19:22:16 EST 2025 Mon Jun 30 13:06:16 EDT 2025 Tue Nov 18 21:17:28 EST 2025 Sat Nov 29 06:55:17 EST 2025 Wed Nov 19 08:27:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-d4b9002648801b12787b18c07303c686bfa4647902bca8e8fc1690fdc2ea8f9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2890-9406 0000-0002-0877-0689 |
| OpenAccessLink | https://doaj.org/article/a974fe9a3526408fa200c8050a209b44 |
| PQID | 3155818072 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3525764 doaj_primary_oai_doaj_org_article_a974fe9a3526408fa200c8050a209b44 proquest_journals_3155818072 ieee_primary_10824807 crossref_citationtrail_10_1109_ACCESS_2025_3525764 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 MacQueen (ref18); 1 ref24 Morton (ref7) ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 Teng (ref28) 2021; 19 |
| References_xml | – ident: ref19 doi: 10.48550/arXiv.1802.02611 – ident: ref3 doi: 10.1016/j.ins.2017.08.001 – ident: ref16 doi: 10.3390/rs15112721 – ident: ref4 doi: 10.3390/electronics11172718 – ident: ref30 doi: 10.1109/ICCV.2017.74 – ident: ref17 doi: 10.1109/CVPR.2018.00474 – ident: ref22 doi: 10.1117/12.919245 – ident: ref6 doi: 10.1021/es101823z – ident: ref29 doi: 10.1109/ACCESS.2022.3176712 – ident: ref11 doi: 10.5194/amt-11-781-2018 – volume: 1 start-page: 281 issue: 14 volume-title: Proc. 5th Berkeley Symp. Math. Statist. Probab. ident: ref18 article-title: Some methods for classification and analysis of multivariate observations – ident: ref15 doi: 10.1016/j.foodcont.2024.110823 – ident: ref26 doi: 10.1117/12.884360 – ident: ref10 doi: 10.1364/OE.20.020318 – ident: ref14 doi: 10.1109/ACCESS.2024.3397324 – ident: ref2 doi: 10.3788/LOP57.021001 – ident: ref12 doi: 10.1007/3-540-45103-X_50 – start-page: 95 volume-title: Proc. AGU Fall Meeting Abstr. ident: ref7 article-title: Observation and quantification of CO2 passive degassing at sulphur banks from Kilauea volcano using thermal infrared multispectral imaging – ident: ref5 doi: 10.1109/TIP.2021.3069318 – ident: ref8 doi: 10.1109/SAS.2017.7894047 – ident: ref1 doi: 10.1021/acs.est.6b04303 – ident: ref27 doi: 10.15278/isms.2017.TJ09 – ident: ref23 doi: 10.3390/photonics10050490 – volume: 19 start-page: 9 year: 2021 ident: ref28 article-title: Research and verification of gas displacement calculation model based on optical flow method publication-title: Opt. Optoelectron. Technol. – ident: ref24 doi: 10.3390/en15093304 – ident: ref13 doi: 10.1007/BF02478259 – ident: ref9 doi: 10.1364/AO.419942 – ident: ref21 doi: 10.1109/CVPR42600.2020.01155 – ident: ref25 doi: 10.1088/2040-8986/ac45d3 – ident: ref20 doi: 10.1109/CVPR46437.2021.01350 |
| SSID | ssj0000816957 |
| Score | 2.3477526 |
| Snippet | Due to the semi-transparent and irregular nature of gases, it is still a highly challenging task to effectively detect and quantify gas leaks especially those... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7284 |
| SubjectTerms | Accuracy Algorithms Cameras Clustering Clustering algorithms DeeplabV3+ neural network Flow velocity Fluid flow Gas flow Gas identification Gas lasers gas quantification Gases Image edge detection Image segmentation Infrared cameras Infrared imaging Kmeans clustering algorithm Optical filters Optical flow (image analysis) optical flow method Real time Real-time systems Training |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFLYK6qE9AKVUDEvlA0dCszixfRwGpkVCCBBF3CzHCyBmMmgmA3-f9xwzAlWt1EtkRXbi5PPzW_wWQvYsF8DVRZUwncHF2iKRzJegqmhmubXaBtPF9Sk_OxM3N_I8BquHWBjnXHA-cwfYDGf5dmLmaCoDChc5hkAvkSXOeRestTCoYAUJWfKYWShL5Y_-YAAfATpgXh6ErJ8Ve8d9QpL-WFXlj6048Jfh6n_ObI2sREGS9jvkv5APrlknn9-kF_xKxj_1jJ46_UAvQRxMMNqDHrk2OF81VDeWXoe9iQ5Hk2d6Mded41DAih4Ce7MUGieNn6KXOj0Zh4pGYWA_ug7Q_uh2Mr1v78azDfJ7eHw1-JXE8gqJAaWuTSyrJapgSMJZneVAunUmDNJ8YSpR1V6zinGZ5rXRwglv8EjNW5M7Lbz0xTey3Ewat0moLSrnuKt1XaaMea4dZq03qdUgQfjK90j--tuVibnHsQTGSAUdJJWqw0ohVipi1SP7i0GPXeqNf3c_RDwXXTFvdrgBQKlIhkqD-uSd1FgVgKXCa9gkjEjLFBqyZvCQDQT3zfs6XHtk53V5qEjkM1WALIah8jzf-suwbfIJp9iZbHbIcjudu13y0Ty197Pp97B-XwCgFOxk priority: 102 providerName: IEEE |
| Title | Gas Leak Real-Time Detection and Volume Flow Quantification Based on Infrared Imaging and Advanced Algorithms |
| URI | https://ieeexplore.ieee.org/document/10824807 https://www.proquest.com/docview/3155818072 https://doaj.org/article/a974fe9a3526408fa200c8050a209b44 |
| Volume | 13 |
| WOSCitedRecordID | wos001397806100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYq1EM5IMpDpATkQ48s7MO7ax9DIIBEoxYVxM3y-gFRkw1KNvTW386M10SpkOill5W1suX1POwZ78w3hHw1JYdTnRcRUwk8jMkiwVwOropipjRGGX91cXddDof8_l58Xyn1hTFhLTxwS7gTBQavs0IhjjuLuVPAVs3jPIaGqJhHAgWrZ8WZ8nswTwqRlwFmKInFSa_fhxWBQ5jmxx4CtGB_HUUesT-UWHmzL_vDZrBJNoKVSHvt130mH2y9RdZXsAO3yeRCzem1Vb_oDdh6EaZy0DPb-Miqmqra0Du_8dDBePqb_lioNirIM4KewtllKDSuajfDEHR6NfHlivzAXogLoL3xw3Q2ah4n8x1yOzj_2b-MQu2ESIPH1kSGVQL9K9TPpEpS0Msq4RoVOtMFLyqnWMFKEaeVVtxyp_F_mTM6tYo74bJdslZPa7tHqMkKa0tbqSqPGXOlsghJr2OjwDxwheuQ9JWMUgdgcaxvMZbewYiFbGkvkfYy0L5DjpaDnlpcjfe7nyJ_ll0RFNu_AFGRQVTkv0SlQ3aQuyvz8RQz6juk-8puGTR4LjMwtDAPvky__I-598knXE97edMla81sYQ_IR_3cjOazQy-88Pz25_zQpyC-ANUa78o |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD6CgQQ8jNsQZQP8wCMZuTiJ_dh1K6soFaAx7c1yfIGJNkVtCn-fcxyvGkIg8RJZkZ04-Xx8Lj4XgFe2FsjVRZVwneHF2iKR3Jeoqmhua2u1DaaL82k9m4mLC_khBquHWBjnXHA-c4fUDGf5dmk2ZCpDChc5hUDfhFsl53nWh2ttTSpUQ0KWdcwtlKXyzXA0ws9ALTAvD0Pez4r_xn9Cmv5YV-WPzThwmPH9_5zbA9iNoiQb9tg_hBuufQT3riUYfAyLt3rNpk5_Y59QIEwo3oMduy64X7VMt5adh92JjefLn-zjRveuQwEtdoQMzjJsTFq_Ij91NlmEmkZh4DA6D7Dh_Mtyddl9Xaz34PP45Gx0msQCC4lBta5LLG8kKWFExFmT5Ui8TSYMUX1hKlE1XvOK1zLNG6OFE97QoZq3JndaeOmLJ7DTLlv3FJgtKudq1-imTDn3tXaUt96kVqMM4Ss_gPzqtysTs49TEYy5ClpIKlWPlSKsVMRqAK-3g773yTf-3f2I8Nx2pczZ4QYCpSIhKo0KlHdSU10AngqvcZswIi1TbMiG40P2CNxr7-txHcDB1fJQkczXqkBpjILl6_zZX4a9hDunZ--najqZvduHuzTd3oBzADvdauOew23zo7tcr16EtfwLD7Xvqw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+Leak+Real-Time+Detection+and+Volume+Flow+Quantification+Based+on+Infrared+Imaging+and+Advanced+Algorithms&rft.jtitle=IEEE+access&rft.au=Yan%2C+Man&rft.au=Li%2C+Zhou&rft.au=Dong%2C+Zheng&rft.au=Liun%2C+Yiming&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=7284&rft.epage=7292&rft_id=info:doi/10.1109%2FACCESS.2025.3525764&rft.externalDocID=10824807 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |