HLQ: Hardware-Friendly Logarithmic Quantization Aware Training for Power-Efficient Low-Precision CNN Models
With the development of deep learning and graphics processing units (GPUs), various convolutional neural network (CNN)-based computer vision studies have been conducted. Because numerous computations are involved in the inference and training process of CNNs, research on network compression, includi...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 159611 - 159621 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!