Efficient kNN classification algorithm for big data
K nearest neighbors (kNN) is an efficient lazy learning algorithm and has successfully been developed in real applications. It is natural to scale the kNN method to the large scale datasets. In this paper, we propose to first conduct a k-means clustering to separate the whole dataset into several pa...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 195; s. 143 - 148 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
26.06.2016
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | K nearest neighbors (kNN) is an efficient lazy learning algorithm and has successfully been developed in real applications. It is natural to scale the kNN method to the large scale datasets. In this paper, we propose to first conduct a k-means clustering to separate the whole dataset into several parts, each of which is then conducted kNN classification. We conduct sets of experiments on big data and medical imaging data. The experimental results show that the proposed kNN classification works well in terms of accuracy and efficiency. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0925-2312 1872-8286 |
| DOI: | 10.1016/j.neucom.2015.08.112 |