Efficient kNN classification algorithm for big data

K nearest neighbors (kNN) is an efficient lazy learning algorithm and has successfully been developed in real applications. It is natural to scale the kNN method to the large scale datasets. In this paper, we propose to first conduct a k-means clustering to separate the whole dataset into several pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 195; s. 143 - 148
Hlavní autoři: Deng, Zhenyun, Zhu, Xiaoshu, Cheng, Debo, Zong, Ming, Zhang, Shichao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 26.06.2016
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:K nearest neighbors (kNN) is an efficient lazy learning algorithm and has successfully been developed in real applications. It is natural to scale the kNN method to the large scale datasets. In this paper, we propose to first conduct a k-means clustering to separate the whole dataset into several parts, each of which is then conducted kNN classification. We conduct sets of experiments on big data and medical imaging data. The experimental results show that the proposed kNN classification works well in terms of accuracy and efficiency.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2015.08.112