Simple to Complex, Single to Concurrent Sensor-Based Human Activity Recognition: Perception and Open Challenges

Human activity recognition (HAR) has attracted considerable research attention due to its essential role in various domains, ranging from healthcare to security, safety, and entertainment. HAR has undergone a paradigm shift from simple single-task detection to the more complex task of identifying mu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 12; s. 93450 - 93486
Hlavný autor: Ankalaki, Shilpa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human activity recognition (HAR) has attracted considerable research attention due to its essential role in various domains, ranging from healthcare to security, safety, and entertainment. HAR has undergone a paradigm shift from simple single-task detection to the more complex task of identifying multiple simultaneous activities as technology advances. A wide range of methods, including sensing modalities, identification algorithms, a specified list of recognized activities, and end application goals, have been used in the literature to investigate activities carried out by single individuals. However, there appears to be a research gap when it comes to scenarios in which several people engage in individual or concurrent activities. Although numerous reviews and surveys have previously addressed HAR, with the continual expansion of literature, there is a necessity for an updated assessment of the status of HAR literature. The system encompasses various operational modules, including data acquisition, noise elimination, and distortion reduction through preprocessing, followed by feature extraction, feature selection, and classification. Recent advancements have introduced state-of-the-art techniques for feature extraction and selection, which are categorized using traditional machine learning classifiers. However, a notable limitation is observed, as many of these techniques rely on basic feature extraction processes, hindering their capability to recognize complex activities. This article reviews 190 articles with respect to data collection, segmentation, feature extraction, energy efficiency, personalized models, and machine learning (ML) and deep learning (DL) approaches for sensor-based HAR. Open challenges and future enhancements of HAR are also discussed in this article.
AbstractList Human activity recognition (HAR) has attracted considerable research attention due to its essential role in various domains, ranging from healthcare to security, safety, and entertainment. HAR has undergone a paradigm shift from simple single-task detection to the more complex task of identifying multiple simultaneous activities as technology advances. A wide range of methods, including sensing modalities, identification algorithms, a specified list of recognized activities, and end application goals, have been used in the literature to investigate activities carried out by single individuals. However, there appears to be a research gap when it comes to scenarios in which several people engage in individual or concurrent activities. Although numerous reviews and surveys have previously addressed HAR, with the continual expansion of literature, there is a necessity for an updated assessment of the status of HAR literature. The system encompasses various operational modules, including data acquisition, noise elimination, and distortion reduction through preprocessing, followed by feature extraction, feature selection, and classification. Recent advancements have introduced state-of-the-art techniques for feature extraction and selection, which are categorized using traditional machine learning classifiers. However, a notable limitation is observed, as many of these techniques rely on basic feature extraction processes, hindering their capability to recognize complex activities. This article reviews 190 articles with respect to data collection, segmentation, feature extraction, energy efficiency, personalized models, and machine learning (ML) and deep learning (DL) approaches for sensor-based HAR. Open challenges and future enhancements of HAR are also discussed in this article.
Author Ankalaki, Shilpa
Author_xml – sequence: 1
  givenname: Shilpa
  orcidid: 0000-0002-4652-7292
  surname: Ankalaki
  fullname: Ankalaki, Shilpa
  email: shilpa.ankalaki@manipal.edu
  organization: Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India
BookMark eNp9UU1v1DAUtFCRKG1_ARwscSWLnZcPm9sSFVqpUlFTzpZjvyxeZe3geBH99ySklSoO9cWj0cxo9OYtOfHBIyHvONtwzuSnbdNctu0mZ3mxgSLPBfBX5DTnlcyghOrkGX5DLqZpz-YnZqqsT0lo3WEckKZAm7CgPx9p6_zuifLmGCP6RFv0U4jZFz2hpVfHg_Z0a5L77dIDvUMTdt4lF_xn-h2jwXHBVHtLb0f0tPmphwH9Dqdz8rrXw4QXj_8Z-fH18r65ym5uv10325vMFEymzLKqAN331jBZaN6hAF1gBdAZY3uRV6zsUda2KmcZ9MBKLmSfI-t0b6Tt4Ixcr7k26L0aozvo-KCCduofEeJO6ZicGVDVtcTOSF4zKArOOgFVXmorKrAVN4Bz1oc1a4zh1xGnpPbhGP1cXwGrBRM1q-tZJVeViWGaIvbKuKSXO6So3aA4U8tcap1LLXOpx7lmL_znfWr8suv96nKI-MxRCpgrwV8OLqNI
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11042_025_21053_0
crossref_primary_10_1016_j_inffus_2025_103422
crossref_primary_10_3389_fpubh_2025_1659600
crossref_primary_10_3390_s25133955
crossref_primary_10_1142_S0218126625504365
crossref_primary_10_1109_JSEN_2024_3492004
crossref_primary_10_1016_j_patcog_2025_112142
crossref_primary_10_1016_j_compeleceng_2025_110203
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3422831
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 93486
ExternalDocumentID oai_doaj_org_article_779ebc917034410b83625ad863d61c3e
10_1109_ACCESS_2024_3422831
10583870
Genre orig-research
GrantInformation_xml – fundername: Manipal Academy of Higher Education
  funderid: 10.13039/501100000661
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-d0643affdc094a1be83a4e633bccdf82605fe97d6543a3f305189f2e0bafc9db3
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001266102000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:15 EDT 2025
Mon Jun 30 06:49:31 EDT 2025
Sat Nov 29 04:26:54 EST 2025
Tue Nov 18 21:48:11 EST 2025
Wed Aug 27 02:03:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-d0643affdc094a1be83a4e633bccdf82605fe97d6543a3f305189f2e0bafc9db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4652-7292
OpenAccessLink https://doaj.org/article/779ebc917034410b83625ad863d61c3e
PQID 3078087077
PQPubID 4845423
PageCount 37
ParticipantIDs doaj_primary_oai_doaj_org_article_779ebc917034410b83625ad863d61c3e
crossref_primary_10_1109_ACCESS_2024_3422831
ieee_primary_10583870
crossref_citationtrail_10_1109_ACCESS_2024_3422831
proquest_journals_3078087077
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0000816957
Score 2.3919132
Snippet Human activity recognition (HAR) has attracted considerable research attention due to its essential role in various domains, ranging from healthcare to...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93450
SubjectTerms Algorithms
concurrent activities
Concurrent computing
Data acquisition
Data collection
Deep learning
Feature extraction
Feature recognition
Human activity recognition
interleaved activities
Machine learning
machine learning and deep learning
Object recognition
Privacy
Real-time systems
Reviews
sequential activities
Sequential analysis
Task analysis
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUo4gAHoAXU5aPyoUdCk3g3trktK1Y9VAh124qb5dhjCQkl1e6C-PnMOM5qESpSb5E_FCfP9vjZ4zeMfcU1vg9o5rJS1pANLTkBWATE-RGpTkIuos72nx_y5kbd3enbdFk93oUBgOh8Bhf0GM_yfeseaasMRzgd8klk6B-krLrLWqsNFYogoUcyKQsVuf42nkzwI5ADlsMLEaWuilfWJ4r0p6gqb6biaF-me__Zsn22mxaSfNwh_5FtQPOJ7azJCx6wdnZP2r982XIa9g_wfM5nmNMnNa4TZ-Iz5LLtPLtCi-Z53NbnY9eFleA_ew-jtrnktys3GG4bz8kbhU_6cCyLQ_Z7ev1r8j1LARYyh7RumXlaj9gQvEOSZ4salLBDqISonfNBEdUJoKWn-6dWBJwaCqUDAljb4LSvxRHbbNoGPjM-FKXTCqz0HglmKRVUuiqdcDoPlcrDgJX9jzcuqY9TEIwHE1lIrk2HliG0TEJrwM5Xlf524hvvF78iRFdFSTk7JiBUJg1EI6WG2iFJJa3DIq8VWvCR9aoSviqcgAE7JHjX3tchO2CnfQcxaZgvDE6QKsdMKY__Ue2EbVMTu02bU7a5nD_CGdtyT8v7xfxL7MEvtNHt3Q
  priority: 102
  providerName: IEEE
Title Simple to Complex, Single to Concurrent Sensor-Based Human Activity Recognition: Perception and Open Challenges
URI https://ieeexplore.ieee.org/document/10583870
https://www.proquest.com/docview/3078087077
https://doaj.org/article/779ebc917034410b83625ad863d61c3e
Volume 12
WOSCitedRecordID wos001266102000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF1lRw8Wk2b3Sbxti6KBxVxVbyFNA8QpJXdVTz5251J22VF0IuXHpKUNDOTSb508g0hh7DHdwGWuSQThU96BoMADCjEuj6yTnrGI8_245W4uZFPT-p2LtUXxoTV9MC14E6EUL6wACqQmy5lhQSP2zdO5tzlqeUevS8Tag5MRR8s01z1RUMzlDJ1MhgOYUQACLPeMY-8V-m3pSgy9jcpVn745bjYXKyR1WaXSAf1162TBV9ukJU57sBNUo2ekdiXTiuKc_rFfxzREdS0RaWtmZfoCIBqNU7OYLlyNJ7Z04Gtc0bQuzZ8qCpP6e0sxoWa0lEMNaHDNtfKZIs8XJzfDy-TJntCYgGzTROHmw0TgrOA4ExaeMlNz-ecF9a6IBHHBK-Ew8ulhgeY96lUAbRTmGCVK_g2WSyr0u8Q2uOZVdIb4Rygx0xIn6s8s9wqFnLJQodkrSC1bajFMcPFi44QgyldS1-j9HUj_Q45mr30WjNr_N78DDU0a4q02LEAjEU3xqL_MpYO2UL9zvWHf40F65Buq3DdzOGJBu8nGVQKsfsffe-RZRxPfXzTJYvT8ZvfJ0v2ffo8GR9E84Xn9ef5QbyE-AVhW_Fk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQQYIe-CzqQqE-cGxKEmdjm9t21aqoy6piC-rNcuyxtFKVoN0t4ucz4zirIlQkbpE_FCfP9vjZ4zeMfcA1vg9o5rJSNpBVlpwALALi_JhUJyEXUWf7-0zO5-r6Wl-my-rxLgwAROczOKbHeJbvO3dLW2U4wumQTyJDfziuqjLvr2ttt1QohoQey6QtVOT642Q6xc9AFlhWxyKKXRV_2J8o05_iqvw1GUcLc_bsP9v2nD1NS0k-6bF_wR5A-5Lt3hEYfMW6xZLUf_mm4zTwb-DXEV9gzpDUul6eiS-QzXar7ARtmudxY59PXB9Ygn8dfIy69hO_3DrCcNt6Tv4ofDoEZFnvsW9np1fT8yyFWMgcErtN5mlFYkPwDmmeLRpQwlZQC9E454MishNAS083UK0IODkUSgeEsLHBad-I12yn7VrYZ7wSpdMKrPQeKWYpFdS6Lp1wOg-1ysOIlcOPNy7pj1MYjBsTeUiuTY-WIbRMQmvEjraVfvTyG_8ufkKIbouSdnZMQKhMGopGSg2NQ5pKaodF3ii04WPrVS18XTgBI7ZH8N55X4_siB0MHcSkgb42OEWqHDOlfHNPtUP2-Pzqy8zMPs8v3rIn1Nx-C-eA7WxWt_COPXI_N8v16n3szb8BNhjxJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+to+Complex%2C+Single+to+Concurrent+Sensor-Based+Human+Activity+Recognition%3A+Perception+and+Open+Challenges&rft.jtitle=IEEE+access&rft.au=Ankalaki%2C+Shilpa&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=93450&rft.epage=93486&rft_id=info:doi/10.1109%2FACCESS.2024.3422831&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3422831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon