Spectral-Spatial Classification with Naive Bayes and Adaptive FFT for Improved Classification Accuracy of Hyperspectral Images

This paper presents a post-processing-based Spectral-Spatial Classification (SSC) approach for Hyperspectral (HS) images. The approach effectively overcomes the limitations of traditional pixel-based classifiers by integrating spectral and spatial information to achieve improved classification resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 17; S. 1 - 14
Hauptverfasser: Singh, Arvind Kumar, Sunkara, Renuvenkataswamy, Kadambi, Govind R., Palade, Vasile
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a post-processing-based Spectral-Spatial Classification (SSC) approach for Hyperspectral (HS) images. The approach effectively overcomes the limitations of traditional pixel-based classifiers by integrating spectral and spatial information to achieve improved classification results. Specifically, the proposed method uses Principal Component Analysis (PCA) to transform the HS image and Naive Bayes (NB) classifier to quickly derive spectral-posterior probabilities. Spatial-posterior probabilities are then computed using an Adaptive Fast Fourier Transform (AFFT) and a probabilistic closeness function. These probabilities are then combined to generate a precise spectral-spatial classification map. The proposed approach is available in two distinct styles: the conventional NB-AFFT-SSC method and the proposed Iteration-wise Variable Sequencing-based NB-AFFT-SSC (IVS-NB-AFFT-SSC) method, which classifies one designated class in each iteration. Additionally, two wrapper-based feature selection methods are proposed to obtain a set of Principal Components (PCs) for each class of the HS image, significantly improving classification accuracy. The approach's efficacy is demonstrated through extensive experimentation on three real HS datasets, including Washington DC Mall (WDC-M), Salinas-A, and Botswana. The generality of the approach has been proven through the use of other well-known Machine Learning algorithms such as Support Vector Machine and K-Nearest Neighbor as wrappers in the approach. The results confirm that the proposed approach is highly effective, with the IVS approach helping users concentrate on a particular set of PCs for the class of interest.
AbstractList This article presents a postprocessing-based spectral-spatial classification (SSC) approach for hyperspectral (HS) images. The approach effectively overcomes the limitations of traditional pixel-based classifiers by integrating spectral and spatial information to achieve improved classification results. Specifically, the proposed method uses principal component analysis to transform the HS images and the Naive Bayes (NB) classifier to quickly derive spectral-posterior probabilities. Spatial-posterior probabilities are then computed using an adaptive fast Fourier transform (AFFT) and a probabilistic closeness function. These probabilities are then combined to generate a precise SSC map. The proposed approach is available in two distinct styles: the conventional NB-AFFT-SSC method and the proposed iterationwise variable sequencing based NB-AFFT-SSC (IVS-NB-AFFT-SSC) method, which classifies one designated class in each iteration. In addition, two wrapper-based feature selection methods are proposed to obtain a set of principal components (PCs) for each class of the HS image, significantly improving classification accuracy. The approach's efficacy is demonstrated through extensive experimentation on three real HS datasets, including Washington DC Mall, Salinas-A, and Botswana. The generality of the approach has been proven through the use of other well-known machine-learning algorithms, such as support vector machine and K-nearest neighbor, as wrappers in the approach. The results confirm that the proposed approach is highly effective, with the IVS approach helping users concentrate on a particular set of PCs for the class of interest.
This paper presents a post-processing-based Spectral-Spatial Classification (SSC) approach for Hyperspectral (HS) images. The approach effectively overcomes the limitations of traditional pixel-based classifiers by integrating spectral and spatial information to achieve improved classification results. Specifically, the proposed method uses Principal Component Analysis (PCA) to transform the HS image and Naive Bayes (NB) classifier to quickly derive spectral-posterior probabilities. Spatial-posterior probabilities are then computed using an Adaptive Fast Fourier Transform (AFFT) and a probabilistic closeness function. These probabilities are then combined to generate a precise spectral-spatial classification map. The proposed approach is available in two distinct styles: the conventional NB-AFFT-SSC method and the proposed Iteration-wise Variable Sequencing-based NB-AFFT-SSC (IVS-NB-AFFT-SSC) method, which classifies one designated class in each iteration. Additionally, two wrapper-based feature selection methods are proposed to obtain a set of Principal Components (PCs) for each class of the HS image, significantly improving classification accuracy. The approach's efficacy is demonstrated through extensive experimentation on three real HS datasets, including Washington DC Mall (WDC-M), Salinas-A, and Botswana. The generality of the approach has been proven through the use of other well-known Machine Learning algorithms such as Support Vector Machine and K-Nearest Neighbor as wrappers in the approach. The results confirm that the proposed approach is highly effective, with the IVS approach helping users concentrate on a particular set of PCs for the class of interest.
Author Kadambi, Govind R.
Palade, Vasile
Sunkara, Renuvenkataswamy
Singh, Arvind Kumar
Author_xml – sequence: 1
  givenname: Arvind Kumar
  orcidid: 0000-0001-5601-6667
  surname: Singh
  fullname: Singh, Arvind Kumar
  organization: CATVAC, ETF-I, U R Rao Satellite Centre, Bengaluru, Karnataka, India
– sequence: 2
  givenname: Renuvenkataswamy
  orcidid: 0000-0001-8368-2585
  surname: Sunkara
  fullname: Sunkara, Renuvenkataswamy
  organization: CATVAC, ETF-I, U R Rao Satellite Centre, Bengaluru, Karnataka, India
– sequence: 3
  givenname: Govind R.
  surname: Kadambi
  fullname: Kadambi, Govind R.
  organization: Research, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
– sequence: 4
  givenname: Vasile
  orcidid: 0000-0002-6768-8394
  surname: Palade
  fullname: Palade, Vasile
  organization: Research Center for Computational Science and Mathematical Modeling, Coventry University, Coventry, United Kingdom of Great Britain and Northern Ireland
BookMark eNp9kUtrGzEUhUVJoU6aX9AuBF2Pq-dotHRNnbiEFGpnLTR6pDKT0VQaJ3iT314540LJIiuhy_3OPfeec3DWx94B8AmjOcZIfv2x2S5-beYEETqnlAjK6ndgRjDHFeaUn4EZllRWmCH2AZznvEOoJkLSGXjeDM6MSXfVZtBj0B1cdjrn4IMp39jDpzD-hrc6PDr4TR9chrq3cGH1MB5Lq9UW-pjg-mFI8dHZ1_TCmH3S5gCjh9eHwaV8GlcIfe_yR_De6y67y9N7Ae5W37fL6-rm59V6ubipDENyrIy12CBeC-9lSxpHCMKoVIhjmFojkWbcM95iJAypeVs3vJWNZTVhtaCS0QuwnnRt1Ds1pPCg00FFHdRLIaZ7pdMYTOdUayWnwuPGC8uMp5qzRiPb2BY1ZSAqWl8mrbLyn73Lo9rFfeqLfUUkwoxwKUTpklOXSTHn5LwyYXw5Slk_dAojdYxOTdGpY3TqFF1h6Sv2n-O3qc8TFZxz_xFEFkOc_gVud6fO
CODEN IJSTHZ
CitedBy_id crossref_primary_10_21595_jme_2025_24734
crossref_primary_10_1080_1448837X_2024_2430654
Cites_doi 10.1109/TGRS.2023.3274778
10.1109/JSTARS.2013.2262926
10.1109/TGRS.2008.916629
10.1016/j.isprsjprs.2019.09.006
10.3390/rs9010067
10.1109/TGRS.2022.3185612
10.1109/TGRS.2014.2319373
10.1016/j.neucom.2018.02.105
10.1109/TGRS.2014.2308192
10.1109/TGRS.2019.2907932
10.1109/TGRS.2015.2514161
10.1109/TGRS.2013.2296031
10.1109/MSP.2013.2279177
10.1080/2150704X.2020.1864051
10.1002/0471723800
10.1016/j.neucom.2021.03.035
10.1109/TGRS.2014.2318058
10.1109/TGRS.2015.2496167
10.1109/TGRS.2021.3052048
10.1109/LGRS.2013.2250905
10.1155/2016/1538973
10.1109/TGRS.2015.2457614
10.1109/TGRS.2015.2466657
10.1109/LGRS.2023.3287037
10.1109/LGRS.2021.3086796
10.1109/JSTARS.2015.2442588
10.1109/TGRS.2011.2129595
10.1109/MGRS.2022.3145854
10.1007/978-94-007-7969-3_9
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3327346
DatabaseName IEEE Xplore (IEEE)
Open Access资源_IEL Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 14
ExternalDocumentID oai_doaj_org_article_bd9537f18f7d4cf3a548a0d8db0802e0
10_1109_JSTARS_2023_3327346
10295975
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-cdd1c0567ff9b28e220101c02e413dc90a45f45b107c265b685b98d4624673943
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001128175000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:52:05 EDT 2025
Fri Jul 25 22:54:53 EDT 2025
Sat Nov 29 04:51:19 EST 2025
Tue Nov 18 21:33:21 EST 2025
Wed Aug 27 02:37:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-cdd1c0567ff9b28e220101c02e413dc90a45f45b107c265b685b98d4624673943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5601-6667
0000-0001-8368-2585
0000-0002-6768-8394
0000-0001-8968-9606
OpenAccessLink https://ieeexplore.ieee.org/document/10295975
PQID 2901425977
PQPubID 75722
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2023_3327346
crossref_primary_10_1109_JSTARS_2023_3327346
doaj_primary_oai_doaj_org_article_bd9537f18f7d4cf3a548a0d8db0802e0
ieee_primary_10295975
proquest_journals_2901425977
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref10
ref2
ref1
(ref34) 2014
singh (ref37) 2019
ref17
ref39
ref16
ref38
ref19
ref18
cheng (ref27) 2020
(ref32) 1995
ref24
(ref33) 2014
ref23
ref26
ref25
ref20
ref22
ref21
mangal (ref28) 2014; 3
ref8
ref7
zhou (ref5) 0
ref9
ref6
fauvel (ref3) 2007
hernández-espinosa (ref4) 2004
russell (ref29) 2020
References_xml – ident: ref21
  doi: 10.1109/TGRS.2023.3274778
– ident: ref35
  doi: 10.1109/JSTARS.2013.2262926
– ident: ref2
  doi: 10.1109/TGRS.2008.916629
– ident: ref20
  doi: 10.1016/j.isprsjprs.2019.09.006
– year: 2014
  ident: ref34
– ident: ref22
  doi: 10.3390/rs9010067
– year: 2007
  ident: ref3
  article-title: Spectral and spatial methods for the classification of urban remote sensing data
– ident: ref24
  doi: 10.1109/TGRS.2022.3185612
– year: 2014
  ident: ref33
– ident: ref14
  doi: 10.1109/TGRS.2014.2319373
– volume: 3
  start-page: 209
  year: 2014
  ident: ref28
  article-title: Text news classification system using Naive Bayes classifier
  publication-title: Int J Eng Sci
– start-page: 471
  year: 0
  ident: ref5
  article-title: Classification of coastal areas by airborne hyperspectral image
  publication-title: Opt Technol Atmos Ocean Environ Stud
– ident: ref17
  doi: 10.1016/j.neucom.2018.02.105
– ident: ref38
  doi: 10.1109/TGRS.2014.2308192
– ident: ref18
  doi: 10.1109/TGRS.2019.2907932
– ident: ref9
  doi: 10.1109/TGRS.2015.2514161
– ident: ref8
  doi: 10.1109/TGRS.2013.2296031
– ident: ref7
  doi: 10.1109/MSP.2013.2279177
– ident: ref36
  doi: 10.1080/2150704X.2020.1864051
– ident: ref1
  doi: 10.1002/0471723800
– ident: ref25
  doi: 10.1016/j.neucom.2021.03.035
– ident: ref31
  doi: 10.1109/TGRS.2014.2318058
– start-page: 912
  year: 2004
  ident: ref4
  article-title: Some experiments with ensembles of neural networks for classification of hyperspectral images
  publication-title: Advances in Neural Networks
– ident: ref10
  doi: 10.1109/TGRS.2015.2496167
– ident: ref26
  doi: 10.1109/TGRS.2021.3052048
– year: 2020
  ident: ref29
  publication-title: Artificial Intelligence A Modern Approach
– ident: ref13
  doi: 10.1109/LGRS.2013.2250905
– start-page: 1
  year: 2020
  ident: ref27
  article-title: A survey of model compression and acceleration for deep neural networks
  publication-title: IEEE Signal Process Mag Special Issue Deep Learn Image Understand
– ident: ref16
  doi: 10.1155/2016/1538973
– ident: ref11
  doi: 10.1109/TGRS.2015.2457614
– ident: ref15
  doi: 10.1109/TGRS.2015.2466657
– year: 2019
  ident: ref37
  article-title: Band selection algorithms and heterogeneous multi-classifier schemes for enhanced classification accuracy of hyperspectral images
– ident: ref23
  doi: 10.1109/LGRS.2023.3287037
– ident: ref39
  doi: 10.1109/LGRS.2021.3086796
– ident: ref12
  doi: 10.1109/JSTARS.2015.2442588
– year: 1995
  ident: ref32
– ident: ref30
  doi: 10.1109/TGRS.2011.2129595
– ident: ref19
  doi: 10.1109/MGRS.2022.3145854
– ident: ref6
  doi: 10.1007/978-94-007-7969-3_9
SSID ssj0062793
Score 2.3962886
Snippet This paper presents a post-processing-based Spectral-Spatial Classification (SSC) approach for Hyperspectral (HS) images. The approach effectively overcomes...
This article presents a postprocessing-based spectral–spatial classification (SSC) approach for hyperspectral (HS) images. The approach effectively overcomes...
This article presents a postprocessing-based spectral-spatial classification (SSC) approach for hyperspectral (HS) images. The approach effectively overcomes...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Adaptive Fast Fourier Transform
Adaptive fast Fourier transform (AFFT)
Algorithms
Classification
Classification algorithms
Classifiers
Fast Fourier transformations
Feature extraction
Fourier transforms
hyperspectral (HS) image
Hyperspectral Image Spectral-Spatial Classification
Hyperspectral imaging
Image classification
Iteration-wise Variable Sequencing (IVS)
iterationwise variable sequencing (IVS)
Iterative methods
Machine learning
Naive Bayes
Naive Bayes (NB)
Principal component analysis
Principal components analysis
Spatial data
spectral–spatial classification (SSC)
Support vector machines
Training
Training data
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCl7ER8X6IgePbrubzT5ybMXqQYpoxd5CNg8UpEpbhV787c4k21IV9OI1JJvdzOxkvjy-j5BTkZYW0uA4ci5xEU-sjpTmWWQtZB-4c5dU_qLwddHvl8OhuFmS-sIzYYEeOAxcuzIiSwuXlK4wXLtUQYqtYlOaCm-JWo_W40LMwVSIwTkDt6s5hpJYtMHJO7d3LZQKb6UpMrrkX-YhT9df66v8CMp-pultkc06RaSd8GrbZMWOdsj6pZfgne2SD5SMx_WJCOWEwX2oF7bEIz9-lOnD0_SR9hWEMdpVMzuhamRox6hXjGy01xtQSFRpWE2w5nvrjtZvY6Vn9MXRKwCp4S4mdActIPZMGuS-dzE4v4pqFYVIA3abRtqYREOaUzgnKlZahvvfUMIszF9Gi1jxzPGsAhyoWZ5VeZlVojQ8ZxBDU8HTPbI6ehnZfUJjDngwZ4mCJIPD3C_gaTkzscGk0TDWJGw-plLXFOOodPEsPdSIhQyGkGgIWRuiSc4WjV4Dw8bv1btorEVVpMf2BeA0snYa-ZfTNEkDTb3UHxOArLImOZrbXtb_8kT6nWaGPH0H_9H3IdmA7-FhGeeIrE7Hb_aYrOn36dNkfOLd-BMRo_MB
  priority: 102
  providerName: Directory of Open Access Journals
Title Spectral-Spatial Classification with Naive Bayes and Adaptive FFT for Improved Classification Accuracy of Hyperspectral Images
URI https://ieeexplore.ieee.org/document/10295975
https://www.proquest.com/docview/2901425977
https://doaj.org/article/bd9537f18f7d4cf3a548a0d8db0802e0
Volume 17
WOSCitedRecordID wos001128175000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5UXPCiq6vsrK7k4NGM3en0I8dRnPUgg_gAbyGdByzIjMxjYS7-9q1KZ2RdWWFvTdPpbvgqla8qqa8ATlTReKTBGQ8hD1zm3nJjZcm9R_ZBO3d5GwuFr-vRqHl8VDepWD3Wwnjv4-Ez36fLuJfvJnZBqTKc4UIhAS7XYb2uq65Ya-V2K1FHhV0kJIqTZkySGMozdYY2Pri961On8H5RkKBL9WYZimr9qb3KO58cF5rhzn_-4mfYToySDToT2IU1P96DTz9ix97lF3ihDvOUzuDUfRitjcU-mHRCKILCKBPLRga9Hjs3Sz9jZuzYwJlncoRsOLxnyGtZl3zw7u_RA2sXU2OXbBLYFca0Xekmfg5HoKua7cPD8PL-4oqnpgvcYqg359a53CIrqkNQrWi8oO1yvCM8LnfOqszIMsiyxbDRiqpsq6ZsVeNkJdDlFkoWB7Axnoz9V2CZxPCxErlBTiKRKih8WyVc5ohjOiF6IFYYaJsUyakxxpOOkUmmdAecJuB0Aq4Hp6-DnjtBjo8fPydwXx8lNe14A1HTaXLq1qmyqEPehNpJGwqDYZzJXONaqkT2WQ_2Cek_vteB3IOjla3oNPVnOm5MC5L1-_aPYYewhb8ou0TOEWzMpwv_HTbtr_nP2fQ4ZgWOo23_Bjww8zI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7StKW5pK-UbpO0OvRYbW1Zfui4Cd1s6GYJ7RZyE7IeECi7YR-FvfS3Z0bWhj5IoTdjLNv4G42_GWm-AXivisYjDc54CHngMveWGytL7j2yD1q5y9tYKDyuJ5Pm6kpdpmL1WAvjvY-bz3yfDuNavpvbNaXKcIYLhQS4fAAPqXVWKtfaOt5K1FFjFymJ4qQak0SG8kx9RCsffPnap17h_aIgSZfqtx9R1OtPDVb-8srxVzN8-p8v-Qz2E6dkg84InsOOn72Ax2exZ-_mJfykHvOU0ODUfxjtjcVOmLRHKMLCKBfLJgb9HjsxG79kZubYwJkbcoVsOJwyZLasSz949-fogbXrhbEbNg9shFFtV7yJj8MR6KyWB_Bt-Gl6OuKp7QK3GOytuHUut8iL6hBUKxovaMEczwiPn9xZlRlZBlm2GDhaUZVt1ZStapysBDrdQsniFezO5jP_GlgmMYCsRG6QlUgkCwrvVgmXOWKZTogeiC0G2iZNcmqN8V3H2CRTugNOE3A6AdeDD3eDbjpJjn9ffkLg3l1KetrxBKKm0_TUrVNlUYe8CbWTNhQGAzmTuca1VIvssx4cENK_PK8DuQdHW1vRafIvdVyaFiTs9-aeYe_gyWh6Mdbj88nnQ9jD15VdWucIdleLtT-GR_bH6nq5eBst_BZQUfWG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral-Spatial+Classification+with+Naive+Bayes+and+Adaptive+FFT+for+Improved+Classification+Accuracy+of+Hyperspectral+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Singh%2C+Arvind+Kumar&rft.au=Sunkara%2C+Renuvenkataswamy&rft.au=Kadambi%2C+Govind+R.&rft.au=Palade%2C+Vasile&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=1939-1404&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FJSTARS.2023.3327346&rft.externalDocID=10295975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon