Spectral-Spatial Classification with Naive Bayes and Adaptive FFT for Improved Classification Accuracy of Hyperspectral Images
This paper presents a post-processing-based Spectral-Spatial Classification (SSC) approach for Hyperspectral (HS) images. The approach effectively overcomes the limitations of traditional pixel-based classifiers by integrating spectral and spatial information to achieve improved classification resul...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 17; S. 1 - 14 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper presents a post-processing-based Spectral-Spatial Classification (SSC) approach for Hyperspectral (HS) images. The approach effectively overcomes the limitations of traditional pixel-based classifiers by integrating spectral and spatial information to achieve improved classification results. Specifically, the proposed method uses Principal Component Analysis (PCA) to transform the HS image and Naive Bayes (NB) classifier to quickly derive spectral-posterior probabilities. Spatial-posterior probabilities are then computed using an Adaptive Fast Fourier Transform (AFFT) and a probabilistic closeness function. These probabilities are then combined to generate a precise spectral-spatial classification map. The proposed approach is available in two distinct styles: the conventional NB-AFFT-SSC method and the proposed Iteration-wise Variable Sequencing-based NB-AFFT-SSC (IVS-NB-AFFT-SSC) method, which classifies one designated class in each iteration. Additionally, two wrapper-based feature selection methods are proposed to obtain a set of Principal Components (PCs) for each class of the HS image, significantly improving classification accuracy. The approach's efficacy is demonstrated through extensive experimentation on three real HS datasets, including Washington DC Mall (WDC-M), Salinas-A, and Botswana. The generality of the approach has been proven through the use of other well-known Machine Learning algorithms such as Support Vector Machine and K-Nearest Neighbor as wrappers in the approach. The results confirm that the proposed approach is highly effective, with the IVS approach helping users concentrate on a particular set of PCs for the class of interest. |
|---|---|
| AbstractList | This article presents a postprocessing-based spectral-spatial classification (SSC) approach for hyperspectral (HS) images. The approach effectively overcomes the limitations of traditional pixel-based classifiers by integrating spectral and spatial information to achieve improved classification results. Specifically, the proposed method uses principal component analysis to transform the HS images and the Naive Bayes (NB) classifier to quickly derive spectral-posterior probabilities. Spatial-posterior probabilities are then computed using an adaptive fast Fourier transform (AFFT) and a probabilistic closeness function. These probabilities are then combined to generate a precise SSC map. The proposed approach is available in two distinct styles: the conventional NB-AFFT-SSC method and the proposed iterationwise variable sequencing based NB-AFFT-SSC (IVS-NB-AFFT-SSC) method, which classifies one designated class in each iteration. In addition, two wrapper-based feature selection methods are proposed to obtain a set of principal components (PCs) for each class of the HS image, significantly improving classification accuracy. The approach's efficacy is demonstrated through extensive experimentation on three real HS datasets, including Washington DC Mall, Salinas-A, and Botswana. The generality of the approach has been proven through the use of other well-known machine-learning algorithms, such as support vector machine and K-nearest neighbor, as wrappers in the approach. The results confirm that the proposed approach is highly effective, with the IVS approach helping users concentrate on a particular set of PCs for the class of interest. This paper presents a post-processing-based Spectral-Spatial Classification (SSC) approach for Hyperspectral (HS) images. The approach effectively overcomes the limitations of traditional pixel-based classifiers by integrating spectral and spatial information to achieve improved classification results. Specifically, the proposed method uses Principal Component Analysis (PCA) to transform the HS image and Naive Bayes (NB) classifier to quickly derive spectral-posterior probabilities. Spatial-posterior probabilities are then computed using an Adaptive Fast Fourier Transform (AFFT) and a probabilistic closeness function. These probabilities are then combined to generate a precise spectral-spatial classification map. The proposed approach is available in two distinct styles: the conventional NB-AFFT-SSC method and the proposed Iteration-wise Variable Sequencing-based NB-AFFT-SSC (IVS-NB-AFFT-SSC) method, which classifies one designated class in each iteration. Additionally, two wrapper-based feature selection methods are proposed to obtain a set of Principal Components (PCs) for each class of the HS image, significantly improving classification accuracy. The approach's efficacy is demonstrated through extensive experimentation on three real HS datasets, including Washington DC Mall (WDC-M), Salinas-A, and Botswana. The generality of the approach has been proven through the use of other well-known Machine Learning algorithms such as Support Vector Machine and K-Nearest Neighbor as wrappers in the approach. The results confirm that the proposed approach is highly effective, with the IVS approach helping users concentrate on a particular set of PCs for the class of interest. |
| Author | Kadambi, Govind R. Palade, Vasile Sunkara, Renuvenkataswamy Singh, Arvind Kumar |
| Author_xml | – sequence: 1 givenname: Arvind Kumar orcidid: 0000-0001-5601-6667 surname: Singh fullname: Singh, Arvind Kumar organization: CATVAC, ETF-I, U R Rao Satellite Centre, Bengaluru, Karnataka, India – sequence: 2 givenname: Renuvenkataswamy orcidid: 0000-0001-8368-2585 surname: Sunkara fullname: Sunkara, Renuvenkataswamy organization: CATVAC, ETF-I, U R Rao Satellite Centre, Bengaluru, Karnataka, India – sequence: 3 givenname: Govind R. surname: Kadambi fullname: Kadambi, Govind R. organization: Research, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India – sequence: 4 givenname: Vasile orcidid: 0000-0002-6768-8394 surname: Palade fullname: Palade, Vasile organization: Research Center for Computational Science and Mathematical Modeling, Coventry University, Coventry, United Kingdom of Great Britain and Northern Ireland |
| BookMark | eNp9kUtrGzEUhUVJoU6aX9AuBF2Pq-dotHRNnbiEFGpnLTR6pDKT0VQaJ3iT314540LJIiuhy_3OPfeec3DWx94B8AmjOcZIfv2x2S5-beYEETqnlAjK6ndgRjDHFeaUn4EZllRWmCH2AZznvEOoJkLSGXjeDM6MSXfVZtBj0B1cdjrn4IMp39jDpzD-hrc6PDr4TR9chrq3cGH1MB5Lq9UW-pjg-mFI8dHZ1_TCmH3S5gCjh9eHwaV8GlcIfe_yR_De6y67y9N7Ae5W37fL6-rm59V6ubipDENyrIy12CBeC-9lSxpHCMKoVIhjmFojkWbcM95iJAypeVs3vJWNZTVhtaCS0QuwnnRt1Ds1pPCg00FFHdRLIaZ7pdMYTOdUayWnwuPGC8uMp5qzRiPb2BY1ZSAqWl8mrbLyn73Lo9rFfeqLfUUkwoxwKUTpklOXSTHn5LwyYXw5Slk_dAojdYxOTdGpY3TqFF1h6Sv2n-O3qc8TFZxz_xFEFkOc_gVud6fO |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_21595_jme_2025_24734 crossref_primary_10_1080_1448837X_2024_2430654 |
| Cites_doi | 10.1109/TGRS.2023.3274778 10.1109/JSTARS.2013.2262926 10.1109/TGRS.2008.916629 10.1016/j.isprsjprs.2019.09.006 10.3390/rs9010067 10.1109/TGRS.2022.3185612 10.1109/TGRS.2014.2319373 10.1016/j.neucom.2018.02.105 10.1109/TGRS.2014.2308192 10.1109/TGRS.2019.2907932 10.1109/TGRS.2015.2514161 10.1109/TGRS.2013.2296031 10.1109/MSP.2013.2279177 10.1080/2150704X.2020.1864051 10.1002/0471723800 10.1016/j.neucom.2021.03.035 10.1109/TGRS.2014.2318058 10.1109/TGRS.2015.2496167 10.1109/TGRS.2021.3052048 10.1109/LGRS.2013.2250905 10.1155/2016/1538973 10.1109/TGRS.2015.2457614 10.1109/TGRS.2015.2466657 10.1109/LGRS.2023.3287037 10.1109/LGRS.2021.3086796 10.1109/JSTARS.2015.2442588 10.1109/TGRS.2011.2129595 10.1109/MGRS.2022.3145854 10.1007/978-94-007-7969-3_9 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2023.3327346 |
| DatabaseName | IEEE Xplore (IEEE) Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_bd9537f18f7d4cf3a548a0d8db0802e0 10_1109_JSTARS_2023_3327346 10295975 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c409t-cdd1c0567ff9b28e220101c02e413dc90a45f45b107c265b685b98d4624673943 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001128175000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:52:05 EDT 2025 Fri Jul 25 22:54:53 EDT 2025 Sat Nov 29 04:51:19 EST 2025 Tue Nov 18 21:33:21 EST 2025 Wed Aug 27 02:37:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-cdd1c0567ff9b28e220101c02e413dc90a45f45b107c265b685b98d4624673943 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5601-6667 0000-0001-8368-2585 0000-0002-6768-8394 0000-0001-8968-9606 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10295975 |
| PQID | 2901425977 |
| PQPubID | 75722 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2023_3327346 crossref_primary_10_1109_JSTARS_2023_3327346 doaj_primary_oai_doaj_org_article_bd9537f18f7d4cf3a548a0d8db0802e0 ieee_primary_10295975 proquest_journals_2901425977 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref36 ref31 ref30 ref11 ref10 ref2 ref1 (ref34) 2014 singh (ref37) 2019 ref17 ref39 ref16 ref38 ref19 ref18 cheng (ref27) 2020 (ref32) 1995 ref24 (ref33) 2014 ref23 ref26 ref25 ref20 ref22 ref21 mangal (ref28) 2014; 3 ref8 ref7 zhou (ref5) 0 ref9 ref6 fauvel (ref3) 2007 hernández-espinosa (ref4) 2004 russell (ref29) 2020 |
| References_xml | – ident: ref21 doi: 10.1109/TGRS.2023.3274778 – ident: ref35 doi: 10.1109/JSTARS.2013.2262926 – ident: ref2 doi: 10.1109/TGRS.2008.916629 – ident: ref20 doi: 10.1016/j.isprsjprs.2019.09.006 – year: 2014 ident: ref34 – ident: ref22 doi: 10.3390/rs9010067 – year: 2007 ident: ref3 article-title: Spectral and spatial methods for the classification of urban remote sensing data – ident: ref24 doi: 10.1109/TGRS.2022.3185612 – year: 2014 ident: ref33 – ident: ref14 doi: 10.1109/TGRS.2014.2319373 – volume: 3 start-page: 209 year: 2014 ident: ref28 article-title: Text news classification system using Naive Bayes classifier publication-title: Int J Eng Sci – start-page: 471 year: 0 ident: ref5 article-title: Classification of coastal areas by airborne hyperspectral image publication-title: Opt Technol Atmos Ocean Environ Stud – ident: ref17 doi: 10.1016/j.neucom.2018.02.105 – ident: ref38 doi: 10.1109/TGRS.2014.2308192 – ident: ref18 doi: 10.1109/TGRS.2019.2907932 – ident: ref9 doi: 10.1109/TGRS.2015.2514161 – ident: ref8 doi: 10.1109/TGRS.2013.2296031 – ident: ref7 doi: 10.1109/MSP.2013.2279177 – ident: ref36 doi: 10.1080/2150704X.2020.1864051 – ident: ref1 doi: 10.1002/0471723800 – ident: ref25 doi: 10.1016/j.neucom.2021.03.035 – ident: ref31 doi: 10.1109/TGRS.2014.2318058 – start-page: 912 year: 2004 ident: ref4 article-title: Some experiments with ensembles of neural networks for classification of hyperspectral images publication-title: Advances in Neural Networks – ident: ref10 doi: 10.1109/TGRS.2015.2496167 – ident: ref26 doi: 10.1109/TGRS.2021.3052048 – year: 2020 ident: ref29 publication-title: Artificial Intelligence A Modern Approach – ident: ref13 doi: 10.1109/LGRS.2013.2250905 – start-page: 1 year: 2020 ident: ref27 article-title: A survey of model compression and acceleration for deep neural networks publication-title: IEEE Signal Process Mag Special Issue Deep Learn Image Understand – ident: ref16 doi: 10.1155/2016/1538973 – ident: ref11 doi: 10.1109/TGRS.2015.2457614 – ident: ref15 doi: 10.1109/TGRS.2015.2466657 – year: 2019 ident: ref37 article-title: Band selection algorithms and heterogeneous multi-classifier schemes for enhanced classification accuracy of hyperspectral images – ident: ref23 doi: 10.1109/LGRS.2023.3287037 – ident: ref39 doi: 10.1109/LGRS.2021.3086796 – ident: ref12 doi: 10.1109/JSTARS.2015.2442588 – year: 1995 ident: ref32 – ident: ref30 doi: 10.1109/TGRS.2011.2129595 – ident: ref19 doi: 10.1109/MGRS.2022.3145854 – ident: ref6 doi: 10.1007/978-94-007-7969-3_9 |
| SSID | ssj0062793 |
| Score | 2.3962886 |
| Snippet | This paper presents a post-processing-based Spectral-Spatial Classification (SSC) approach for Hyperspectral (HS) images. The approach effectively overcomes... This article presents a postprocessing-based spectral–spatial classification (SSC) approach for hyperspectral (HS) images. The approach effectively overcomes... This article presents a postprocessing-based spectral-spatial classification (SSC) approach for hyperspectral (HS) images. The approach effectively overcomes... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Adaptive Fast Fourier Transform Adaptive fast Fourier transform (AFFT) Algorithms Classification Classification algorithms Classifiers Fast Fourier transformations Feature extraction Fourier transforms hyperspectral (HS) image Hyperspectral Image Spectral-Spatial Classification Hyperspectral imaging Image classification Iteration-wise Variable Sequencing (IVS) iterationwise variable sequencing (IVS) Iterative methods Machine learning Naive Bayes Naive Bayes (NB) Principal component analysis Principal components analysis Spatial data spectral–spatial classification (SSC) Support vector machines Training Training data |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iCl7ER8X6IgePbrubzT5ybMXqQYpoxd5CNg8UpEpbhV787c4k21IV9OI1JJvdzOxkvjy-j5BTkZYW0uA4ci5xEU-sjpTmWWQtZB-4c5dU_qLwddHvl8OhuFmS-sIzYYEeOAxcuzIiSwuXlK4wXLtUQYqtYlOaCm-JWo_W40LMwVSIwTkDt6s5hpJYtMHJO7d3LZQKb6UpMrrkX-YhT9df66v8CMp-pultkc06RaSd8GrbZMWOdsj6pZfgne2SD5SMx_WJCOWEwX2oF7bEIz9-lOnD0_SR9hWEMdpVMzuhamRox6hXjGy01xtQSFRpWE2w5nvrjtZvY6Vn9MXRKwCp4S4mdActIPZMGuS-dzE4v4pqFYVIA3abRtqYREOaUzgnKlZahvvfUMIszF9Gi1jxzPGsAhyoWZ5VeZlVojQ8ZxBDU8HTPbI6ehnZfUJjDngwZ4mCJIPD3C_gaTkzscGk0TDWJGw-plLXFOOodPEsPdSIhQyGkGgIWRuiSc4WjV4Dw8bv1btorEVVpMf2BeA0snYa-ZfTNEkDTb3UHxOArLImOZrbXtb_8kT6nWaGPH0H_9H3IdmA7-FhGeeIrE7Hb_aYrOn36dNkfOLd-BMRo_MB priority: 102 providerName: Directory of Open Access Journals |
| Title | Spectral-Spatial Classification with Naive Bayes and Adaptive FFT for Improved Classification Accuracy of Hyperspectral Images |
| URI | https://ieeexplore.ieee.org/document/10295975 https://www.proquest.com/docview/2901425977 https://doaj.org/article/bd9537f18f7d4cf3a548a0d8db0802e0 |
| Volume | 17 |
| WOSCitedRecordID | wos001128175000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5UXPCiq6vsrK7k4NGM3en0I8dRnPUgg_gAbyGdByzIjMxjYS7-9q1KZ2RdWWFvTdPpbvgqla8qqa8ATlTReKTBGQ8hD1zm3nJjZcm9R_ZBO3d5GwuFr-vRqHl8VDepWD3Wwnjv4-Ez36fLuJfvJnZBqTKc4UIhAS7XYb2uq65Ya-V2K1FHhV0kJIqTZkySGMozdYY2Pri961On8H5RkKBL9WYZimr9qb3KO58cF5rhzn_-4mfYToySDToT2IU1P96DTz9ix97lF3ihDvOUzuDUfRitjcU-mHRCKILCKBPLRga9Hjs3Sz9jZuzYwJlncoRsOLxnyGtZl3zw7u_RA2sXU2OXbBLYFca0Xekmfg5HoKua7cPD8PL-4oqnpgvcYqg359a53CIrqkNQrWi8oO1yvCM8LnfOqszIMsiyxbDRiqpsq6ZsVeNkJdDlFkoWB7Axnoz9V2CZxPCxErlBTiKRKih8WyVc5ohjOiF6IFYYaJsUyakxxpOOkUmmdAecJuB0Aq4Hp6-DnjtBjo8fPydwXx8lNe14A1HTaXLq1qmyqEPehNpJGwqDYZzJXONaqkT2WQ_2Cek_vteB3IOjla3oNPVnOm5MC5L1-_aPYYewhb8ou0TOEWzMpwv_HTbtr_nP2fQ4ZgWOo23_Bjww8zI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7StKW5pK-UbpO0OvRYbW1Zfui4Cd1s6GYJ7RZyE7IeECi7YR-FvfS3Z0bWhj5IoTdjLNv4G42_GWm-AXivisYjDc54CHngMveWGytL7j2yD1q5y9tYKDyuJ5Pm6kpdpmL1WAvjvY-bz3yfDuNavpvbNaXKcIYLhQS4fAAPqXVWKtfaOt5K1FFjFymJ4qQak0SG8kx9RCsffPnap17h_aIgSZfqtx9R1OtPDVb-8srxVzN8-p8v-Qz2E6dkg84InsOOn72Ax2exZ-_mJfykHvOU0ODUfxjtjcVOmLRHKMLCKBfLJgb9HjsxG79kZubYwJkbcoVsOJwyZLasSz949-fogbXrhbEbNg9shFFtV7yJj8MR6KyWB_Bt-Gl6OuKp7QK3GOytuHUut8iL6hBUKxovaMEczwiPn9xZlRlZBlm2GDhaUZVt1ZStapysBDrdQsniFezO5jP_GlgmMYCsRG6QlUgkCwrvVgmXOWKZTogeiC0G2iZNcmqN8V3H2CRTugNOE3A6AdeDD3eDbjpJjn9ffkLg3l1KetrxBKKm0_TUrVNlUYe8CbWTNhQGAzmTuca1VIvssx4cENK_PK8DuQdHW1vRafIvdVyaFiTs9-aeYe_gyWh6Mdbj88nnQ9jD15VdWucIdleLtT-GR_bH6nq5eBst_BZQUfWG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral-Spatial+Classification+with+Naive+Bayes+and+Adaptive+FFT+for+Improved+Classification+Accuracy+of+Hyperspectral+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Singh%2C+Arvind+Kumar&rft.au=Sunkara%2C+Renuvenkataswamy&rft.au=Kadambi%2C+Govind+R.&rft.au=Palade%2C+Vasile&rft.date=2024-01-01&rft.pub=IEEE&rft.issn=1939-1404&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FJSTARS.2023.3327346&rft.externalDocID=10295975 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |