Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network
Carbon price, to a certain extent, reflects the intensity of a national emission reduction target, whereas carbon price forecasting is the basis for improving crisis management competence and strengthening market enthusiasm. This paper advances a novel hybrid carbon price forecasting methodology con...
Uloženo v:
| Vydáno v: | Carbon management Ročník 11; číslo 1; s. 25 - 37 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis
02.01.2020
Taylor & Francis Group |
| Témata: | |
| ISSN: | 1758-3004, 1758-3012, 1758-3012 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Carbon price, to a certain extent, reflects the intensity of a national emission reduction target, whereas carbon price forecasting is the basis for improving crisis management competence and strengthening market enthusiasm. This paper advances a novel hybrid carbon price forecasting methodology consisting of the empirical wavelet transform (EWT) and the gated recurrent unit (GRU) neural network. First, the carbon price data is decomposed through the EWT approach into the more stable and regular sub-components. These sub-components are divided into trend, low-frequency and high-frequency component using the fuzzy C-means clustering algorithm. Next, the lag order of different classes of components is determined as the input variables of the GRU model by the partial auto-correlation function method. Then, all values of each component predicted by the GRU method are aggregated to produce a final combined prediction result for the original carbon price. Finally, the EWT-GRU model is compared with the individual Autoregressive Integrated Moving Average (ARIMA), Back Propagation Neural Network (BPNN), GRU and EWT-BPNN models. The simulation results demonstrate that the proposed EWT-GRU combined forecasting model is superior to other models in terms of prediction effect, prediction accuracy, etc. They also confirm the validity and accuracy of the EWT-GRU model in carbon price prediction and show it deserves popularization. |
|---|---|
| AbstractList | Carbon price, to a certain extent, reflects the intensity of a national emission reduction target, whereas carbon price forecasting is the basis for improving crisis management competence and strengthening market enthusiasm. This paper advances a novel hybrid carbon price forecasting methodology consisting of the empirical wavelet transform (EWT) and the gated recurrent unit (GRU) neural network. First, the carbon price data is decomposed through the EWT approach into the more stable and regular sub-components. These sub-components are divided into trend, low-frequency and high-frequency component using the fuzzy C-means clustering algorithm. Next, the lag order of different classes of components is determined as the input variables of the GRU model by the partial auto-correlation function method. Then, all values of each component predicted by the GRU method are aggregated to produce a final combined prediction result for the original carbon price. Finally, the EWT-GRU model is compared with the individual Autoregressive Integrated Moving Average (ARIMA), Back Propagation Neural Network (BPNN), GRU and EWT-BPNN models. The simulation results demonstrate that the proposed EWT-GRU combined forecasting model is superior to other models in terms of prediction effect, prediction accuracy, etc. They also confirm the validity and accuracy of the EWT-GRU model in carbon price prediction and show it deserves popularization. |
| Author | Liu, Hui Shen, Lei |
| Author_xml | – sequence: 1 givenname: Hui surname: Liu fullname: Liu, Hui email: 895983934@qq.com organization: Department of Economics and Management, North China Electric Power University – sequence: 2 givenname: Lei surname: Shen fullname: Shen, Lei organization: Economic and Technological Research Institute, State Grid Anhui Electric Power Co., Ltd |
| BookMark | eNqFkUFvFDEMhUeoSJTSn4CUI5ddkplkJhEXUEWhUiUucI48jrNKmU2WJEPVf0-WbTlwgJPjJ78nx9_L7iymSF33WvCt4Jq_FZPSA-dy23NhtmLUoxn4s-78qG8GLvqzP28uX3SXpdxxznshOdfTeTdfp0wIpYa4Ywh5TpEdckBiazlKtD-E1sLC7uEnLVRZzRCLT3nPIDq2g0qOtYg1Z4qVrTFUFmnNzRGp3qf8_VX33MNS6PKxXnTfrj9-vfq8uf3y6ebqw-0GJTd1g9OApvfjDBMIUEZ5M0-GD14q5_wIxgmvBc5SoZl7Nys3DhwJvEQ9azTDRXdzynUJ7mz7xB7yg00Q7G8h5Z2FXAMuZDVoo3ri4-yd1A6NQ-1RoicjhFRTy3pzyjrk9GOlUu0-FKRlgUhpLbZXvRyEklq10XenUcyplEzeYqhQQ4rtUmGxgtsjKPsEyh5B2UdQza3-cj8t_j_f-5MvxCMLaIdenK3wsKTsGyEMxQ7_jvgFvkGuXw |
| CitedBy_id | crossref_primary_10_1007_s11356_021_16089_2 crossref_primary_10_1016_j_scitotenv_2021_149110 crossref_primary_10_17221_128_2021_AGRICECON crossref_primary_10_3390_ijerph19106217 crossref_primary_10_1016_j_jenvman_2024_120967 crossref_primary_10_1080_13547860_2025_2555003 crossref_primary_10_1016_j_energy_2023_128569 crossref_primary_10_1016_j_scitotenv_2020_143099 crossref_primary_10_3390_math13091481 crossref_primary_10_1007_s10668_022_02299_2 crossref_primary_10_1007_s10614_025_10899_z crossref_primary_10_1016_j_apenergy_2023_121380 crossref_primary_10_1007_s11356_023_29028_0 crossref_primary_10_3390_math13030464 crossref_primary_10_1016_j_jclepro_2021_128024 crossref_primary_10_1007_s10668_023_03886_7 crossref_primary_10_1016_j_eneco_2024_107459 crossref_primary_10_1016_j_cosrev_2020_100356 crossref_primary_10_1007_s11356_023_29196_z crossref_primary_10_1016_j_eneco_2022_106049 crossref_primary_10_1155_2022_1353540 crossref_primary_10_1186_s40854_024_00622_6 crossref_primary_10_3389_fenrg_2022_991570 crossref_primary_10_1016_j_apenergy_2023_122515 crossref_primary_10_1155_2022_3216036 crossref_primary_10_1016_j_eswa_2023_121286 crossref_primary_10_3390_en13133471 crossref_primary_10_1007_s11356_022_19858_9 crossref_primary_10_1142_S3082844925500137 crossref_primary_10_1016_j_jclepro_2023_139232 crossref_primary_10_1016_j_energy_2023_127783 crossref_primary_10_1155_2021_3052041 crossref_primary_10_3390_math12101428 crossref_primary_10_1016_j_jclepro_2023_136959 crossref_primary_10_1109_TIM_2021_3127641 crossref_primary_10_3390_en16052317 crossref_primary_10_1109_JBHI_2023_3327734 crossref_primary_10_1016_j_ipm_2024_103953 crossref_primary_10_1002_ep_14216 crossref_primary_10_1016_j_chaos_2021_111783 crossref_primary_10_1007_s00521_022_07348_5 crossref_primary_10_1016_j_eswa_2024_124954 crossref_primary_10_3390_math9202595 crossref_primary_10_1007_s12053_024_10191_3 crossref_primary_10_1080_00036846_2022_2030855 crossref_primary_10_1007_s10614_025_10900_9 crossref_primary_10_3390_f14101989 crossref_primary_10_1007_s10462_022_10199_0 crossref_primary_10_1016_j_energy_2024_132929 crossref_primary_10_1016_j_jclepro_2023_136701 crossref_primary_10_1016_j_jenvman_2024_121273 crossref_primary_10_3390_su142315522 crossref_primary_10_1016_j_envpol_2022_119136 crossref_primary_10_3390_en17174358 |
| Cites_doi | 10.1109/T-C.1975.224317 10.1111/exsy.12084 10.1016/S0020-0255(70)80056-1 10.1016/j.eneco.2010.09.006 10.1016/j.omega.2012.06.005 10.1016/j.jclepro.2018.09.071 10.1016/j.eneco.2017.12.030 10.1016/j.eneco.2013.06.017 10.1162/neco.1997.9.8.1735 10.1109/TSP.2013.2288675 10.1016/j.rser.2016.11.060 10.1016/j.apenergy.2018.02.003 10.3390/en5020355 10.1016/j.jfranklin.2015.04.001 10.1016/j.apenergy.2017.01.076 10.1016/j.asoc.2016.02.029 10.1109/TSP.2013.2265222 10.1016/j.eneco.2008.07.003 10.1016/j.enpol.2010.10.047 10.1016/0304-4076(86)90063-1 10.1016/j.eneco.2009.02.008 10.2307/1912773 10.1007/s10100-014-0340-0 10.1016/j.eswa.2014.12.047 10.3390/en9010054 |
| ContentType | Journal Article |
| Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 |
| Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 |
| DBID | AAYXX CITATION 7S9 L.6 DOA |
| DOI | 10.1080/17583004.2019.1686930 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1758-3012 |
| EndPage | 37 |
| ExternalDocumentID | oai_doaj_org_article_8a8952e06bfd48dc9dc8fc4cfe911457 10_1080_17583004_2019_1686930 1686930 |
| Genre | Article |
| GroupedDBID | 0YH 30N 4.4 AAJMT ABDBF ABPEM ACGFS ACHQT ACTIO ACUHS ADCVX ADMLS ADMSI AEISY AENEX AEYOC AHDSZ AIJEM AIYEW ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG DGEBU DKSSO EBS GTTXZ H13 HZ~ IPNFZ KYCEM LJTGL M4Z O9- RIG SNACF TDBHL TFL TFW TTHFI AAYXX CITATION 7S9 L.6 GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c409t-c73c92f6ba7a1a595f9b7903f45ddf6a9d1f81cb45c9b2db5d630ceaf4c8b8c93 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498305400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1758-3004 1758-3012 |
| IngestDate | Mon Nov 10 04:32:52 EST 2025 Mon May 05 21:30:43 EDT 2025 Tue Nov 18 21:59:03 EST 2025 Sat Nov 29 02:24:41 EST 2025 Mon Oct 20 23:49:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-c73c92f6ba7a1a595f9b7903f45ddf6a9d1f81cb45c9b2db5d630ceaf4c8b8c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/8a8952e06bfd48dc9dc8fc4cfe911457 |
| PQID | 2524315485 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2524315485 doaj_primary_oai_doaj_org_article_8a8952e06bfd48dc9dc8fc4cfe911457 crossref_citationtrail_10_1080_17583004_2019_1686930 informaworld_taylorfrancis_310_1080_17583004_2019_1686930 crossref_primary_10_1080_17583004_2019_1686930 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-02 |
| PublicationDateYYYYMMDD | 2020-01-02 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationTitle | Carbon management |
| PublicationYear | 2020 |
| Publisher | Taylor & Francis Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
| References | CIT0010 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 Chevallier J (CIT0006) 2010; 30 CIT0023 CIT0022 CIT0003 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0028 doi: 10.1109/T-C.1975.224317 – ident: CIT0013 doi: 10.1111/exsy.12084 – ident: CIT0027 doi: 10.1016/S0020-0255(70)80056-1 – ident: CIT0008 doi: 10.1016/j.eneco.2010.09.006 – ident: CIT0012 doi: 10.1016/j.omega.2012.06.005 – ident: CIT0023 doi: 10.1016/j.jclepro.2018.09.071 – volume: 30 start-page: 1642 issue: 2 year: 2010 ident: CIT0006 publication-title: Econ Bull – ident: CIT0018 doi: 10.1016/j.eneco.2017.12.030 – ident: CIT0009 doi: 10.1016/j.eneco.2013.06.017 – ident: CIT0026 doi: 10.1162/neco.1997.9.8.1735 – ident: CIT0020 doi: 10.1109/TSP.2013.2288675 – ident: CIT0011 doi: 10.1016/j.rser.2016.11.060 – ident: CIT0014 doi: 10.1016/j.apenergy.2018.02.003 – ident: CIT0017 doi: 10.3390/en5020355 – ident: CIT0021 doi: 10.1016/j.jfranklin.2015.04.001 – ident: CIT0019 doi: 10.1016/j.apenergy.2017.01.076 – ident: CIT0016 doi: 10.1016/j.asoc.2016.02.029 – ident: CIT0024 doi: 10.1109/TSP.2013.2265222 – ident: CIT0004 doi: 10.1016/j.eneco.2008.07.003 – ident: CIT0007 doi: 10.1016/j.enpol.2010.10.047 – ident: CIT0003 doi: 10.1016/0304-4076(86)90063-1 – ident: CIT0005 doi: 10.1016/j.eneco.2009.02.008 – ident: CIT0002 doi: 10.2307/1912773 – ident: CIT0010 doi: 10.1007/s10100-014-0340-0 – ident: CIT0015 doi: 10.1016/j.eswa.2014.12.047 – ident: CIT0022 doi: 10.3390/en9010054 |
| SSID | ssj0002140087 ssib051604459 |
| Score | 2.436043 |
| Snippet | Carbon price, to a certain extent, reflects the intensity of a national emission reduction target, whereas carbon price forecasting is the basis for improving... |
| SourceID | doaj proquest crossref informaworld |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 25 |
| SubjectTerms | administrative management algorithms autocorrelation carbon carbon markets Carbon price forecasting disaster recovery empirical wavelet transform fuzzy C-means clustering algorithm gated recurrent unit neural network prediction wavelet |
| SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QigMcEE8xvBQkrt1N2qSNjwtixWnFAaS9RYnToJWgM5rp7P597LRdDXCYC9eoqVLbcWzX-T4hPvQF7zQHSlNTrgyQLlyXSSFWpagj-8NQyCa6y0t3dQVfD6i-uCdsggeeBHfmggNb0ytjTsYlhIQuo8Hc0zY1ttwjp6jnIJkiS7K6VWZBSWGfXFMeoQpbHh2XrmKYqeU6j1NnPMZD3OkFp7p1zA_4x0FV8Pz_QjP9x3uXI-nisXg0x5LyfPqGJ-JePzwVDw8QBp-JyNSbGHbc3CwxbON6kBvGEZLc8P5D9r821wUkRN4GpqAY5bhEsjIMSXKRLcktF-UZxknuyQNIxsCkGcPUQf5cfL_4_O3Tl2qmVaiQkrmxwq5BqHMbQxd0sGAzxA5Uk41NKbcBks5OYzQWIdYp2tQ2CvuQDbroEJoX4mRYD_1LIcF2oek02Eha1VGBypbyOYpKFKYIsBJmkaHHGXOcqS9-ej1Dky6i9yx6P4t-JU7vpm0m0I1jEz6ygu4eZszsMkCW5GdL8scsaSXgUL1-LCWTPPGb-ObIAt4vtuBpf_JPlzD06_3O1ySQhvNC--p_LPK1eFBzxs9FoPqNOBm3-_6tuI834_Vu-65sgt-Y2wUk priority: 102 providerName: Directory of Open Access Journals |
| Title | Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network |
| URI | https://www.tandfonline.com/doi/abs/10.1080/17583004.2019.1686930 https://www.proquest.com/docview/2524315485 https://doaj.org/article/8a8952e06bfd48dc9dc8fc4cfe911457 |
| Volume | 11 |
| WOSCitedRecordID | wos000498305400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1758-3012 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051604459 issn: 1758-3004 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1758-3012 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140087 issn: 1758-3004 databaseCode: TFW dateStart: 20101001 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKE9FOhDXaDIlXoNjRM78RwBseKEOIDKzfIjRkhtdpVk6d_vjJMg2qri0F6jeJTMeyaTbxj73CS802ixTA0xk4Cy0HVEgag8OOHIH9q0bKK-vNS3t3A1TRP201gl1dBxBIpIvpqM27p-noj7ghFPE1AUDWbBsag0rfNDL4yZPen49fLrrFFKVLmc0VLINxdYT-Rpax4RyYjK_FvP3wj_ErASrv9vqKZ_ePEUmpY7_-GldtnrKS_lJ6Mi7bEXTfuGvXqCVviWOVrj6W1Pg9Lc286tWr4mTCJOw_N3vPm-vk-AI_yHpXUWAx_mrJjjY3Fq2AXeUYOfIKH4Br0JJzxNPNGO0-jv2M3y_PrsIptWNGQeC8Mh83XpoYiVs7UVVoGK4GrIyyhVCLGyEETUwjupPLgiOBWqMveNjdJrpz2U79lWu2qbD4yDqm1ZC1AONUS4HPKosDbEDCf3wQEsmJzlYPyEX05rNL4ZMcGcziw0xEIzsXDBjh-PrUcAj-cOnJKQH28m_O10YdXdmcmcjbYaVIGK7mKQOngIXkcvfWwweEhVLxg8VREzpPZLHHelmPKZB_g065NBW6cPOLZtVpveFMiQkmpMtf8P9A_Yy4KaBtRHKg7Z1tBtmo9s2z8M9313lJoSR8mKfgKwSRVv |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQQIOvBELBYzENSVO7MRzbBGrIsqeFtGb5UdcVSrZVTYLfx-Pk1QLCPVAr1E8cubpmYy_AXjXJLzTYGKa6kMmMMpC1SEKRObeckv-0KRhE_VioU5PcfcuDLVVUg4dBqCI5KvJuKkYPbXEvY8hTxFSFHVm4QGvFM3zuwm3ZIy11Na3nH-bdEryKhcTXgp55yJmFHmam0dUMiIzXez5F-XfQlZC9v8D1_QvP56C0_zBdXzWQ7g_Hk3Z4aBLj-BG0z6GezuAhU_A0iRPZzbUK82c6eyqZWuCJWLUP3_Gmu_r84Q5wn4ammjRs346GLO4L0Y1O886qvETKhTbRofCCFIzrmiHhvSn8HX-cfnhOBunNGQu5oZ95urSYREqa2rDjUQZ0NaYl0FI70Nl0POguLNCOrSFt9JXZe4aE4RTVjksn8Feu2qb58BQ1qasOUoblYTbHPMgY3oYDzm58xZxBmIShHYjhDlN0rjQfEQ6nVioiYV6ZOEMDi6XrQcMj6sWHJGUL18mCO70YNWd6dGitTIKZRF13QYvlHfonQpOuNDE-CFkPQPc1RHdpwpMGMal6PKKDbydFEpHc6d_OKZtVtuNLiJDSkoz5Yv_oP8G7hwvv5zok0-Lzy_hbkE1BCorFfuw13fb5hXcdj_68033OhnTL5CGGJs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQQgO5VXEUh5G4poSJ3biOULLqhVo1UMRvVl-xFWlNrvKZuHv43GSqoBQD3CN4lHieXkmk-8DeNckvNNgYpnqQyYw6kLVISpE5t5yS_HQJLKJerFQp6d4PE4TrsexSqqhwwAUkWI1OffKh2ki7n3MeIqAomgwC_d4pYjO7zbcSeBY0aRP5t8mk5K8ysUEl0LBuYgFRZ5o80hKRmKm_3r-JvmXjJWA_X-DNf0jjKfcNH_4H97qEWyPB1P2YbCkx3CraZ_Ag2twhU_BEo-nM2ualGbOdHbZshWBEjGanj9jzeXqPCGOsB-G-Cx61k_HYhYfi1HHzrOOOvyECcU2MZwwAtSMK9phHH0Hvs4_newfZiNHQ-ZiZdhnri4dFqGypjbcSJQBbY15GYT0PlQGPQ-KOyukQ1t4K31V5q4xQThllcPyGWy1y7Z5Dgxlbcqao7TRRLjNMQ8yFofxiJM7bxFnICY9aDcCmBOPxoXmI87ptIWatlCPWziDvatlqwHB46YFH0nJVzcTAHe6sOzO9OjPWhmFsoiWboMXyjv0TgUnXGhi9hCyngFeNxHdp_5LGMhSdHnDA7yd7ElHZ6cvOKZtlpu1LuKGlFRkyhf_IP8N3Ds-mOsvR4vPu3C_oAYC9ZSKl7DVd5vmFdx13_vzdfc6udJP-yAXPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+carbon+price+using+empirical+wavelet+transform+and+gated+recurrent+unit+neural+network&rft.jtitle=Carbon+management&rft.au=Liu%2C+Hui&rft.au=Shen%2C+Lei&rft.date=2020-01-02&rft.issn=1758-3004&rft.eissn=1758-3012&rft.volume=11&rft.issue=1&rft.spage=25&rft.epage=37&rft_id=info:doi/10.1080%2F17583004.2019.1686930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17583004_2019_1686930 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-3004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-3004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-3004&client=summon |