Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network

Carbon price, to a certain extent, reflects the intensity of a national emission reduction target, whereas carbon price forecasting is the basis for improving crisis management competence and strengthening market enthusiasm. This paper advances a novel hybrid carbon price forecasting methodology con...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Carbon management Ročník 11; číslo 1; s. 25 - 37
Hlavní autoři: Liu, Hui, Shen, Lei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 02.01.2020
Taylor & Francis Group
Témata:
ISSN:1758-3004, 1758-3012, 1758-3012
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Carbon price, to a certain extent, reflects the intensity of a national emission reduction target, whereas carbon price forecasting is the basis for improving crisis management competence and strengthening market enthusiasm. This paper advances a novel hybrid carbon price forecasting methodology consisting of the empirical wavelet transform (EWT) and the gated recurrent unit (GRU) neural network. First, the carbon price data is decomposed through the EWT approach into the more stable and regular sub-components. These sub-components are divided into trend, low-frequency and high-frequency component using the fuzzy C-means clustering algorithm. Next, the lag order of different classes of components is determined as the input variables of the GRU model by the partial auto-correlation function method. Then, all values of each component predicted by the GRU method are aggregated to produce a final combined prediction result for the original carbon price. Finally, the EWT-GRU model is compared with the individual Autoregressive Integrated Moving Average (ARIMA), Back Propagation Neural Network (BPNN), GRU and EWT-BPNN models. The simulation results demonstrate that the proposed EWT-GRU combined forecasting model is superior to other models in terms of prediction effect, prediction accuracy, etc. They also confirm the validity and accuracy of the EWT-GRU model in carbon price prediction and show it deserves popularization.
AbstractList Carbon price, to a certain extent, reflects the intensity of a national emission reduction target, whereas carbon price forecasting is the basis for improving crisis management competence and strengthening market enthusiasm. This paper advances a novel hybrid carbon price forecasting methodology consisting of the empirical wavelet transform (EWT) and the gated recurrent unit (GRU) neural network. First, the carbon price data is decomposed through the EWT approach into the more stable and regular sub-components. These sub-components are divided into trend, low-frequency and high-frequency component using the fuzzy C-means clustering algorithm. Next, the lag order of different classes of components is determined as the input variables of the GRU model by the partial auto-correlation function method. Then, all values of each component predicted by the GRU method are aggregated to produce a final combined prediction result for the original carbon price. Finally, the EWT-GRU model is compared with the individual Autoregressive Integrated Moving Average (ARIMA), Back Propagation Neural Network (BPNN), GRU and EWT-BPNN models. The simulation results demonstrate that the proposed EWT-GRU combined forecasting model is superior to other models in terms of prediction effect, prediction accuracy, etc. They also confirm the validity and accuracy of the EWT-GRU model in carbon price prediction and show it deserves popularization.
Author Liu, Hui
Shen, Lei
Author_xml – sequence: 1
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: 895983934@qq.com
  organization: Department of Economics and Management, North China Electric Power University
– sequence: 2
  givenname: Lei
  surname: Shen
  fullname: Shen, Lei
  organization: Economic and Technological Research Institute, State Grid Anhui Electric Power Co., Ltd
BookMark eNqFkUFvFDEMhUeoSJTSn4CUI5ddkplkJhEXUEWhUiUucI48jrNKmU2WJEPVf0-WbTlwgJPjJ78nx9_L7iymSF33WvCt4Jq_FZPSA-dy23NhtmLUoxn4s-78qG8GLvqzP28uX3SXpdxxznshOdfTeTdfp0wIpYa4Ywh5TpEdckBiazlKtD-E1sLC7uEnLVRZzRCLT3nPIDq2g0qOtYg1Z4qVrTFUFmnNzRGp3qf8_VX33MNS6PKxXnTfrj9-vfq8uf3y6ebqw-0GJTd1g9OApvfjDBMIUEZ5M0-GD14q5_wIxgmvBc5SoZl7Nys3DhwJvEQ9azTDRXdzynUJ7mz7xB7yg00Q7G8h5Z2FXAMuZDVoo3ri4-yd1A6NQ-1RoicjhFRTy3pzyjrk9GOlUu0-FKRlgUhpLbZXvRyEklq10XenUcyplEzeYqhQQ4rtUmGxgtsjKPsEyh5B2UdQza3-cj8t_j_f-5MvxCMLaIdenK3wsKTsGyEMxQ7_jvgFvkGuXw
CitedBy_id crossref_primary_10_1007_s11356_021_16089_2
crossref_primary_10_1016_j_scitotenv_2021_149110
crossref_primary_10_17221_128_2021_AGRICECON
crossref_primary_10_3390_ijerph19106217
crossref_primary_10_1016_j_jenvman_2024_120967
crossref_primary_10_1080_13547860_2025_2555003
crossref_primary_10_1016_j_energy_2023_128569
crossref_primary_10_1016_j_scitotenv_2020_143099
crossref_primary_10_3390_math13091481
crossref_primary_10_1007_s10668_022_02299_2
crossref_primary_10_1007_s10614_025_10899_z
crossref_primary_10_1016_j_apenergy_2023_121380
crossref_primary_10_1007_s11356_023_29028_0
crossref_primary_10_3390_math13030464
crossref_primary_10_1016_j_jclepro_2021_128024
crossref_primary_10_1007_s10668_023_03886_7
crossref_primary_10_1016_j_eneco_2024_107459
crossref_primary_10_1016_j_cosrev_2020_100356
crossref_primary_10_1007_s11356_023_29196_z
crossref_primary_10_1016_j_eneco_2022_106049
crossref_primary_10_1155_2022_1353540
crossref_primary_10_1186_s40854_024_00622_6
crossref_primary_10_3389_fenrg_2022_991570
crossref_primary_10_1016_j_apenergy_2023_122515
crossref_primary_10_1155_2022_3216036
crossref_primary_10_1016_j_eswa_2023_121286
crossref_primary_10_3390_en13133471
crossref_primary_10_1007_s11356_022_19858_9
crossref_primary_10_1142_S3082844925500137
crossref_primary_10_1016_j_jclepro_2023_139232
crossref_primary_10_1016_j_energy_2023_127783
crossref_primary_10_1155_2021_3052041
crossref_primary_10_3390_math12101428
crossref_primary_10_1016_j_jclepro_2023_136959
crossref_primary_10_1109_TIM_2021_3127641
crossref_primary_10_3390_en16052317
crossref_primary_10_1109_JBHI_2023_3327734
crossref_primary_10_1016_j_ipm_2024_103953
crossref_primary_10_1002_ep_14216
crossref_primary_10_1016_j_chaos_2021_111783
crossref_primary_10_1007_s00521_022_07348_5
crossref_primary_10_1016_j_eswa_2024_124954
crossref_primary_10_3390_math9202595
crossref_primary_10_1007_s12053_024_10191_3
crossref_primary_10_1080_00036846_2022_2030855
crossref_primary_10_1007_s10614_025_10900_9
crossref_primary_10_3390_f14101989
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1016_j_energy_2024_132929
crossref_primary_10_1016_j_jclepro_2023_136701
crossref_primary_10_1016_j_jenvman_2024_121273
crossref_primary_10_3390_su142315522
crossref_primary_10_1016_j_envpol_2022_119136
crossref_primary_10_3390_en17174358
Cites_doi 10.1109/T-C.1975.224317
10.1111/exsy.12084
10.1016/S0020-0255(70)80056-1
10.1016/j.eneco.2010.09.006
10.1016/j.omega.2012.06.005
10.1016/j.jclepro.2018.09.071
10.1016/j.eneco.2017.12.030
10.1016/j.eneco.2013.06.017
10.1162/neco.1997.9.8.1735
10.1109/TSP.2013.2288675
10.1016/j.rser.2016.11.060
10.1016/j.apenergy.2018.02.003
10.3390/en5020355
10.1016/j.jfranklin.2015.04.001
10.1016/j.apenergy.2017.01.076
10.1016/j.asoc.2016.02.029
10.1109/TSP.2013.2265222
10.1016/j.eneco.2008.07.003
10.1016/j.enpol.2010.10.047
10.1016/0304-4076(86)90063-1
10.1016/j.eneco.2009.02.008
10.2307/1912773
10.1007/s10100-014-0340-0
10.1016/j.eswa.2014.12.047
10.3390/en9010054
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/17583004.2019.1686930
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1758-3012
EndPage 37
ExternalDocumentID oai_doaj_org_article_8a8952e06bfd48dc9dc8fc4cfe911457
10_1080_17583004_2019_1686930
1686930
Genre Article
GroupedDBID 0YH
30N
4.4
AAJMT
ABDBF
ABPEM
ACGFS
ACHQT
ACTIO
ACUHS
ADCVX
ADMLS
ADMSI
AEISY
AENEX
AEYOC
AHDSZ
AIJEM
AIYEW
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
DGEBU
DKSSO
EBS
GTTXZ
H13
HZ~
IPNFZ
KYCEM
LJTGL
M4Z
O9-
RIG
SNACF
TDBHL
TFL
TFW
TTHFI
AAYXX
CITATION
7S9
L.6
GROUPED_DOAJ
ID FETCH-LOGICAL-c409t-c73c92f6ba7a1a595f9b7903f45ddf6a9d1f81cb45c9b2db5d630ceaf4c8b8c93
IEDL.DBID TFW
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498305400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1758-3004
1758-3012
IngestDate Mon Nov 10 04:32:52 EST 2025
Mon May 05 21:30:43 EDT 2025
Tue Nov 18 21:59:03 EST 2025
Sat Nov 29 02:24:41 EST 2025
Mon Oct 20 23:49:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-c73c92f6ba7a1a595f9b7903f45ddf6a9d1f81cb45c9b2db5d630ceaf4c8b8c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/8a8952e06bfd48dc9dc8fc4cfe911457
PQID 2524315485
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2524315485
doaj_primary_oai_doaj_org_article_8a8952e06bfd48dc9dc8fc4cfe911457
crossref_citationtrail_10_1080_17583004_2019_1686930
informaworld_taylorfrancis_310_1080_17583004_2019_1686930
crossref_primary_10_1080_17583004_2019_1686930
PublicationCentury 2000
PublicationDate 2020-01-02
PublicationDateYYYYMMDD 2020-01-02
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-02
  day: 02
PublicationDecade 2020
PublicationTitle Carbon management
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References CIT0010
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
Chevallier J (CIT0006) 2010; 30
CIT0023
CIT0022
CIT0003
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0028
  doi: 10.1109/T-C.1975.224317
– ident: CIT0013
  doi: 10.1111/exsy.12084
– ident: CIT0027
  doi: 10.1016/S0020-0255(70)80056-1
– ident: CIT0008
  doi: 10.1016/j.eneco.2010.09.006
– ident: CIT0012
  doi: 10.1016/j.omega.2012.06.005
– ident: CIT0023
  doi: 10.1016/j.jclepro.2018.09.071
– volume: 30
  start-page: 1642
  issue: 2
  year: 2010
  ident: CIT0006
  publication-title: Econ Bull
– ident: CIT0018
  doi: 10.1016/j.eneco.2017.12.030
– ident: CIT0009
  doi: 10.1016/j.eneco.2013.06.017
– ident: CIT0026
  doi: 10.1162/neco.1997.9.8.1735
– ident: CIT0020
  doi: 10.1109/TSP.2013.2288675
– ident: CIT0011
  doi: 10.1016/j.rser.2016.11.060
– ident: CIT0014
  doi: 10.1016/j.apenergy.2018.02.003
– ident: CIT0017
  doi: 10.3390/en5020355
– ident: CIT0021
  doi: 10.1016/j.jfranklin.2015.04.001
– ident: CIT0019
  doi: 10.1016/j.apenergy.2017.01.076
– ident: CIT0016
  doi: 10.1016/j.asoc.2016.02.029
– ident: CIT0024
  doi: 10.1109/TSP.2013.2265222
– ident: CIT0004
  doi: 10.1016/j.eneco.2008.07.003
– ident: CIT0007
  doi: 10.1016/j.enpol.2010.10.047
– ident: CIT0003
  doi: 10.1016/0304-4076(86)90063-1
– ident: CIT0005
  doi: 10.1016/j.eneco.2009.02.008
– ident: CIT0002
  doi: 10.2307/1912773
– ident: CIT0010
  doi: 10.1007/s10100-014-0340-0
– ident: CIT0015
  doi: 10.1016/j.eswa.2014.12.047
– ident: CIT0022
  doi: 10.3390/en9010054
SSID ssj0002140087
ssib051604459
Score 2.436043
Snippet Carbon price, to a certain extent, reflects the intensity of a national emission reduction target, whereas carbon price forecasting is the basis for improving...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms administrative management
algorithms
autocorrelation
carbon
carbon markets
Carbon price forecasting
disaster recovery
empirical wavelet transform
fuzzy C-means clustering algorithm
gated recurrent unit neural network
prediction
wavelet
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDI7QigMcEE8xvBQkrt1N2qSNjwtixWnFAaS9RYnToJWgM5rp7P597LRdDXCYC9eoqVLbcWzX-T4hPvQF7zQHSlNTrgyQLlyXSSFWpagj-8NQyCa6y0t3dQVfD6i-uCdsggeeBHfmggNb0ytjTsYlhIQuo8Hc0zY1ttwjp6jnIJkiS7K6VWZBSWGfXFMeoQpbHh2XrmKYqeU6j1NnPMZD3OkFp7p1zA_4x0FV8Pz_QjP9x3uXI-nisXg0x5LyfPqGJ-JePzwVDw8QBp-JyNSbGHbc3CwxbON6kBvGEZLc8P5D9r821wUkRN4GpqAY5bhEsjIMSXKRLcktF-UZxknuyQNIxsCkGcPUQf5cfL_4_O3Tl2qmVaiQkrmxwq5BqHMbQxd0sGAzxA5Uk41NKbcBks5OYzQWIdYp2tQ2CvuQDbroEJoX4mRYD_1LIcF2oek02Eha1VGBypbyOYpKFKYIsBJmkaHHGXOcqS9-ej1Dky6i9yx6P4t-JU7vpm0m0I1jEz6ygu4eZszsMkCW5GdL8scsaSXgUL1-LCWTPPGb-ObIAt4vtuBpf_JPlzD06_3O1ySQhvNC--p_LPK1eFBzxs9FoPqNOBm3-_6tuI834_Vu-65sgt-Y2wUk
  priority: 102
  providerName: Directory of Open Access Journals
Title Forecasting carbon price using empirical wavelet transform and gated recurrent unit neural network
URI https://www.tandfonline.com/doi/abs/10.1080/17583004.2019.1686930
https://www.proquest.com/docview/2524315485
https://doaj.org/article/8a8952e06bfd48dc9dc8fc4cfe911457
Volume 11
WOSCitedRecordID wos000498305400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1758-3012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051604459
  issn: 1758-3004
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1758-3012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140087
  issn: 1758-3004
  databaseCode: TFW
  dateStart: 20101001
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqxKE9FOhDXaDIlXoNjRM78RwBseKEOIDKzfIjRkhtdpVk6d_vjJMg2qri0F6jeJTMeyaTbxj73CS802ixTA0xk4Cy0HVEgag8OOHIH9q0bKK-vNS3t3A1TRP201gl1dBxBIpIvpqM27p-noj7ghFPE1AUDWbBsag0rfNDL4yZPen49fLrrFFKVLmc0VLINxdYT-Rpax4RyYjK_FvP3wj_ErASrv9vqKZ_ePEUmpY7_-GldtnrKS_lJ6Mi7bEXTfuGvXqCVviWOVrj6W1Pg9Lc286tWr4mTCJOw_N3vPm-vk-AI_yHpXUWAx_mrJjjY3Fq2AXeUYOfIKH4Br0JJzxNPNGO0-jv2M3y_PrsIptWNGQeC8Mh83XpoYiVs7UVVoGK4GrIyyhVCLGyEETUwjupPLgiOBWqMveNjdJrpz2U79lWu2qbD4yDqm1ZC1AONUS4HPKosDbEDCf3wQEsmJzlYPyEX05rNL4ZMcGcziw0xEIzsXDBjh-PrUcAj-cOnJKQH28m_O10YdXdmcmcjbYaVIGK7mKQOngIXkcvfWwweEhVLxg8VREzpPZLHHelmPKZB_g065NBW6cPOLZtVpveFMiQkmpMtf8P9A_Yy4KaBtRHKg7Z1tBtmo9s2z8M9313lJoSR8mKfgKwSRVv
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQQIOvBELBYzENSVO7MRzbBGrIsqeFtGb5UdcVSrZVTYLfx-Pk1QLCPVAr1E8cubpmYy_AXjXJLzTYGKa6kMmMMpC1SEKRObeckv-0KRhE_VioU5PcfcuDLVVUg4dBqCI5KvJuKkYPbXEvY8hTxFSFHVm4QGvFM3zuwm3ZIy11Na3nH-bdEryKhcTXgp55yJmFHmam0dUMiIzXez5F-XfQlZC9v8D1_QvP56C0_zBdXzWQ7g_Hk3Z4aBLj-BG0z6GezuAhU_A0iRPZzbUK82c6eyqZWuCJWLUP3_Gmu_r84Q5wn4ammjRs346GLO4L0Y1O886qvETKhTbRofCCFIzrmiHhvSn8HX-cfnhOBunNGQu5oZ95urSYREqa2rDjUQZ0NaYl0FI70Nl0POguLNCOrSFt9JXZe4aE4RTVjksn8Feu2qb58BQ1qasOUoblYTbHPMgY3oYDzm58xZxBmIShHYjhDlN0rjQfEQ6nVioiYV6ZOEMDi6XrQcMj6sWHJGUL18mCO70YNWd6dGitTIKZRF13QYvlHfonQpOuNDE-CFkPQPc1RHdpwpMGMal6PKKDbydFEpHc6d_OKZtVtuNLiJDSkoz5Yv_oP8G7hwvv5zok0-Lzy_hbkE1BCorFfuw13fb5hXcdj_68033OhnTL5CGGJs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQQgO5VXEUh5G4poSJ3biOULLqhVo1UMRvVl-xFWlNrvKZuHv43GSqoBQD3CN4lHieXkmk-8DeNckvNNgYpnqQyYw6kLVISpE5t5yS_HQJLKJerFQp6d4PE4TrsexSqqhwwAUkWI1OffKh2ki7n3MeIqAomgwC_d4pYjO7zbcSeBY0aRP5t8mk5K8ysUEl0LBuYgFRZ5o80hKRmKm_3r-JvmXjJWA_X-DNf0jjKfcNH_4H97qEWyPB1P2YbCkx3CraZ_Ag2twhU_BEo-nM2ualGbOdHbZshWBEjGanj9jzeXqPCGOsB-G-Cx61k_HYhYfi1HHzrOOOvyECcU2MZwwAtSMK9phHH0Hvs4_newfZiNHQ-ZiZdhnri4dFqGypjbcSJQBbY15GYT0PlQGPQ-KOyukQ1t4K31V5q4xQThllcPyGWy1y7Z5Dgxlbcqao7TRRLjNMQ8yFofxiJM7bxFnICY9aDcCmBOPxoXmI87ptIWatlCPWziDvatlqwHB46YFH0nJVzcTAHe6sOzO9OjPWhmFsoiWboMXyjv0TgUnXGhi9hCyngFeNxHdp_5LGMhSdHnDA7yd7ElHZ6cvOKZtlpu1LuKGlFRkyhf_IP8N3Ds-mOsvR4vPu3C_oAYC9ZSKl7DVd5vmFdx13_vzdfc6udJP-yAXPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+carbon+price+using+empirical+wavelet+transform+and+gated+recurrent+unit+neural+network&rft.jtitle=Carbon+management&rft.au=Liu%2C+Hui&rft.au=Shen%2C+Lei&rft.date=2020-01-02&rft.issn=1758-3004&rft.eissn=1758-3012&rft.volume=11&rft.issue=1&rft.spage=25&rft.epage=37&rft_id=info:doi/10.1080%2F17583004.2019.1686930&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17583004_2019_1686930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-3004&client=summon