A Deep Learning Approach to Navigating the Joint Solution Space of Redundant Inverse Kinematics and Its Applications to Numerical IK Computations

As an increasing number of robotic manipulators possess seven or more degrees-of-freedom (DoF), solving inverse kinematic (IK) for kinematically redundant manipulators is becoming critical. Numerical optimizations are commonly used to solve the problem due to their generality and accuracy. Unfortuna...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; pp. 2274 - 2290
Main Authors: Ho, Chi-Kai, Chan, Li-Wei, King, Chung-Ta, Yen, Ting-Yu
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As an increasing number of robotic manipulators possess seven or more degrees-of-freedom (DoF), solving inverse kinematic (IK) for kinematically redundant manipulators is becoming critical. Numerical optimizations are commonly used to solve the problem due to their generality and accuracy. Unfortunately, they typically only generate one joint solution at a time, despite the multiple joint configurations that redundant manipulators can provide to move the end-effector to a target position. The long iterative optimization process is also a concern, particularly if extra constraints such as obstacle avoidance have to be evaluated. In this paper, we show that numerical methods may be complemented by deep learning to overcome these limitations. Through deep learning, the solution space of redundant IK may be learned with neural networks (NNs), which allows multiple distinct joint solutions corresponding to a given target position to be obtained by navigating the solution space. The main challenge is to overcome the one-to-one functional mapping of NNs. This paper solves this problem with a novel probabilistic encoding of manipulator poses and their corresponding infinite number of joint solutions. Two examples are presented to demonstrate the application of the proposed method to facilitate numerical IK computations: (1) finding a good initial joint solution to bootstrap the numerical IK calculation, and (2) evaluating extra constraints, such as obstacle avoidance, off the optimization iterations. Experiments show that the proposed method can accelerate the execution of different numerical IK modules in the popular IKpy package up to 50% for a 7-DoF manipulator, depending on the accuracy required.
AbstractList As an increasing number of robotic manipulators possess seven or more degrees-of-freedom (DoF), solving inverse kinematic (IK) for kinematically redundant manipulators is becoming critical. Numerical optimizations are commonly used to solve the problem due to their generality and accuracy. Unfortunately, they typically only generate one joint solution at a time, despite the multiple joint configurations that redundant manipulators can provide to move the end-effector to a target position. The long iterative optimization process is also a concern, particularly if extra constraints such as obstacle avoidance have to be evaluated. In this paper, we show that numerical methods may be complemented by deep learning to overcome these limitations. Through deep learning, the solution space of redundant IK may be learned with neural networks (NNs), which allows multiple distinct joint solutions corresponding to a given target position to be obtained by navigating the solution space. The main challenge is to overcome the one-to-one functional mapping of NNs. This paper solves this problem with a novel probabilistic encoding of manipulator poses and their corresponding infinite number of joint solutions. Two examples are presented to demonstrate the application of the proposed method to facilitate numerical IK computations: (1) finding a good initial joint solution to bootstrap the numerical IK calculation, and (2) evaluating extra constraints, such as obstacle avoidance, off the optimization iterations. Experiments show that the proposed method can accelerate the execution of different numerical IK modules in the popular IKpy package up to 50% for a 7-DoF manipulator, depending on the accuracy required.
Author Chan, Li-Wei
King, Chung-Ta
Ho, Chi-Kai
Yen, Ting-Yu
Author_xml – sequence: 1
  givenname: Chi-Kai
  orcidid: 0000-0002-2158-5947
  surname: Ho
  fullname: Ho, Chi-Kai
  email: chikaiho@gmail.com
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 2
  givenname: Li-Wei
  surname: Chan
  fullname: Chan, Li-Wei
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 3
  givenname: Chung-Ta
  orcidid: 0000-0002-5041-5795
  surname: King
  fullname: King, Chung-Ta
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
– sequence: 4
  givenname: Ting-Yu
  surname: Yen
  fullname: Yen, Ting-Yu
  organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
BookMark eNp9kctu1DAUhiNUJErpE8DCEusZfMnNy1EoEDoCiYG1deKcTD3K2MF2KvEYvDFOU6SKBV7Y1n_O9-tcXmYX1lnMsteMbhmj8t2uaW4Ohy2nXGwFFzmj-bPskrNSbkQhyosn_xfZdQgnmk6dpKK6zH7vyHvEiewRvDX2SHbT5B3oOxId-QL35ghxkeMdks_O2EgObpyjcZYcJtBI3EC-YT_bHlKstffoA5JbY_GcQB0I2J60MSy-o9GwkOHBez6jT8JI2lvSuPM0xzX4Kns-wBjw-vG9yn58uPnefNrsv35sm91-o3MqY7orzGVJ67zXEjhyFJx3vOqgZFoDDj2nlQDNEIDKmtVDGg1ShrpCrDQVV1m7-vYOTmry5gz-l3Jg1IPg_FGBTy2MqMqccaGhw0F2uZZd3dW56IQQeS9ZjpC83q5eaXY_ZwxRndzsbSpf8aoUNauqokxZcs3S3oXgcVDarE1HD2ZUjKploWpdqFoWqh4XmljxD_u34v9Tb1bKIOITgtKC14X4A8w6r-0
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_app15137226
crossref_primary_10_3390_electronics14122480
crossref_primary_10_1002_rob_22544
crossref_primary_10_3390_a18010023
crossref_primary_10_1016_j_measurement_2024_114471
crossref_primary_10_1016_j_apm_2025_116440
crossref_primary_10_1016_j_robot_2025_105142
crossref_primary_10_1002_rob_70014
Cites_doi 10.1109/M2VIP.2017.8211457
10.1109/ROBOT.1989.99999
10.1002/9781118723203
10.1016/j.protcy.2013.12.451
10.1109/ROBOT.1993.291835
10.1109/IROS.2001.973374
10.1109/70.86079
10.1163/016918609X12529299964101
10.1109/IROS.2003.1248841
10.1109/FUZZ-IEEE.2019.8858872
10.1145/3422622
10.1109/70.508439
10.1109/ROBOT.1993.291984
10.1007/978-3-030-29743-5_23
10.1016/j.cie.2020.106682
10.1080/2151237X.2005.10129202
10.1007/978-3-319-32552-1_10
10.1109/TETCI.2020.2991774
10.1137/0916069
10.1109/IROS40897.2019.8968605
10.1109/TPAMI.2020.2992934
10.48550/arXiv.1312.6114
10.1016/j.mechmachtheory.2018.05.013
10.1017/S0263574700001430
10.1109/TSMC.1986.289285
10.1109/ICARCV.2012.6485351
10.1115/1.3143764
10.1007/BF00126069
10.1109/TNNLS.2019.2900734
10.1155/2016/5720163
10.1109/ROBOT.2001.932681
10.1016/j.mechmachtheory.2017.12.005
10.1109/ROBOT.1990.126090
10.1016/j.gmod.2011.05.003
10.1109/3477.907574
10.1109/IRDS.2002.1044034
10.15302/J-ENG-2015009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3234104
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 2290
ExternalDocumentID oai_doaj_org_article_64123cabef9b4c9b8b843b3334d914ea
10_1109_ACCESS_2023_3234104
10005285
Genre orig-research
GrantInformation_xml – fundername: Information and Communications Research Laboratories of Industrial Technology Research Institute, Taiwan
– fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2218-E-007-023
  funderid: 10.13039/501100004663
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-c47e496084dc9a2e2e322b27ba61ccaefd2073ac1eaa09818f234e01ec7ee7c03
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912347400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:22:27 EDT 2025
Mon Jun 30 06:16:49 EDT 2025
Tue Nov 18 22:06:02 EST 2025
Sat Nov 29 04:02:22 EST 2025
Wed Aug 27 02:18:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-c47e496084dc9a2e2e322b27ba61ccaefd2073ac1eaa09818f234e01ec7ee7c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5041-5795
0000-0002-2158-5947
OpenAccessLink https://doaj.org/article/64123cabef9b4c9b8b843b3334d914ea
PQID 2763817756
PQPubID 4845423
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3234104
ieee_primary_10005285
crossref_primary_10_1109_ACCESS_2023_3234104
proquest_journals_2763817756
doaj_primary_oai_doaj_org_article_64123cabef9b4c9b8b843b3334d914ea
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
DeMers (ref12); 4
ref33
ref10
ref32
ref2
ref1
Kraft (ref22) 1988
ref39
ref16
ref19
ref18
Lu (ref26) 2018
Razavi (ref38); 32
LaValle (ref24) 1998
ref46
ref23
ref45
ref25
Coumans (ref8) 2016
ref20
ref42
ref41
ref44
ref21
ref43
ref27
Manceron (ref28) 2022
ref29
ref7
ref9
ref4
Sohn (ref40); 28
ref3
ref6
ref5
Ghasemi (ref17) 2019
References_xml – ident: ref10
  doi: 10.1109/M2VIP.2017.8211457
– ident: ref4
  doi: 10.1109/ROBOT.1989.99999
– ident: ref16
  doi: 10.1002/9781118723203
– ident: ref15
  doi: 10.1016/j.protcy.2013.12.451
– ident: ref27
  doi: 10.1109/ROBOT.1993.291835
– ident: ref14
  doi: 10.1109/IROS.2001.973374
– ident: ref43
  doi: 10.1109/70.86079
– year: 1998
  ident: ref24
  article-title: Rapidly-exploring random trees: A new tool for path planning
– ident: ref31
  doi: 10.1163/016918609X12529299964101
– ident: ref3
  doi: 10.1109/IROS.2003.1248841
– ident: ref11
  doi: 10.1109/FUZZ-IEEE.2019.8858872
– ident: ref18
  doi: 10.1145/3422622
– ident: ref19
  doi: 10.1109/70.508439
– volume: 28
  start-page: 3483
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref40
  article-title: Learning structured output representation using deep conditional generative models
– ident: ref13
  doi: 10.1109/ROBOT.1993.291984
– volume-title: IKPy: An Inverse Kinematics Library Aiming Performance and Modularity (V3.3.3)
  year: 2022
  ident: ref28
– ident: ref36
  doi: 10.1007/978-3-030-29743-5_23
– ident: ref41
  doi: 10.1016/j.cie.2020.106682
– ident: ref5
  doi: 10.1080/2151237X.2005.10129202
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Generating diverse high-fidelity images with VQ-VAE-2
– ident: ref7
  doi: 10.1007/978-3-319-32552-1_10
– ident: ref34
  doi: 10.1109/TETCI.2020.2991774
– ident: ref6
  doi: 10.1137/0916069
– year: 2016
  ident: ref8
  article-title: Pybullet, a Python module for physics simulation for games, robotics and machine learning
– ident: ref29
  doi: 10.1109/IROS40897.2019.8968605
– ident: ref21
  doi: 10.1109/TPAMI.2020.2992934
– ident: ref20
  doi: 10.48550/arXiv.1312.6114
– ident: ref35
  doi: 10.1016/j.mechmachtheory.2018.05.013
– ident: ref25
  doi: 10.1017/S0263574700001430
– ident: ref42
  doi: 10.1109/TSMC.1986.289285
– ident: ref9
  doi: 10.1109/ICARCV.2012.6485351
– year: 2018
  ident: ref26
  article-title: Anomaly detection for skin disease images using variational autoencoder
  publication-title: arXiv:1807.01349
– volume: 4
  start-page: 589
  volume-title: Proc. 4th Int. Conf. Neural Inf. Process. Syst.
  ident: ref12
  article-title: Learning global direct inverse kinematics
– volume-title: Software Package for Sequential Quadratic Programming
  year: 1988
  ident: ref22
– ident: ref30
  doi: 10.1115/1.3143764
– ident: ref39
  doi: 10.1007/BF00126069
– ident: ref45
  doi: 10.1109/TNNLS.2019.2900734
– ident: ref1
  doi: 10.1155/2016/5720163
– ident: ref32
  doi: 10.1109/ROBOT.2001.932681
– ident: ref46
  doi: 10.1016/j.mechmachtheory.2017.12.005
– ident: ref23
  doi: 10.1109/ROBOT.1990.126090
– ident: ref2
  doi: 10.1016/j.gmod.2011.05.003
– ident: ref44
  doi: 10.1109/3477.907574
– ident: ref37
  doi: 10.1109/IRDS.2002.1044034
– year: 2019
  ident: ref17
  article-title: Kinematic synthesis of parallel manipulator via neural network approach
  publication-title: arXiv:1904.04668
– ident: ref33
  doi: 10.15302/J-ENG-2015009
SSID ssj0000816957
Score 2.3442607
Snippet As an increasing number of robotic manipulators possess seven or more degrees-of-freedom (DoF), solving inverse kinematic (IK) for kinematically redundant...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2274
SubjectTerms Artificial neural networks
Deep learning
Degrees of freedom
End effectors
Feature encoding
Inverse kinematics
Iterative methods
Kinematics
Manipulators
Neural networks
Numerical methods
Numerical models
Obstacle avoidance
Optimization
Redundancy
redundant robotic manipulators
Robot arms
Robots
Solution space
Unsupervised learning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZN6KE99JmSTdIyhx67Gz9kyzq624amgaX0AbkZPUYlEOyw9uZ_9B939NhlobTQizGyXtYnz2gkzzeMvbW6ypQhM9W4mgyUwvK59F4gSKaAdFi40jQh2IRYrZrra_klOasHXxhEDD-f4cLfhrN8O5iN3yo7z8PBVFMdsAMhRHTW2m2o-AgSshKJWSjP5Hm7XNJLLHyA8EVZkLhO0di22ieQ9KeoKn-I4qBfLp7-Z8-esSdpIQltRP45e4D9C_Z4j17wJfvVwgfEO0gcqj-hTQTiMA2wUveBXYOSaQ0In4ebfoLtJhl8I1MaYXDwFb2bGQ0_eEaO9YhwRQ0EntcRVG_hchqh3TsFD3Vv4jnQLVxeQYwbER8esR8XH78vP81TCIa5IcNvoqtATkZOw62RqsACSQDoQmhV54Q9OluQjFAmR6UyScrf0ThjlqMRiMJk5St22A89HjNopECbIXfCIs9co6kihSqXTgpbVzhjxRaaziR-ch8m47YLdkomu4hn5_HsEp4z9m5X6C7Sc_w7-3uP-S6r59YOCQRmlz7VruakzY3S6KTmRupGN7zUZVlyK3OOasaO_ATYay9iP2Nn2ynUJUEwdgXJ7yYXoqpP_lLslD3yXYzbOmfscFpv8DV7aO6nm3H9Jszx31ko-9Q
  priority: 102
  providerName: IEEE
Title A Deep Learning Approach to Navigating the Joint Solution Space of Redundant Inverse Kinematics and Its Applications to Numerical IK Computations
URI https://ieeexplore.ieee.org/document/10005285
https://www.proquest.com/docview/2763817756
https://doaj.org/article/64123cabef9b4c9b8b843b3334d914ea
Volume 11
WOSCitedRecordID wos000912347400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiEcRC6WaA0e2TRwnto9haUWpWCEeUm-R7YxRpSpbbdIe-Q_8Y8aPrSIhwYWLD45jx57xeD47_oaxN72tC-MIpjrfEEDhvVjqcAsECQpoj9xXTsVgE3K9VhcX-vMs1Ff4JyzRA6eBO24E2VZnLHpthdNWWSUqW1WV6HUpMLpG5PXMwFS0wapsdC0zzVBZ6ON2taIeHYVo4UcVJ9udQ7PtlqLI2J9DrPxhl-Nic_qYPcpeIrTp656wezg8ZQ9n3IHP2K8W3iNeQyZI_QFtZgeHaQNrcxupMyibHDz4uLkcJtjtgMFXwskIGw9fMNwho7GFQLexHRHOqYFI4jqCGXo4m0ZoZ0fcse6bdMhzBWfnkIJCpIf77PvpybfVh2WOr7B0hOomSiUKQjBK9E4bjhxpdlsurWlKEiz6npMBMK5EYwpNK7unccOiRCcRpSuq52xv2Az4goHSEvsChZc9isIrSxUZNKX2WvZNjQvGd0PduUw-HmJgXHURhBS6S_Lpgny6LJ8Fe3v30nXi3vh78XdBhndFA3F2zCB16rI6df9SpwXbDxoway9snKt6wQ52KtHlWT52nIyzKqWsm5f_o-1X7EHoT9rgOWB70_YGX7P77na6HLeHUcEp_fTz5DBeU_wNyxwA9g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIAEHnkUsFPCBI7uNHSeOj2Gh6rJlhaBIvVmOPUaVqqTaZPs_-MeMHe9qJQQSlyhK_Eo-Z8YzznxDyDvXFJmxaKZaX6KBwp2YqhAFAmgKKA_c57aKySbkalVdXKivKVg9xsIAQPz5DGbhNO7lu85ugqvsmMWNqaq4Te4UQnA2hmvtXCohh4QqZOIWYpk6rudzfIxZSBE-yzkK7JSPbat_Ik1_yqvyhzCOGubk0X-O7TF5mJaStB6xf0JuQfuUPNgjGHxGftX0I8A1TSyqP2mdKMTp0NGVuYn8GngZV4H0c3fZDnTrJqPf0ZgG2nn6DUKgGQJAAyfHuge6xA4i02tPTevoYuhpvbcPHtvejDtBV3SxpGPmiPHmIflx8ul8fjpNSRimFk2_AY8SBJo5lXBWGQ4cUAQ0XDamZIg-eMdRShjLwJhMofr3-J4hY2AlgLRZ_pwctF0LLwitlASXgfDSgch81WBDBgxTXklXFjAhfAuNtomhPCTKuNLRUsmUHvHUAU-d8JyQ97tK1yNBx7-LfwiY74oGdu14AcHU6WPVpUB9bk0DXjXCqqZqKpE3eZ4Lp5gAMyGHYQLs9TdiPyFH2ymkkyjoNUcJXjEpi_LlX6q9JfdOz7-c6bPFavmK3A_DHZ08R-RgWG_gNblrb4bLfv0mzvffj2H_Gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+to+Navigating+the+Joint+Solution+Space+of+Redundant+Inverse+Kinematics+and+Its+Applications+to+Numerical+IK+Computations&rft.jtitle=IEEE+access&rft.au=Ho%2C+Chi-Kai&rft.au=Chan%2C+Li-Wei&rft.au=King%2C+Chung-Ta&rft.au=Yen%2C+Ting-Yu&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=2274&rft.epage=2290&rft_id=info:doi/10.1109%2FACCESS.2023.3234104&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3234104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon