A Deep Learning Approach to Navigating the Joint Solution Space of Redundant Inverse Kinematics and Its Applications to Numerical IK Computations
As an increasing number of robotic manipulators possess seven or more degrees-of-freedom (DoF), solving inverse kinematic (IK) for kinematically redundant manipulators is becoming critical. Numerical optimizations are commonly used to solve the problem due to their generality and accuracy. Unfortuna...
Saved in:
| Published in: | IEEE access Vol. 11; pp. 2274 - 2290 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As an increasing number of robotic manipulators possess seven or more degrees-of-freedom (DoF), solving inverse kinematic (IK) for kinematically redundant manipulators is becoming critical. Numerical optimizations are commonly used to solve the problem due to their generality and accuracy. Unfortunately, they typically only generate one joint solution at a time, despite the multiple joint configurations that redundant manipulators can provide to move the end-effector to a target position. The long iterative optimization process is also a concern, particularly if extra constraints such as obstacle avoidance have to be evaluated. In this paper, we show that numerical methods may be complemented by deep learning to overcome these limitations. Through deep learning, the solution space of redundant IK may be learned with neural networks (NNs), which allows multiple distinct joint solutions corresponding to a given target position to be obtained by navigating the solution space. The main challenge is to overcome the one-to-one functional mapping of NNs. This paper solves this problem with a novel probabilistic encoding of manipulator poses and their corresponding infinite number of joint solutions. Two examples are presented to demonstrate the application of the proposed method to facilitate numerical IK computations: (1) finding a good initial joint solution to bootstrap the numerical IK calculation, and (2) evaluating extra constraints, such as obstacle avoidance, off the optimization iterations. Experiments show that the proposed method can accelerate the execution of different numerical IK modules in the popular IKpy package up to 50% for a 7-DoF manipulator, depending on the accuracy required. |
|---|---|
| AbstractList | As an increasing number of robotic manipulators possess seven or more degrees-of-freedom (DoF), solving inverse kinematic (IK) for kinematically redundant manipulators is becoming critical. Numerical optimizations are commonly used to solve the problem due to their generality and accuracy. Unfortunately, they typically only generate one joint solution at a time, despite the multiple joint configurations that redundant manipulators can provide to move the end-effector to a target position. The long iterative optimization process is also a concern, particularly if extra constraints such as obstacle avoidance have to be evaluated. In this paper, we show that numerical methods may be complemented by deep learning to overcome these limitations. Through deep learning, the solution space of redundant IK may be learned with neural networks (NNs), which allows multiple distinct joint solutions corresponding to a given target position to be obtained by navigating the solution space. The main challenge is to overcome the one-to-one functional mapping of NNs. This paper solves this problem with a novel probabilistic encoding of manipulator poses and their corresponding infinite number of joint solutions. Two examples are presented to demonstrate the application of the proposed method to facilitate numerical IK computations: (1) finding a good initial joint solution to bootstrap the numerical IK calculation, and (2) evaluating extra constraints, such as obstacle avoidance, off the optimization iterations. Experiments show that the proposed method can accelerate the execution of different numerical IK modules in the popular IKpy package up to 50% for a 7-DoF manipulator, depending on the accuracy required. |
| Author | Chan, Li-Wei King, Chung-Ta Ho, Chi-Kai Yen, Ting-Yu |
| Author_xml | – sequence: 1 givenname: Chi-Kai orcidid: 0000-0002-2158-5947 surname: Ho fullname: Ho, Chi-Kai email: chikaiho@gmail.com organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 2 givenname: Li-Wei surname: Chan fullname: Chan, Li-Wei organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 3 givenname: Chung-Ta orcidid: 0000-0002-5041-5795 surname: King fullname: King, Chung-Ta organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan – sequence: 4 givenname: Ting-Yu surname: Yen fullname: Yen, Ting-Yu organization: Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan |
| BookMark | eNp9kctu1DAUhiNUJErpE8DCEusZfMnNy1EoEDoCiYG1deKcTD3K2MF2KvEYvDFOU6SKBV7Y1n_O9-tcXmYX1lnMsteMbhmj8t2uaW4Ohy2nXGwFFzmj-bPskrNSbkQhyosn_xfZdQgnmk6dpKK6zH7vyHvEiewRvDX2SHbT5B3oOxId-QL35ghxkeMdks_O2EgObpyjcZYcJtBI3EC-YT_bHlKstffoA5JbY_GcQB0I2J60MSy-o9GwkOHBez6jT8JI2lvSuPM0xzX4Kns-wBjw-vG9yn58uPnefNrsv35sm91-o3MqY7orzGVJ67zXEjhyFJx3vOqgZFoDDj2nlQDNEIDKmtVDGg1ShrpCrDQVV1m7-vYOTmry5gz-l3Jg1IPg_FGBTy2MqMqccaGhw0F2uZZd3dW56IQQeS9ZjpC83q5eaXY_ZwxRndzsbSpf8aoUNauqokxZcs3S3oXgcVDarE1HD2ZUjKploWpdqFoWqh4XmljxD_u34v9Tb1bKIOITgtKC14X4A8w6r-0 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_app15137226 crossref_primary_10_3390_electronics14122480 crossref_primary_10_1002_rob_22544 crossref_primary_10_3390_a18010023 crossref_primary_10_1016_j_measurement_2024_114471 crossref_primary_10_1016_j_apm_2025_116440 crossref_primary_10_1016_j_robot_2025_105142 crossref_primary_10_1002_rob_70014 |
| Cites_doi | 10.1109/M2VIP.2017.8211457 10.1109/ROBOT.1989.99999 10.1002/9781118723203 10.1016/j.protcy.2013.12.451 10.1109/ROBOT.1993.291835 10.1109/IROS.2001.973374 10.1109/70.86079 10.1163/016918609X12529299964101 10.1109/IROS.2003.1248841 10.1109/FUZZ-IEEE.2019.8858872 10.1145/3422622 10.1109/70.508439 10.1109/ROBOT.1993.291984 10.1007/978-3-030-29743-5_23 10.1016/j.cie.2020.106682 10.1080/2151237X.2005.10129202 10.1007/978-3-319-32552-1_10 10.1109/TETCI.2020.2991774 10.1137/0916069 10.1109/IROS40897.2019.8968605 10.1109/TPAMI.2020.2992934 10.48550/arXiv.1312.6114 10.1016/j.mechmachtheory.2018.05.013 10.1017/S0263574700001430 10.1109/TSMC.1986.289285 10.1109/ICARCV.2012.6485351 10.1115/1.3143764 10.1007/BF00126069 10.1109/TNNLS.2019.2900734 10.1155/2016/5720163 10.1109/ROBOT.2001.932681 10.1016/j.mechmachtheory.2017.12.005 10.1109/ROBOT.1990.126090 10.1016/j.gmod.2011.05.003 10.1109/3477.907574 10.1109/IRDS.2002.1044034 10.15302/J-ENG-2015009 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3234104 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 2290 |
| ExternalDocumentID | oai_doaj_org_article_64123cabef9b4c9b8b843b3334d914ea 10_1109_ACCESS_2023_3234104 10005285 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Information and Communications Research Laboratories of Industrial Technology Research Institute, Taiwan – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2218-E-007-023 funderid: 10.13039/501100004663 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-c47e496084dc9a2e2e322b27ba61ccaefd2073ac1eaa09818f234e01ec7ee7c03 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000912347400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:22:27 EDT 2025 Mon Jun 30 06:16:49 EDT 2025 Tue Nov 18 22:06:02 EST 2025 Sat Nov 29 04:02:22 EST 2025 Wed Aug 27 02:18:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-c47e496084dc9a2e2e322b27ba61ccaefd2073ac1eaa09818f234e01ec7ee7c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5041-5795 0000-0002-2158-5947 |
| OpenAccessLink | https://doaj.org/article/64123cabef9b4c9b8b843b3334d914ea |
| PQID | 2763817756 |
| PQPubID | 4845423 |
| PageCount | 17 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3234104 ieee_primary_10005285 crossref_primary_10_1109_ACCESS_2023_3234104 proquest_journals_2763817756 doaj_primary_oai_doaj_org_article_64123cabef9b4c9b8b843b3334d914ea |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 DeMers (ref12); 4 ref33 ref10 ref32 ref2 ref1 Kraft (ref22) 1988 ref39 ref16 ref19 ref18 Lu (ref26) 2018 Razavi (ref38); 32 LaValle (ref24) 1998 ref46 ref23 ref45 ref25 Coumans (ref8) 2016 ref20 ref42 ref41 ref44 ref21 ref43 ref27 Manceron (ref28) 2022 ref29 ref7 ref9 ref4 Sohn (ref40); 28 ref3 ref6 ref5 Ghasemi (ref17) 2019 |
| References_xml | – ident: ref10 doi: 10.1109/M2VIP.2017.8211457 – ident: ref4 doi: 10.1109/ROBOT.1989.99999 – ident: ref16 doi: 10.1002/9781118723203 – ident: ref15 doi: 10.1016/j.protcy.2013.12.451 – ident: ref27 doi: 10.1109/ROBOT.1993.291835 – ident: ref14 doi: 10.1109/IROS.2001.973374 – ident: ref43 doi: 10.1109/70.86079 – year: 1998 ident: ref24 article-title: Rapidly-exploring random trees: A new tool for path planning – ident: ref31 doi: 10.1163/016918609X12529299964101 – ident: ref3 doi: 10.1109/IROS.2003.1248841 – ident: ref11 doi: 10.1109/FUZZ-IEEE.2019.8858872 – ident: ref18 doi: 10.1145/3422622 – ident: ref19 doi: 10.1109/70.508439 – volume: 28 start-page: 3483 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref40 article-title: Learning structured output representation using deep conditional generative models – ident: ref13 doi: 10.1109/ROBOT.1993.291984 – volume-title: IKPy: An Inverse Kinematics Library Aiming Performance and Modularity (V3.3.3) year: 2022 ident: ref28 – ident: ref36 doi: 10.1007/978-3-030-29743-5_23 – ident: ref41 doi: 10.1016/j.cie.2020.106682 – ident: ref5 doi: 10.1080/2151237X.2005.10129202 – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref38 article-title: Generating diverse high-fidelity images with VQ-VAE-2 – ident: ref7 doi: 10.1007/978-3-319-32552-1_10 – ident: ref34 doi: 10.1109/TETCI.2020.2991774 – ident: ref6 doi: 10.1137/0916069 – year: 2016 ident: ref8 article-title: Pybullet, a Python module for physics simulation for games, robotics and machine learning – ident: ref29 doi: 10.1109/IROS40897.2019.8968605 – ident: ref21 doi: 10.1109/TPAMI.2020.2992934 – ident: ref20 doi: 10.48550/arXiv.1312.6114 – ident: ref35 doi: 10.1016/j.mechmachtheory.2018.05.013 – ident: ref25 doi: 10.1017/S0263574700001430 – ident: ref42 doi: 10.1109/TSMC.1986.289285 – ident: ref9 doi: 10.1109/ICARCV.2012.6485351 – year: 2018 ident: ref26 article-title: Anomaly detection for skin disease images using variational autoencoder publication-title: arXiv:1807.01349 – volume: 4 start-page: 589 volume-title: Proc. 4th Int. Conf. Neural Inf. Process. Syst. ident: ref12 article-title: Learning global direct inverse kinematics – volume-title: Software Package for Sequential Quadratic Programming year: 1988 ident: ref22 – ident: ref30 doi: 10.1115/1.3143764 – ident: ref39 doi: 10.1007/BF00126069 – ident: ref45 doi: 10.1109/TNNLS.2019.2900734 – ident: ref1 doi: 10.1155/2016/5720163 – ident: ref32 doi: 10.1109/ROBOT.2001.932681 – ident: ref46 doi: 10.1016/j.mechmachtheory.2017.12.005 – ident: ref23 doi: 10.1109/ROBOT.1990.126090 – ident: ref2 doi: 10.1016/j.gmod.2011.05.003 – ident: ref44 doi: 10.1109/3477.907574 – ident: ref37 doi: 10.1109/IRDS.2002.1044034 – year: 2019 ident: ref17 article-title: Kinematic synthesis of parallel manipulator via neural network approach publication-title: arXiv:1904.04668 – ident: ref33 doi: 10.15302/J-ENG-2015009 |
| SSID | ssj0000816957 |
| Score | 2.3442607 |
| Snippet | As an increasing number of robotic manipulators possess seven or more degrees-of-freedom (DoF), solving inverse kinematic (IK) for kinematically redundant... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2274 |
| SubjectTerms | Artificial neural networks Deep learning Degrees of freedom End effectors Feature encoding Inverse kinematics Iterative methods Kinematics Manipulators Neural networks Numerical methods Numerical models Obstacle avoidance Optimization Redundancy redundant robotic manipulators Robot arms Robots Solution space Unsupervised learning |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZN6KE99JmSTdIyhx67Gz9kyzq624amgaX0AbkZPUYlEOyw9uZ_9B939NhlobTQizGyXtYnz2gkzzeMvbW6ypQhM9W4mgyUwvK59F4gSKaAdFi40jQh2IRYrZrra_klOasHXxhEDD-f4cLfhrN8O5iN3yo7z8PBVFMdsAMhRHTW2m2o-AgSshKJWSjP5Hm7XNJLLHyA8EVZkLhO0di22ieQ9KeoKn-I4qBfLp7-Z8-esSdpIQltRP45e4D9C_Z4j17wJfvVwgfEO0gcqj-hTQTiMA2wUveBXYOSaQ0In4ebfoLtJhl8I1MaYXDwFb2bGQ0_eEaO9YhwRQ0EntcRVG_hchqh3TsFD3Vv4jnQLVxeQYwbER8esR8XH78vP81TCIa5IcNvoqtATkZOw62RqsACSQDoQmhV54Q9OluQjFAmR6UyScrf0ThjlqMRiMJk5St22A89HjNopECbIXfCIs9co6kihSqXTgpbVzhjxRaaziR-ch8m47YLdkomu4hn5_HsEp4z9m5X6C7Sc_w7-3uP-S6r59YOCQRmlz7VruakzY3S6KTmRupGN7zUZVlyK3OOasaO_ATYay9iP2Nn2ynUJUEwdgXJ7yYXoqpP_lLslD3yXYzbOmfscFpv8DV7aO6nm3H9Jszx31ko-9Q priority: 102 providerName: IEEE |
| Title | A Deep Learning Approach to Navigating the Joint Solution Space of Redundant Inverse Kinematics and Its Applications to Numerical IK Computations |
| URI | https://ieeexplore.ieee.org/document/10005285 https://www.proquest.com/docview/2763817756 https://doaj.org/article/64123cabef9b4c9b8b843b3334d914ea |
| Volume | 11 |
| WOSCitedRecordID | wos000912347400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiEcRC6WaA0e2TRwnto9haUWpWCEeUm-R7YxRpSpbbdIe-Q_8Y8aPrSIhwYWLD45jx57xeD47_oaxN72tC-MIpjrfEEDhvVjqcAsECQpoj9xXTsVgE3K9VhcX-vMs1Ff4JyzRA6eBO24E2VZnLHpthdNWWSUqW1WV6HUpMLpG5PXMwFS0wapsdC0zzVBZ6ON2taIeHYVo4UcVJ9udQ7PtlqLI2J9DrPxhl-Nic_qYPcpeIrTp656wezg8ZQ9n3IHP2K8W3iNeQyZI_QFtZgeHaQNrcxupMyibHDz4uLkcJtjtgMFXwskIGw9fMNwho7GFQLexHRHOqYFI4jqCGXo4m0ZoZ0fcse6bdMhzBWfnkIJCpIf77PvpybfVh2WOr7B0hOomSiUKQjBK9E4bjhxpdlsurWlKEiz6npMBMK5EYwpNK7unccOiRCcRpSuq52xv2Az4goHSEvsChZc9isIrSxUZNKX2WvZNjQvGd0PduUw-HmJgXHURhBS6S_Lpgny6LJ8Fe3v30nXi3vh78XdBhndFA3F2zCB16rI6df9SpwXbDxoway9snKt6wQ52KtHlWT52nIyzKqWsm5f_o-1X7EHoT9rgOWB70_YGX7P77na6HLeHUcEp_fTz5DBeU_wNyxwA9g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIAEHnkUsFPCBI7uNHSeOj2Gh6rJlhaBIvVmOPUaVqqTaZPs_-MeMHe9qJQQSlyhK_Eo-Z8YzznxDyDvXFJmxaKZaX6KBwp2YqhAFAmgKKA_c57aKySbkalVdXKivKVg9xsIAQPz5DGbhNO7lu85ugqvsmMWNqaq4Te4UQnA2hmvtXCohh4QqZOIWYpk6rudzfIxZSBE-yzkK7JSPbat_Ik1_yqvyhzCOGubk0X-O7TF5mJaStB6xf0JuQfuUPNgjGHxGftX0I8A1TSyqP2mdKMTp0NGVuYn8GngZV4H0c3fZDnTrJqPf0ZgG2nn6DUKgGQJAAyfHuge6xA4i02tPTevoYuhpvbcPHtvejDtBV3SxpGPmiPHmIflx8ul8fjpNSRimFk2_AY8SBJo5lXBWGQ4cUAQ0XDamZIg-eMdRShjLwJhMofr3-J4hY2AlgLRZ_pwctF0LLwitlASXgfDSgch81WBDBgxTXklXFjAhfAuNtomhPCTKuNLRUsmUHvHUAU-d8JyQ97tK1yNBx7-LfwiY74oGdu14AcHU6WPVpUB9bk0DXjXCqqZqKpE3eZ4Lp5gAMyGHYQLs9TdiPyFH2ymkkyjoNUcJXjEpi_LlX6q9JfdOz7-c6bPFavmK3A_DHZ08R-RgWG_gNblrb4bLfv0mzvffj2H_Gw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+to+Navigating+the+Joint+Solution+Space+of+Redundant+Inverse+Kinematics+and+Its+Applications+to+Numerical+IK+Computations&rft.jtitle=IEEE+access&rft.au=Ho%2C+Chi-Kai&rft.au=Chan%2C+Li-Wei&rft.au=King%2C+Chung-Ta&rft.au=Yen%2C+Ting-Yu&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=2274&rft.epage=2290&rft_id=info:doi/10.1109%2FACCESS.2023.3234104&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3234104 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |