Parameters Sensitivity Analysis of Ant Colony Based Clustering: Application for Student Grouping in Collaborative Learning Environment
Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 24751 - 24761 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony behavior in organizing nests and clustering ants corpses. Accordingly, several researchers proposed different clustering algorithms that mimic the real ants behavior in forming cemeteries. However, the performance of a given algorithm depends strongly on its parameters settings. Indeed, it holds a large number of adjustable parameters that need to be instantiated by suitable values. In this paper, we study the parameters influence, more precisely the parameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> which is responsible for adjusting similarity between objects. In fact, we analyze the impact of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> values on the performance of some well known Ant Colony based Clustering Algorithms applied to constructing team-works in a collaborative learning environment. After various bench tests, the choice of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> value is determined based on the best algorithm accuracy for each learning data-set. The experimental results prove that Ant Colony algorithms performance strongly depends on <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, especially when applied to large data-sets size. However, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> has a negligible influence on the algorithm's accuracy when applied to small data-sets size. Obviously, the feature selection step could be ignored since it has a negligible influence on the algorithm performance even with different values of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>. |
|---|---|
| AbstractList | Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony behavior in organizing nests and clustering ants corpses. Accordingly, several researchers proposed different clustering algorithms that mimic the real ants behavior in forming cemeteries. However, the performance of a given algorithm depends strongly on its parameters settings. Indeed, it holds a large number of adjustable parameters that need to be instantiated by suitable values. In this paper, we study the parameters influence, more precisely the parameter [Formula Omitted] which is responsible for adjusting similarity between objects. In fact, we analyze the impact of [Formula Omitted] values on the performance of some well known Ant Colony based Clustering Algorithms applied to constructing team-works in a collaborative learning environment. After various bench tests, the choice of [Formula Omitted] value is determined based on the best algorithm accuracy for each learning data-set. The experimental results prove that Ant Colony algorithms performance strongly depends on [Formula Omitted], especially when applied to large data-sets size. However, [Formula Omitted] has a negligible influence on the algorithm’s accuracy when applied to small data-sets size. Obviously, the feature selection step could be ignored since it has a negligible influence on the algorithm performance even with different values of [Formula Omitted]. Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony behavior in organizing nests and clustering ants corpses. Accordingly, several researchers proposed different clustering algorithms that mimic the real ants behavior in forming cemeteries. However, the performance of a given algorithm depends strongly on its parameters settings. Indeed, it holds a large number of adjustable parameters that need to be instantiated by suitable values. In this paper, we study the parameters influence, more precisely the parameter <tex-math notation="LaTeX">$\alpha $ </tex-math> which is responsible for adjusting similarity between objects. In fact, we analyze the impact of <tex-math notation="LaTeX">$\alpha $ </tex-math> values on the performance of some well known Ant Colony based Clustering Algorithms applied to constructing team-works in a collaborative learning environment. After various bench tests, the choice of <tex-math notation="LaTeX">$\alpha $ </tex-math> value is determined based on the best algorithm accuracy for each learning data-set. The experimental results prove that Ant Colony algorithms performance strongly depends on <tex-math notation="LaTeX">$\alpha $ </tex-math>, especially when applied to large data-sets size. However, <tex-math notation="LaTeX">$\alpha $ </tex-math> has a negligible influence on the algorithm's accuracy when applied to small data-sets size. Obviously, the feature selection step could be ignored since it has a negligible influence on the algorithm performance even with different values of <tex-math notation="LaTeX">$\alpha $ </tex-math>. Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony behavior in organizing nests and clustering ants corpses. Accordingly, several researchers proposed different clustering algorithms that mimic the real ants behavior in forming cemeteries. However, the performance of a given algorithm depends strongly on its parameters settings. Indeed, it holds a large number of adjustable parameters that need to be instantiated by suitable values. In this paper, we study the parameters influence, more precisely the parameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> which is responsible for adjusting similarity between objects. In fact, we analyze the impact of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> values on the performance of some well known Ant Colony based Clustering Algorithms applied to constructing team-works in a collaborative learning environment. After various bench tests, the choice of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> value is determined based on the best algorithm accuracy for each learning data-set. The experimental results prove that Ant Colony algorithms performance strongly depends on <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, especially when applied to large data-sets size. However, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> has a negligible influence on the algorithm's accuracy when applied to small data-sets size. Obviously, the feature selection step could be ignored since it has a negligible influence on the algorithm performance even with different values of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>. |
| Author | Kallel, Ilhem Abid, Abir Ayed, Mounir Ben Sanchez-Medina, Javier J. |
| Author_xml | – sequence: 1 givenname: Abir orcidid: 0000-0002-9892-2446 surname: Abid fullname: Abid, Abir email: abir.abid@ieee.org organization: Research Groups in Intelligent Machines (ReGIM-Lab), National Engineering School (ENIS), University of Sfax, Sfax, Tunisia – sequence: 2 givenname: Ilhem orcidid: 0000-0002-9281-0259 surname: Kallel fullname: Kallel, Ilhem organization: Research Groups in Intelligent Machines (ReGIM-Lab), National Engineering School (ENIS), University of Sfax, Sfax, Tunisia – sequence: 3 givenname: Javier J. orcidid: 0000-0003-2530-3182 surname: Sanchez-Medina fullname: Sanchez-Medina, Javier J. organization: CICEI, IUCES, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain – sequence: 4 givenname: Mounir Ben orcidid: 0000-0002-0245-2217 surname: Ayed fullname: Ayed, Mounir Ben organization: Research Groups in Intelligent Machines (ReGIM-Lab), National Engineering School (ENIS), University of Sfax, Sfax, Tunisia |
| BookMark | eNqFkdtqGzEQhkVJoambJ2gvBL22q8Oe1Dt3cdOAoQW312KsnQ0ya2kraQ1-gTx35WwIITeVkDTM_N8I5n9Prpx3SMhHzlacM_Vl3bab3W4lmJArKWpVC_mGXAteqaUsZXX1In5HbmI8sLyanCrra_LwCwIcMWGIdIcu2mRPNp3p2sFwjjZS3-c40dYP3p3pN4jY0XaYYiasu_9K1-M4WAPJekd7H-guTR1m4Db4acwKat0FHmDvQ1adkG4RgrtUNu5kg3fHLP9A3vYwRLx5ehfkz_fN7_bHcvvz9q5db5emYCrlW9ZGVarnfK-aTnLBm4IxDlWDDDjIsixKDgxqzPWGcVS9lNwI0RSVkCgX5G7u23k46DHYI4Sz9mD1Y8KHew0hWTOgLhpjel6UpWmqAlkDXHZlx0qGPd_L3HdBPs-9xuD_ThiTPvgp5LlFLVTeTFb5LIicVSb4GAP2z79ypi_-6dk_ffFPP_mXKfWKMjY9DjkFsMN_2E8zaxHxxW9ciqKS8h9gkqtH |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_sasc_2025_200310 crossref_primary_10_3390_fractalfract8040212 crossref_primary_10_1007_s10639_024_12976_6 |
| Cites_doi | 10.1109/SMC53654.2022.9945078 10.1109/ITHET.2016.7760756 10.1145/1143997.1144029 10.1109/ACCESS.2018.2879583 10.1080/00207540601078054 10.3390/info10120390 10.1109/ITHET.2018.8424779 10.1007/978-981-15-2700-5_16 10.1155/2016/4835932 10.7551/mitpress/3117.003.0071 10.1109/CEC.1999.782657 10.1016/j.asoc.2008.03.002 10.14257/ijdta.2016.9.8.13 10.1007/3-540-57868-4_57 10.5815/ijisa.2019.03.02 10.1007/978-1-4939-3578-9_17 10.1109/ACCESS.2022.3142859 10.1109/AEECT.2015.7360581 10.1111/exsy.12310 10.1007/s00500-005-0012-z 10.22266/ijies2021.0831.13 10.1007/978-3-319-76348-4_63 10.1016/S0020-0190(02)00447-7 10.1016/j.ins.2005.02.003 10.1162/EVCO_r_00180 10.1145/234313.234350 10.1109/ACCESS.2022.3143802 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3279723 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 24761 |
| ExternalDocumentID | oai_doaj_org_article_48ccf1455c864e08a13d5d050ef1b39f 10_1109_ACCESS_2023_3279723 10132463 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: University of Sfax through the Alternate Scholarship Granted to spend a three-month internship with the University of Las Palmas de Gran Canaria funderid: 10.13039/501100006368 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-c437c969f11b98d312184001a68e0a1a355451a0a7eb98801e9f331c2284623e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172963800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:25:51 EDT 2025 Sun Jun 29 16:54:47 EDT 2025 Sat Nov 29 04:02:40 EST 2025 Tue Nov 18 22:33:12 EST 2025 Wed Aug 27 02:11:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-c437c969f11b98d312184001a68e0a1a355451a0a7eb98801e9f331c2284623e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9281-0259 0000-0003-2530-3182 0000-0002-9892-2446 0000-0002-0245-2217 |
| OpenAccessLink | https://doaj.org/article/48ccf1455c864e08a13d5d050ef1b39f |
| PQID | 2929203620 |
| PQPubID | 4845423 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_48ccf1455c864e08a13d5d050ef1b39f crossref_citationtrail_10_1109_ACCESS_2023_3279723 ieee_primary_10132463 proquest_journals_2929203620 crossref_primary_10_1109_ACCESS_2023_3279723 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 Kennedy (ref4); 4 ref14 ref31 ref30 ref11 ref33 ref32 Carlisle (ref10); 1 ref2 ref1 ref16 ref19 ref18 Boryczka (ref17) 2008; 1998 Teodorovic (ref7) 2005; 51 ref24 Deneubourg (ref29) ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref9 Cortez (ref23) ref3 ref6 ref5 |
| References_xml | – ident: ref32 doi: 10.1109/SMC53654.2022.9945078 – ident: ref31 doi: 10.1109/ITHET.2016.7760756 – ident: ref8 doi: 10.1145/1143997.1144029 – ident: ref26 doi: 10.1109/ACCESS.2018.2879583 – ident: ref21 doi: 10.1080/00207540601078054 – volume: 51 start-page: 60 year: 2005 ident: ref7 article-title: Bee colony optimization—A cooperative learning approach to complex transportation problems publication-title: Adv. OR AI Methods Transp. – ident: ref9 doi: 10.3390/info10120390 – ident: ref20 doi: 10.1109/ITHET.2018.8424779 – ident: ref13 doi: 10.1007/978-981-15-2700-5_16 – ident: ref16 doi: 10.1155/2016/4835932 – ident: ref19 doi: 10.7551/mitpress/3117.003.0071 – ident: ref6 doi: 10.1109/CEC.1999.782657 – ident: ref1 doi: 10.1016/j.asoc.2008.03.002 – ident: ref25 doi: 10.14257/ijdta.2016.9.8.13 – ident: ref28 doi: 10.1007/3-540-57868-4_57 – ident: ref15 doi: 10.5815/ijisa.2019.03.02 – volume-title: Proc. 1st Int. Conf. Simulation Adapt. Behav. ident: ref29 article-title: The dynamics of collective sorting robot-like ants and ant-like tobots – ident: ref30 doi: 10.1007/978-1-4939-3578-9_17 – ident: ref5 doi: 10.1109/ACCESS.2022.3142859 – ident: ref24 doi: 10.1109/AEECT.2015.7360581 – ident: ref18 doi: 10.1111/exsy.12310 – start-page: 5 volume-title: Proc. 5th Future Bus. Technol. Conf. (FUBUTEC) ident: ref23 article-title: Using data mining to predict secondary school student performance – volume: 4 start-page: 1942 volume-title: Proc. IEEE ICNN ident: ref4 article-title: Particle swarm optimization – ident: ref33 doi: 10.1007/s00500-005-0012-z – ident: ref14 doi: 10.22266/ijies2021.0831.13 – ident: ref22 doi: 10.1007/978-3-319-76348-4_63 – ident: ref11 doi: 10.1016/S0020-0190(02)00447-7 – volume: 1 start-page: 1 volume-title: Proc. Workshop Part. Swarm Optim., Population ident: ref10 article-title: An off-the-shelf PSO – ident: ref12 doi: 10.1016/j.ins.2005.02.003 – volume: 1998 start-page: 377 year: 2008 ident: ref17 article-title: Ant clustering algorithm publication-title: Intell. Inf. Syst. – ident: ref2 doi: 10.1162/EVCO_r_00180 – ident: ref3 doi: 10.1145/234313.234350 – ident: ref27 doi: 10.1109/ACCESS.2022.3143802 |
| SSID | ssj0000816957 |
| Score | 2.3202758 |
| Snippet | Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context,... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 24751 |
| SubjectTerms | Algorithms alpha parameter alpha similarity Ant colony algorithms parameters ant colony clustering (ACC) Ant colony optimization ant colony optimization (ACO) Behavioral sciences Biomimetics Cemeteries Cluster analysis Clustering Clustering algorithms Collaborative learning collaborative learning environment Convergence Data analysis Datasets Federated learning Genetic algorithms Impact analysis Learning systems Machine learning Parameter estimation Parameter sensitivity parameters analysis parameters sensitivity School environment Sensitivity analysis Sorting |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4tAe-knFAq184Nhs7TiJbW5LBOoJIUElbpbjOBUSyiLYReIP9HczY3sXqqqVeomsxE4cPdsz44_3AA7r0nRK90R9KfuiUjoUritF0XU12adKaJfEJtTZmb66Muf5sHo8CxNCiJvPwpSScS2_n_slTZVhD8fYqWrkJmwqpdJhrfWECilImFplZiHBzbdZ2-JPTEkgfCpLRfpav1mfSNKfVVX-GIqjfTl9-581ewdvsiPJZgn597ARxg_w-gW94Ef4de5o6xXxZ7IL2qielCLYioiEzQdML1iLA-D4yI7RoPWsvVkSdwK-4IjNnle3GTq37CIRYbI4YYU52PVIhVcN6SGwTNf6k508H6DbgR-nJ5ft9yLrLhQeo70FXqXypjGDEJ1BHEUMA7lwjQ7cCUcuSi0cdyrgczRxwQxSCl-iqUNvKshPsDXOx7ALLDlojR80uj59qbTvdeed4sbjK2SYQLnCw_pMSk7aGDc2Bifc2ASiJRBtBnECX9eFbhMnx7-zHxPQ66xEqB1vIII2909bae8HIm33uqkCxxYq-7rnNQ-D6KQZJrBDqL_4XgJ8AgerdmNz77-3pSENMHQN-N5fiu3DK6xileZyDmBrcbcMn2HbPyyu7---xIb9BJpi9aM priority: 102 providerName: IEEE |
| Title | Parameters Sensitivity Analysis of Ant Colony Based Clustering: Application for Student Grouping in Collaborative Learning Environment |
| URI | https://ieeexplore.ieee.org/document/10132463 https://www.proquest.com/docview/2929203620 https://doaj.org/article/48ccf1455c864e08a13d5d050ef1b39f |
| Volume | 12 |
| WOSCitedRecordID | wos001172963800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQqgd6qKBQdWFBPnAkYMdJbHPbjRZxKUKCStwsx3EqJJSt2AWJS4_93czY3kdVqb1wsaLEj9gz8cw49vcRclLmupGqRehL0WaFVD6zTc6zpinRPhVc2Ug2Ia-v1f29vtmg-sI9YREeOA7ceaGc6xBN26mq8AyKirZsWcl8xxuhO5x9wevZCKbCHKx4pUuZYIY40-fjuoYenSFb-JnIJZJt_WGKAmJ_olj5a14OxuZyh3xKXiIdx7fbJVu-_0w-bmAH7pHfNxb3VSE4Jr3FXeiRBoIuUUborIPrBa1hdutf6QSsVUvrx2cERoAKLuh4_euagudKbyPKJQ2rUZCDPvRYeKklL54mLNYfdLo-HbdPvl9O7-qrLJEqZA5CuQWkQjpd6Y7zRoOQeIjxGLeV8sxyi_5HyS2z0sNzsF9ed0Jwl4MdA1fJiy9k0M96_5XQ6H1VrlPg17S5VK5VjbOSaQdVCD8k-XJ8jUuI40h88WhC5MG0iUIxKBSThDIkp6tCPyPgxr-zT1Bwq6yIlh1ugA6ZpEPmfzo0JPso9o32IEYvKqh8tNQDkz7tuck1EnyB3WcH79H2IdmG_hRxVWdEBounZ39EPriXxcP86ThoNaTffk2Pw9nEN7dy-l0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQQIOfBaxUMAHjmSx4yS2uW2jVkWUVaUWqTfLcRxUqcqidrcSf4DfzYzt3RYhkLhEVmInjp7tmfHHewDv6tJ0SvdEfSn7olI6FK4rRdF1NdmnSmiXxCbUfK5PT81RPqwez8KEEOLmszClZFzL7xd-RVNl2MMxdqoaeRvu1FVVinRcazOlQhoSplaZW0hw82HWtvgbU5IIn8pSkcLWb_Yn0vRnXZU_BuNoYfYf_WfdHsPD7EqyWcL-CdwK41N4cINg8Bn8PHK0-YoYNNkxbVVPWhFsTUXCFgOml6zFIXD8wXbRpPWsPV8RewK-4CObXa9vM3Rv2XGiwmRxygpzsLORCq-b0lVgmbD1G9u7PkK3DV_3907agyIrLxQe470lXqXypjGDEJ1BJEUMBLlwjQ7cCUdOSi0cdyrgczRywQxSCl-isUN_KsjnsDUuxvACWHLRGj9odH76Umnf6847xY3HV8gwgXKNh_WZlpzUMc5tDE-4sQlESyDaDOIE3m8KfU-sHP_OvktAb7ISpXa8gQja3ENtpb0fiLbd66YKHNuo7Oue1zwMopNmmMA2oX7jewnwCeys243N_f_SloZUwNA54C__Uuwt3Ds4-XJoDz_NP7-C-1jdKs3s7MDW8mIVXsNdf7U8u7x4Exv5L4Eu-Oo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameters+Sensitivity+Analysis+of+Ant+Colony+Based+Clustering%3A+Application+for+Student+Grouping+in+Collaborative+Learning+Environment&rft.jtitle=IEEE+access&rft.au=Abid%2C+Abir&rft.au=Kallel%2C+Ilhem&rft.au=Sanchez-Medina%2C+Javier+J.&rft.au=Ayed%2C+Mounir+Ben&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=24751&rft.epage=24761&rft_id=info:doi/10.1109%2FACCESS.2023.3279723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3279723 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |