Parameters Sensitivity Analysis of Ant Colony Based Clustering: Application for Student Grouping in Collaborative Learning Environment

Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 12; pp. 24751 - 24761
Main Authors: Abid, Abir, Kallel, Ilhem, Sanchez-Medina, Javier J., Ayed, Mounir Ben
Format: Journal Article
Language:English
Published: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony behavior in organizing nests and clustering ants corpses. Accordingly, several researchers proposed different clustering algorithms that mimic the real ants behavior in forming cemeteries. However, the performance of a given algorithm depends strongly on its parameters settings. Indeed, it holds a large number of adjustable parameters that need to be instantiated by suitable values. In this paper, we study the parameters influence, more precisely the parameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> which is responsible for adjusting similarity between objects. In fact, we analyze the impact of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> values on the performance of some well known Ant Colony based Clustering Algorithms applied to constructing team-works in a collaborative learning environment. After various bench tests, the choice of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> value is determined based on the best algorithm accuracy for each learning data-set. The experimental results prove that Ant Colony algorithms performance strongly depends on <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, especially when applied to large data-sets size. However, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> has a negligible influence on the algorithm's accuracy when applied to small data-sets size. Obviously, the feature selection step could be ignored since it has a negligible influence on the algorithm performance even with different values of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>.
AbstractList Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony behavior in organizing nests and clustering ants corpses. Accordingly, several researchers proposed different clustering algorithms that mimic the real ants behavior in forming cemeteries. However, the performance of a given algorithm depends strongly on its parameters settings. Indeed, it holds a large number of adjustable parameters that need to be instantiated by suitable values. In this paper, we study the parameters influence, more precisely the parameter [Formula Omitted] which is responsible for adjusting similarity between objects. In fact, we analyze the impact of [Formula Omitted] values on the performance of some well known Ant Colony based Clustering Algorithms applied to constructing team-works in a collaborative learning environment. After various bench tests, the choice of [Formula Omitted] value is determined based on the best algorithm accuracy for each learning data-set. The experimental results prove that Ant Colony algorithms performance strongly depends on [Formula Omitted], especially when applied to large data-sets size. However, [Formula Omitted] has a negligible influence on the algorithm’s accuracy when applied to small data-sets size. Obviously, the feature selection step could be ignored since it has a negligible influence on the algorithm performance even with different values of [Formula Omitted].
Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony behavior in organizing nests and clustering ants corpses. Accordingly, several researchers proposed different clustering algorithms that mimic the real ants behavior in forming cemeteries. However, the performance of a given algorithm depends strongly on its parameters settings. Indeed, it holds a large number of adjustable parameters that need to be instantiated by suitable values. In this paper, we study the parameters influence, more precisely the parameter <tex-math notation="LaTeX">$\alpha $ </tex-math> which is responsible for adjusting similarity between objects. In fact, we analyze the impact of <tex-math notation="LaTeX">$\alpha $ </tex-math> values on the performance of some well known Ant Colony based Clustering Algorithms applied to constructing team-works in a collaborative learning environment. After various bench tests, the choice of <tex-math notation="LaTeX">$\alpha $ </tex-math> value is determined based on the best algorithm accuracy for each learning data-set. The experimental results prove that Ant Colony algorithms performance strongly depends on <tex-math notation="LaTeX">$\alpha $ </tex-math>, especially when applied to large data-sets size. However, <tex-math notation="LaTeX">$\alpha $ </tex-math> has a negligible influence on the algorithm's accuracy when applied to small data-sets size. Obviously, the feature selection step could be ignored since it has a negligible influence on the algorithm performance even with different values of <tex-math notation="LaTeX">$\alpha $ </tex-math>.
Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context, bio-inspired algorithms have found success in solving clustering problems. Inspired by nature, Ant Colony based Clustering arises from ant colony behavior in organizing nests and clustering ants corpses. Accordingly, several researchers proposed different clustering algorithms that mimic the real ants behavior in forming cemeteries. However, the performance of a given algorithm depends strongly on its parameters settings. Indeed, it holds a large number of adjustable parameters that need to be instantiated by suitable values. In this paper, we study the parameters influence, more precisely the parameter <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> which is responsible for adjusting similarity between objects. In fact, we analyze the impact of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> values on the performance of some well known Ant Colony based Clustering Algorithms applied to constructing team-works in a collaborative learning environment. After various bench tests, the choice of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> value is determined based on the best algorithm accuracy for each learning data-set. The experimental results prove that Ant Colony algorithms performance strongly depends on <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>, especially when applied to large data-sets size. However, <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula> has a negligible influence on the algorithm's accuracy when applied to small data-sets size. Obviously, the feature selection step could be ignored since it has a negligible influence on the algorithm performance even with different values of <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>.
Author Kallel, Ilhem
Abid, Abir
Ayed, Mounir Ben
Sanchez-Medina, Javier J.
Author_xml – sequence: 1
  givenname: Abir
  orcidid: 0000-0002-9892-2446
  surname: Abid
  fullname: Abid, Abir
  email: abir.abid@ieee.org
  organization: Research Groups in Intelligent Machines (ReGIM-Lab), National Engineering School (ENIS), University of Sfax, Sfax, Tunisia
– sequence: 2
  givenname: Ilhem
  orcidid: 0000-0002-9281-0259
  surname: Kallel
  fullname: Kallel, Ilhem
  organization: Research Groups in Intelligent Machines (ReGIM-Lab), National Engineering School (ENIS), University of Sfax, Sfax, Tunisia
– sequence: 3
  givenname: Javier J.
  orcidid: 0000-0003-2530-3182
  surname: Sanchez-Medina
  fullname: Sanchez-Medina, Javier J.
  organization: CICEI, IUCES, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
– sequence: 4
  givenname: Mounir Ben
  orcidid: 0000-0002-0245-2217
  surname: Ayed
  fullname: Ayed, Mounir Ben
  organization: Research Groups in Intelligent Machines (ReGIM-Lab), National Engineering School (ENIS), University of Sfax, Sfax, Tunisia
BookMark eNqFkdtqGzEQhkVJoambJ2gvBL22q8Oe1Dt3cdOAoQW312KsnQ0ya2kraQ1-gTx35WwIITeVkDTM_N8I5n9Prpx3SMhHzlacM_Vl3bab3W4lmJArKWpVC_mGXAteqaUsZXX1In5HbmI8sLyanCrra_LwCwIcMWGIdIcu2mRPNp3p2sFwjjZS3-c40dYP3p3pN4jY0XaYYiasu_9K1-M4WAPJekd7H-guTR1m4Db4acwKat0FHmDvQ1adkG4RgrtUNu5kg3fHLP9A3vYwRLx5ehfkz_fN7_bHcvvz9q5db5emYCrlW9ZGVarnfK-aTnLBm4IxDlWDDDjIsixKDgxqzPWGcVS9lNwI0RSVkCgX5G7u23k46DHYI4Sz9mD1Y8KHew0hWTOgLhpjel6UpWmqAlkDXHZlx0qGPd_L3HdBPs-9xuD_ThiTPvgp5LlFLVTeTFb5LIicVSb4GAP2z79ypi_-6dk_ffFPP_mXKfWKMjY9DjkFsMN_2E8zaxHxxW9ciqKS8h9gkqtH
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_sasc_2025_200310
crossref_primary_10_3390_fractalfract8040212
crossref_primary_10_1007_s10639_024_12976_6
Cites_doi 10.1109/SMC53654.2022.9945078
10.1109/ITHET.2016.7760756
10.1145/1143997.1144029
10.1109/ACCESS.2018.2879583
10.1080/00207540601078054
10.3390/info10120390
10.1109/ITHET.2018.8424779
10.1007/978-981-15-2700-5_16
10.1155/2016/4835932
10.7551/mitpress/3117.003.0071
10.1109/CEC.1999.782657
10.1016/j.asoc.2008.03.002
10.14257/ijdta.2016.9.8.13
10.1007/3-540-57868-4_57
10.5815/ijisa.2019.03.02
10.1007/978-1-4939-3578-9_17
10.1109/ACCESS.2022.3142859
10.1109/AEECT.2015.7360581
10.1111/exsy.12310
10.1007/s00500-005-0012-z
10.22266/ijies2021.0831.13
10.1007/978-3-319-76348-4_63
10.1016/S0020-0190(02)00447-7
10.1016/j.ins.2005.02.003
10.1162/EVCO_r_00180
10.1145/234313.234350
10.1109/ACCESS.2022.3143802
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3279723
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 24761
ExternalDocumentID oai_doaj_org_article_48ccf1455c864e08a13d5d050ef1b39f
10_1109_ACCESS_2023_3279723
10132463
Genre orig-research
GrantInformation_xml – fundername: University of Sfax through the Alternate Scholarship Granted to spend a three-month internship with the University of Las Palmas de Gran Canaria
  funderid: 10.13039/501100006368
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-c437c969f11b98d312184001a68e0a1a355451a0a7eb98801e9f331c2284623e3
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001172963800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:25:51 EDT 2025
Sun Jun 29 16:54:47 EDT 2025
Sat Nov 29 04:02:40 EST 2025
Tue Nov 18 22:33:12 EST 2025
Wed Aug 27 02:11:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-c437c969f11b98d312184001a68e0a1a355451a0a7eb98801e9f331c2284623e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9281-0259
0000-0003-2530-3182
0000-0002-9892-2446
0000-0002-0245-2217
OpenAccessLink https://doaj.org/article/48ccf1455c864e08a13d5d050ef1b39f
PQID 2929203620
PQPubID 4845423
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_48ccf1455c864e08a13d5d050ef1b39f
crossref_citationtrail_10_1109_ACCESS_2023_3279723
ieee_primary_10132463
proquest_journals_2929203620
crossref_primary_10_1109_ACCESS_2023_3279723
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
Kennedy (ref4); 4
ref14
ref31
ref30
ref11
ref33
ref32
Carlisle (ref10); 1
ref2
ref1
ref16
ref19
ref18
Boryczka (ref17) 2008; 1998
Teodorovic (ref7) 2005; 51
ref24
Deneubourg (ref29)
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref9
Cortez (ref23)
ref3
ref6
ref5
References_xml – ident: ref32
  doi: 10.1109/SMC53654.2022.9945078
– ident: ref31
  doi: 10.1109/ITHET.2016.7760756
– ident: ref8
  doi: 10.1145/1143997.1144029
– ident: ref26
  doi: 10.1109/ACCESS.2018.2879583
– ident: ref21
  doi: 10.1080/00207540601078054
– volume: 51
  start-page: 60
  year: 2005
  ident: ref7
  article-title: Bee colony optimization—A cooperative learning approach to complex transportation problems
  publication-title: Adv. OR AI Methods Transp.
– ident: ref9
  doi: 10.3390/info10120390
– ident: ref20
  doi: 10.1109/ITHET.2018.8424779
– ident: ref13
  doi: 10.1007/978-981-15-2700-5_16
– ident: ref16
  doi: 10.1155/2016/4835932
– ident: ref19
  doi: 10.7551/mitpress/3117.003.0071
– ident: ref6
  doi: 10.1109/CEC.1999.782657
– ident: ref1
  doi: 10.1016/j.asoc.2008.03.002
– ident: ref25
  doi: 10.14257/ijdta.2016.9.8.13
– ident: ref28
  doi: 10.1007/3-540-57868-4_57
– ident: ref15
  doi: 10.5815/ijisa.2019.03.02
– volume-title: Proc. 1st Int. Conf. Simulation Adapt. Behav.
  ident: ref29
  article-title: The dynamics of collective sorting robot-like ants and ant-like tobots
– ident: ref30
  doi: 10.1007/978-1-4939-3578-9_17
– ident: ref5
  doi: 10.1109/ACCESS.2022.3142859
– ident: ref24
  doi: 10.1109/AEECT.2015.7360581
– ident: ref18
  doi: 10.1111/exsy.12310
– start-page: 5
  volume-title: Proc. 5th Future Bus. Technol. Conf. (FUBUTEC)
  ident: ref23
  article-title: Using data mining to predict secondary school student performance
– volume: 4
  start-page: 1942
  volume-title: Proc. IEEE ICNN
  ident: ref4
  article-title: Particle swarm optimization
– ident: ref33
  doi: 10.1007/s00500-005-0012-z
– ident: ref14
  doi: 10.22266/ijies2021.0831.13
– ident: ref22
  doi: 10.1007/978-3-319-76348-4_63
– ident: ref11
  doi: 10.1016/S0020-0190(02)00447-7
– volume: 1
  start-page: 1
  volume-title: Proc. Workshop Part. Swarm Optim., Population
  ident: ref10
  article-title: An off-the-shelf PSO
– ident: ref12
  doi: 10.1016/j.ins.2005.02.003
– volume: 1998
  start-page: 377
  year: 2008
  ident: ref17
  article-title: Ant clustering algorithm
  publication-title: Intell. Inf. Syst.
– ident: ref2
  doi: 10.1162/EVCO_r_00180
– ident: ref3
  doi: 10.1145/234313.234350
– ident: ref27
  doi: 10.1109/ACCESS.2022.3143802
SSID ssj0000816957
Score 2.3202758
Snippet Clustering analysis is one of the data analysis techniques that organizes items into clusters according to their degrees of similarities. In this context,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24751
SubjectTerms Algorithms
alpha parameter
alpha similarity
Ant colony algorithms parameters
ant colony clustering (ACC)
Ant colony optimization
ant colony optimization (ACO)
Behavioral sciences
Biomimetics
Cemeteries
Cluster analysis
Clustering
Clustering algorithms
Collaborative learning
collaborative learning environment
Convergence
Data analysis
Datasets
Federated learning
Genetic algorithms
Impact analysis
Learning systems
Machine learning
Parameter estimation
Parameter sensitivity
parameters analysis
parameters sensitivity
School environment
Sensitivity analysis
Sorting
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B4tAe-knFAq184Nhs7TiJbW5LBOoJIUElbpbjOBUSyiLYReIP9HczY3sXqqqVeomsxE4cPdsz44_3AA7r0nRK90R9KfuiUjoUritF0XU12adKaJfEJtTZmb66Muf5sHo8CxNCiJvPwpSScS2_n_slTZVhD8fYqWrkJmwqpdJhrfWECilImFplZiHBzbdZ2-JPTEkgfCpLRfpav1mfSNKfVVX-GIqjfTl9-581ewdvsiPJZgn597ARxg_w-gW94Ef4de5o6xXxZ7IL2qielCLYioiEzQdML1iLA-D4yI7RoPWsvVkSdwK-4IjNnle3GTq37CIRYbI4YYU52PVIhVcN6SGwTNf6k508H6DbgR-nJ5ft9yLrLhQeo70FXqXypjGDEJ1BHEUMA7lwjQ7cCUcuSi0cdyrgczRxwQxSCl-iqUNvKshPsDXOx7ALLDlojR80uj59qbTvdeed4sbjK2SYQLnCw_pMSk7aGDc2Bifc2ASiJRBtBnECX9eFbhMnx7-zHxPQ66xEqB1vIII2909bae8HIm33uqkCxxYq-7rnNQ-D6KQZJrBDqL_4XgJ8AgerdmNz77-3pSENMHQN-N5fiu3DK6xileZyDmBrcbcMn2HbPyyu7---xIb9BJpi9aM
  priority: 102
  providerName: IEEE
Title Parameters Sensitivity Analysis of Ant Colony Based Clustering: Application for Student Grouping in Collaborative Learning Environment
URI https://ieeexplore.ieee.org/document/10132463
https://www.proquest.com/docview/2929203620
https://doaj.org/article/48ccf1455c864e08a13d5d050ef1b39f
Volume 12
WOSCitedRecordID wos001172963800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQqgd6qKBQdWFBPnAkYMdJbHPbjRZxKUKCStwsx3EqJJSt2AWJS4_93czY3kdVqb1wsaLEj9gz8cw49vcRclLmupGqRehL0WaFVD6zTc6zpinRPhVc2Ug2Ia-v1f29vtmg-sI9YREeOA7ceaGc6xBN26mq8AyKirZsWcl8xxuhO5x9wevZCKbCHKx4pUuZYIY40-fjuoYenSFb-JnIJZJt_WGKAmJ_olj5a14OxuZyh3xKXiIdx7fbJVu-_0w-bmAH7pHfNxb3VSE4Jr3FXeiRBoIuUUborIPrBa1hdutf6QSsVUvrx2cERoAKLuh4_euagudKbyPKJQ2rUZCDPvRYeKklL54mLNYfdLo-HbdPvl9O7-qrLJEqZA5CuQWkQjpd6Y7zRoOQeIjxGLeV8sxyi_5HyS2z0sNzsF9ed0Jwl4MdA1fJiy9k0M96_5XQ6H1VrlPg17S5VK5VjbOSaQdVCD8k-XJ8jUuI40h88WhC5MG0iUIxKBSThDIkp6tCPyPgxr-zT1Bwq6yIlh1ugA6ZpEPmfzo0JPso9o32IEYvKqh8tNQDkz7tuck1EnyB3WcH79H2IdmG_hRxVWdEBounZ39EPriXxcP86ThoNaTffk2Pw9nEN7dy-l0
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQQIOfBaxUMAHjmSx4yS2uW2jVkWUVaUWqTfLcRxUqcqidrcSf4DfzYzt3RYhkLhEVmInjp7tmfHHewDv6tJ0SvdEfSn7olI6FK4rRdF1NdmnSmiXxCbUfK5PT81RPqwez8KEEOLmszClZFzL7xd-RVNl2MMxdqoaeRvu1FVVinRcazOlQhoSplaZW0hw82HWtvgbU5IIn8pSkcLWb_Yn0vRnXZU_BuNoYfYf_WfdHsPD7EqyWcL-CdwK41N4cINg8Bn8PHK0-YoYNNkxbVVPWhFsTUXCFgOml6zFIXD8wXbRpPWsPV8RewK-4CObXa9vM3Rv2XGiwmRxygpzsLORCq-b0lVgmbD1G9u7PkK3DV_3907agyIrLxQe470lXqXypjGDEJ1BJEUMBLlwjQ7cCUdOSi0cdyrgczRywQxSCl-isUN_KsjnsDUuxvACWHLRGj9odH76Umnf6847xY3HV8gwgXKNh_WZlpzUMc5tDE-4sQlESyDaDOIE3m8KfU-sHP_OvktAb7ISpXa8gQja3ENtpb0fiLbd66YKHNuo7Oue1zwMopNmmMA2oX7jewnwCeys243N_f_SloZUwNA54C__Uuwt3Ds4-XJoDz_NP7-C-1jdKs3s7MDW8mIVXsNdf7U8u7x4Exv5L4Eu-Oo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameters+Sensitivity+Analysis+of+Ant+Colony+Based+Clustering%3A+Application+for+Student+Grouping+in+Collaborative+Learning+Environment&rft.jtitle=IEEE+access&rft.au=Abid%2C+Abir&rft.au=Kallel%2C+Ilhem&rft.au=Sanchez-Medina%2C+Javier+J.&rft.au=Ayed%2C+Mounir+Ben&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=24751&rft.epage=24761&rft_id=info:doi/10.1109%2FACCESS.2023.3279723&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3279723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon