Hybrid Centralized-Distributed Resource Allocation Based on Deep Reinforcement Learning for Cooperative D2D Communications
Device-to-device (D2D) technology enables direct communication between adjacent devices within cellular networks. Due to its high data rate, low latency, and performance improvement in spectrum and energy efficiency, it has been widely investigated and applied as a critical technology in 5G New Radi...
Gespeichert in:
| Veröffentlicht in: | IEEE access Jg. 12; S. 196609 - 196623 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Device-to-device (D2D) technology enables direct communication between adjacent devices within cellular networks. Due to its high data rate, low latency, and performance improvement in spectrum and energy efficiency, it has been widely investigated and applied as a critical technology in 5G New Radio (NR). Cooperative D2D communication can achieve a win-win situation between cellular users (CUs) and D2D users (DUs) through cooperative relaying techniques. In addition to conventional overlay and underlay D2D communications, it has attracted extensive attention from academic and industrial circles in the past decade. This paper delves into optimizing joint spectrum allocation, power control, and link-matching between multiple CUs and DUs for cooperative D2D communications. Weighted sum energy efficiency (WSEE) is used as the performance metric to address the challenges of green communication and sustainable development. This mixed-integer fractional programming (MIFP) problem can be decomposed into: 1. a classic weighted bipartite graph matching; 2. a series of nonconvex spectrum allocation and power control problems between potentially matched cellular and D2D link pairs. To address this issue, we propose a hybrid centralized-distributed scheme based on deep reinforcement learning (DRL) and the Kuhn-Munkres (KM) algorithm. Leveraging the former, the CUs and DUs autonomously optimize spectrum allocation and power control by only utilizing local information. Then, the base station (BS) determines the link matching utilizing the latter. Simulation results reveal that it achieves more than 96% WSEE of the optimal scheme and 98% WSEE of the centralized DRL-based scheme. It significantly enhances the network convergence speed with low centralized computational overheads. In addition, we also propose and utilize cooperative link sets for corresponding D2D links to accelerate the proposed scheme and reduce signaling exchange further: an average of about 85% WSEE of the optimal scheme is achieved, while more than 50% of signaling and distributed computing overheads are reduced. |
|---|---|
| AbstractList | Device-to-device (D2D) technology enables direct communication between adjacent devices within cellular networks. Due to its high data rate, low latency, and performance improvement in spectrum and energy efficiency, it has been widely investigated and applied as a critical technology in 5G New Radio (NR). Cooperative D2D communication can achieve a win-win situation between cellular users (CUs) and D2D users (DUs) through cooperative relaying techniques. In addition to conventional overlay and underlay D2D communications, it has attracted extensive attention from academic and industrial circles in the past decade. This paper delves into optimizing joint spectrum allocation, power control, and link-matching between multiple CUs and DUs for cooperative D2D communications. Weighted sum energy efficiency (WSEE) is used as the performance metric to address the challenges of green communication and sustainable development. This mixed-integer fractional programming (MIFP) problem can be decomposed into: 1. a classic weighted bipartite graph matching; 2. a series of nonconvex spectrum allocation and power control problems between potentially matched cellular and D2D link pairs. To address this issue, we propose a hybrid centralized-distributed scheme based on deep reinforcement learning (DRL) and the Kuhn-Munkres (KM) algorithm. Leveraging the former, the CUs and DUs autonomously optimize spectrum allocation and power control by only utilizing local information. Then, the base station (BS) determines the link matching utilizing the latter. Simulation results reveal that it achieves more than 96% WSEE of the optimal scheme and 98% WSEE of the centralized DRL-based scheme. It significantly enhances the network convergence speed with low centralized computational overheads. In addition, we also propose and utilize cooperative link sets for corresponding D2D links to accelerate the proposed scheme and reduce signaling exchange further: an average of about 85% WSEE of the optimal scheme is achieved, while more than 50% of signaling and distributed computing overheads are reduced. |
| Author | Tang, Xiaoqing Yu, Yang |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0009-0009-3845-2401 surname: Yu fullname: Yu, Yang email: yuyang@tgc.edu.cn organization: Electronic Information School, Hubei Three Gorges Polytechnic, Yichang, China – sequence: 2 givenname: Xiaoqing orcidid: 0000-0001-9704-3282 surname: Tang fullname: Tang, Xiaoqing organization: School of Artificial Intelligence, Hubei University, Wuhan, China |
| BookMark | eNp9UU1r3DAUNCWBpml-QXsw9OyNPm3puPWmSWCh0KRnIctPQYtX2kreQvLr-xKnEHqoLho9zYye3nyoTmKKUFWfKFlRSvTluu-v7u5WjDCx4pJRqcm76ozRVjdc8vbkDX5fXZSyI7gUlmR3Vj3dPA45jHUPcc52Ck8wNptQ5hyG4wxj_QNKOmYH9XqakrNzSLH-agveINgAHJARok9I2aNFvQWbY4gPNZbqPqUDZBT9hnrDNnje748xLDblY3Xq7VTg4nU_r35-u7rvb5rt9-vbfr1tnCB6bgYgaqCtd6AUUbK1g-JMMKa98KP0GoQgEhy30A6tVo4MnXeiQzi2mtGBn1e3i--Y7M4cctjb_GiSDealkPKDsXkObgLTOQ9W4wMSbTuJkBMyklYQAqPnCr2-LF6HnH4docxmh-OJ2L7hVBIpO8o4svTCcjmVksEbF-aXT-OMw2QoMc_JmSU585yceU0Otfwf7d-O_6_6vKgCALxRKMo6IfkfDSSnsg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_app15084290 crossref_primary_10_1038_s41598_025_08290_x |
| Cites_doi | 10.1109/TNET.2022.3152150 10.1109/TVT.2019.2897134 10.1109/LCOMM.2014.2351400 10.1109/TIT.2004.838089 10.1007/978-94-009-0035-6 10.1109/TVT.2023.3276647 10.1109/TGCN.2020.3036026 10.3390/app7050491 10.1109/JSAC.2023.3288261 10.1109/JSAC.2019.2933973 10.1109/LWC.2022.3170998 10.1016/j.comnet.2017.06.002 10.1109/mwc.2014.6757899 10.1109/LCOMM.2020.2984430 10.1109/comst.2014.2319555 10.1109/LWC.2018.2864644 10.1109/TVT.2023.3295821 10.1109/TNSE.2019.2917071 10.1109/TWC.2020.3001736 10.1109/comst.2018.2828120 10.1109/MWC.2015.7143335 10.1109/TWC.2017.2698032 10.1109/TCCN.2018.2809722 10.1109/LCOMM.2023.3292816 10.1109/TSP.2018.2812733 10.1002/9781119307600.ch1 10.1109/MWC.009.2300501 10.1561/0100000088 10.1109/MCOM.2017.1700410 10.1109/TMC.2012.231 10.1109/TVT.2015.2511924 10.1109/TII.2021.3139349 10.1109/ACCESS.2024.3447471 10.1109/COMST.2019.2916583 10.1109/ACCESS.2021.3090855 10.1109/JIOT.2022.3189445 10.1109/LWC.2020.3035898 10.1109/TWC.2021.3138733 10.1109/MWC.013.2300259 10.1038/nature14236 10.1109/TWC.2014.2360202 10.1109/MCOM.2017.1600271 10.1109/JCN.2016.000082 10.1109/TWC.2016.2646360 10.1109/ACCESS.2017.2669403 10.1109/TVT.2020.3046747 10.1109/lcomm.2020.3042490 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3521590 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 196623 |
| ExternalDocumentID | oai_doaj_org_article_7cfea9b8359e475a9b300d06400edf38 10_1109_ACCESS_2024_3521590 10812745 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Project of Hubei Three Gorges Polytechnic grantid: 2024ZX01 – fundername: 2023 Scientific Research Plan Guiding Project of Hubei Provincial Department of Education grantid: B2023548 funderid: 10.13039/100012554 – fundername: Research Platform Construction Project of Hubei Three Gorges Polytechnic grantid: 2024KYPT0201 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-be08b16fce880856ab8324229f4fd5f9e4405ec3ae6b698c0b7fc47698d6921b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386558700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:28 EDT 2025 Mon Jun 30 13:23:39 EDT 2025 Tue Nov 18 22:15:43 EST 2025 Sat Nov 29 04:27:16 EST 2025 Wed Aug 27 02:02:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-be08b16fce880856ab8324229f4fd5f9e4405ec3ae6b698c0b7fc47698d6921b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0009-3845-2401 0000-0001-9704-3282 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10812745 |
| PQID | 3150557123 |
| PQPubID | 4845423 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10812745 doaj_primary_oai_doaj_org_article_7cfea9b8359e475a9b300d06400edf38 crossref_citationtrail_10_1109_ACCESS_2024_3521590 proquest_journals_3150557123 crossref_primary_10_1109_ACCESS_2024_3521590 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 Mnih (ref24) 2013 ref15 ref14 ref53 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 Liu (ref39) 2024 ref37 ref36 ref31 ref30 ref33 ref32 Rockafellar (ref45) 1997 ref2 ref1 ref38 ref23 (ref52) 2024 ref26 ref25 Achiam (ref49) 2017 ref20 ref22 ref21 Liang (ref48) 2018 ref28 ref27 ref29 |
| References_xml | – ident: ref15 doi: 10.1109/TNET.2022.3152150 – ident: ref25 doi: 10.1109/TVT.2019.2897134 – ident: ref50 doi: 10.1109/LCOMM.2014.2351400 – ident: ref7 doi: 10.1109/TIT.2004.838089 – ident: ref41 doi: 10.1007/978-94-009-0035-6 – ident: ref27 doi: 10.1109/TVT.2023.3276647 – ident: ref11 doi: 10.1109/TGCN.2020.3036026 – ident: ref51 doi: 10.3390/app7050491 – ident: ref17 doi: 10.1109/JSAC.2023.3288261 – ident: ref32 doi: 10.1109/JSAC.2019.2933973 – ident: ref35 doi: 10.1109/LWC.2022.3170998 – volume-title: NR; User Equipment (UE) Radio Transmission and Reception; Part 1: Range 1 Standalone, v18.7.0 year: 2024 ident: ref52 – ident: ref23 doi: 10.1016/j.comnet.2017.06.002 – ident: ref3 doi: 10.1109/mwc.2014.6757899 – ident: ref36 doi: 10.1109/LCOMM.2020.2984430 – ident: ref4 doi: 10.1109/comst.2014.2319555 – year: 2018 ident: ref48 article-title: Accelerated primal-dual policy optimization for safe reinforcement learning publication-title: arXiv:1802.06480 – ident: ref43 doi: 10.1109/LWC.2018.2864644 – ident: ref14 doi: 10.1109/TVT.2023.3295821 – ident: ref13 doi: 10.1109/TNSE.2019.2917071 – ident: ref33 doi: 10.1109/TWC.2020.3001736 – ident: ref2 doi: 10.1109/comst.2018.2828120 – ident: ref6 doi: 10.1109/MWC.2015.7143335 – ident: ref8 doi: 10.1109/TWC.2017.2698032 – ident: ref30 doi: 10.1109/TCCN.2018.2809722 – ident: ref38 doi: 10.1109/LCOMM.2023.3292816 – ident: ref42 doi: 10.1109/TSP.2018.2812733 – ident: ref1 doi: 10.1002/9781119307600.ch1 – year: 2013 ident: ref24 article-title: Playing Atari with deep reinforcement learning publication-title: arXiv:1312.5602 – ident: ref19 doi: 10.1109/MWC.009.2300501 – ident: ref40 doi: 10.1561/0100000088 – ident: ref18 doi: 10.1109/MCOM.2017.1700410 – ident: ref12 doi: 10.1109/TMC.2012.231 – ident: ref21 doi: 10.1109/TVT.2015.2511924 – volume-title: Convex Analysis year: 1997 ident: ref45 – ident: ref31 doi: 10.1109/TII.2021.3139349 – ident: ref34 doi: 10.1109/ACCESS.2024.3447471 – ident: ref29 doi: 10.1109/COMST.2019.2916583 – ident: ref46 doi: 10.1109/ACCESS.2021.3090855 – ident: ref37 doi: 10.1109/JIOT.2022.3189445 – ident: ref26 doi: 10.1109/LWC.2020.3035898 – ident: ref44 doi: 10.1109/TWC.2021.3138733 – ident: ref16 doi: 10.1109/MWC.013.2300259 – ident: ref28 doi: 10.1038/nature14236 – year: 2017 ident: ref49 article-title: Constrained policy optimization publication-title: arXiv:1705.10528 – ident: ref5 doi: 10.1109/TWC.2014.2360202 – ident: ref20 doi: 10.1109/MCOM.2017.1600271 – year: 2024 ident: ref39 article-title: Multi-user MISO with stacked intelligent metasurfaces: A DRL-based sum-rate optimization approach publication-title: arXiv:2408.04837 – ident: ref10 doi: 10.1109/JCN.2016.000082 – ident: ref22 doi: 10.1109/TWC.2016.2646360 – ident: ref47 doi: 10.1109/ACCESS.2017.2669403 – ident: ref9 doi: 10.1109/TVT.2020.3046747 – ident: ref53 doi: 10.1109/lcomm.2020.3042490 |
| SSID | ssj0000816957 |
| Score | 2.3263736 |
| Snippet | Device-to-device (D2D) technology enables direct communication between adjacent devices within cellular networks. Due to its high data rate, low latency, and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 196609 |
| SubjectTerms | Algorithms Cellular communication Cellular networks Clean energy Communication Cooperative communication Cooperative control Copper Deep learning deep reinforcement learning Device-to-device communication Distributed processing Energy efficiency Graph matching Graph theory Heuristic algorithms Interference Mathematical programming Mixed integer Network latency Optimization Power control Power management Relays Resource allocation Resource management Signaling Spectrum allocation Sustainable development Wireless communication |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-yMGjq9k8Nsmxtoon8aDgLWxeIkhbbBX01zvJplIR9OIthCzZzEwy38xuvkHoRIUEWuumotyxilPrq9bXrKJKac-t4NHbXGxC3tyohwd9u1DqK_0T1tEDd4I7ly6GVlsACjpwKaDJCPHp-xMJPrJ8zZdIvRBM5TNY1Y0WstAM1USf9wcDWBEEhJSfAegAL06-uaLM2F9KrPw4l7OzudpA6wUl4n73dptoKYy20NoCd-A2-rh-T5etcEnPPn0EXw0TC24qYBU8nuflcf85-askf3wBLstjaAxDmMCIzJrqcoIQF6LVRwxdeDAeT0LHCY6HdIi_XSOZ7qD7q8u7wXVVCilUDsK3WWUDUbZuoguwW5VoWhAnuGaqI6hCRBAswLbgWBsa22jliJXRcQlN32haW7aLlkfjUdhDGE4IqlrumWgY9zFVn2xtbL2g2tO2Jj1E5zI1rrCMp2IXzyZHG0SbThEmKcIURfTQ6ddDk45k4_fhF0lZX0MTQ3buALsxxW7MX3bTQztJ1QvzAdSRXPTQ4Vz3pmznqWEAm4WQ4OX3_2PuA7Sa1tNlcg7R8uzlNRyhFfc2e5q-HGdL_gSSxfUz priority: 102 providerName: Directory of Open Access Journals |
| Title | Hybrid Centralized-Distributed Resource Allocation Based on Deep Reinforcement Learning for Cooperative D2D Communications |
| URI | https://ieeexplore.ieee.org/document/10812745 https://www.proquest.com/docview/3150557123 https://doaj.org/article/7cfea9b8359e475a9b300d06400edf38 |
| Volume | 12 |
| WOSCitedRecordID | wos001386558700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFA5VemgPaluLW63k0GPHZvJjkhzXXcWL0kML3sIkeSmC7C7uWqgH__a-ZLKLUlroZXiEhJnw5eW9vMz7HiGfDGSnte0aLoNoJPex6WMrGm6MjdIrmaIvxSb01ZW5vrZfa7J6yYUBgPLzGZxksdzlx3m4z6Ey1HA0R1qqLbKldTcka20CKrmChFW6Mgu1zH4ZTyY4CTwDcnmCfgYabvbM-hSS_lpV5Y-tuNiX893__LI9slMdSToekH9DXsDsLXn9hF7wHXm4-JXzsWiN4N48QGymmSg317iCSNehezq-zSYtQ0RP0apFisIUYIE9CrFqKDFEWrlYf1BsopP5fAEDbTid8il9lmmy3Cffz8--TS6aWmuhCXjCWzUemPFtlwKgQhvV9d5kV4vbhGipZEGiZwdB9ND5zprAvE5BahRjZ3nrxXuyPZvP4IBQ3ES46WUUqhMyplygsvepj4rbyPuWjQhfY-BCJSLP9TBuXTmQMOsG4FwGzlXgRuTzZtBi4OH4d_fTDO6maybRLg2Imqs66XRI0FucqMLpaYWiYCzmq00GMQkzIvsZ6SfvG0AekaP1WnFV45dOoGetlEZH4MNfhh2SV_kTh_jNEdle3d3DR_Iy_FzdLO-OSzAAn5ePZ8dlYf8Gd-L01A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEA5aBfWh_qp4tmoefHRrNpvsJo_Xu5YT6-FDhb6FTTJbCuXu6F2F9q_vTDZ3tIhC34aQsAlfJjOZ7HzD2BcD5LSWdSFVqAolfSzaWFaFNMZG5bXqok_FJprp1Jye2l85WT3lwgBA-vkM9klMb_lxHq4oVIYajuaoUfoxe0Kls3K61iakQjUkrG4yt1Ap7LfhaITLwFugVPvoaaDpFvfsT6Lpz3VV_jqMk4U5evnAub1i29mV5MMe-9fsEczesBd3CAbfspvJNWVk8RzDPb-BWIyJKpeqXEHk6-A9H16QUSOQ-AHatchRGAMssEeiVg0pisgzG-sZxyY-ms8X0BOH87Ec83u5Jssd9vvo8GQ0KXK1hSLgHW9VeBDGl3UXAFXa6Lr1hpwtaTvES3cWFPp2EKoWal9bE4RvuqAaFGNtZemrd2xrNp_Be8bxGJGmVbHSdaViRyUqW9-1UUsbZVuKAZNrDFzIVORUEePCpSuJsK4HzhFwLgM3YF83gxY9E8f_ux8QuJuuRKOdGhA1l7XSNaGD1uJCNS6v0ShWQkR63BQQu8oM2A4hfed7PcgDtrfeKy7r_NJV6Ftr3aAr8OEfwz6zZ5OTn8fu-Pv0xy57TtPtozl7bGt1eQUf2dPwZ3W-vPyUNvYt0Jz19w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Centralized-Distributed+Resource+Allocation+Based+on+Deep+Reinforcement+Learning+for+Cooperative+D2D+Communications&rft.jtitle=IEEE+access&rft.au=Yu%2C+Yang&rft.au=Tang%2C+Xiaoqing&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=196609&rft.epage=196623&rft_id=info:doi/10.1109%2FACCESS.2024.3521590&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3521590 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |