Hybrid Centralized-Distributed Resource Allocation Based on Deep Reinforcement Learning for Cooperative D2D Communications

Device-to-device (D2D) technology enables direct communication between adjacent devices within cellular networks. Due to its high data rate, low latency, and performance improvement in spectrum and energy efficiency, it has been widely investigated and applied as a critical technology in 5G New Radi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 12; S. 196609 - 196623
Hauptverfasser: Yu, Yang, Tang, Xiaoqing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Device-to-device (D2D) technology enables direct communication between adjacent devices within cellular networks. Due to its high data rate, low latency, and performance improvement in spectrum and energy efficiency, it has been widely investigated and applied as a critical technology in 5G New Radio (NR). Cooperative D2D communication can achieve a win-win situation between cellular users (CUs) and D2D users (DUs) through cooperative relaying techniques. In addition to conventional overlay and underlay D2D communications, it has attracted extensive attention from academic and industrial circles in the past decade. This paper delves into optimizing joint spectrum allocation, power control, and link-matching between multiple CUs and DUs for cooperative D2D communications. Weighted sum energy efficiency (WSEE) is used as the performance metric to address the challenges of green communication and sustainable development. This mixed-integer fractional programming (MIFP) problem can be decomposed into: 1. a classic weighted bipartite graph matching; 2. a series of nonconvex spectrum allocation and power control problems between potentially matched cellular and D2D link pairs. To address this issue, we propose a hybrid centralized-distributed scheme based on deep reinforcement learning (DRL) and the Kuhn-Munkres (KM) algorithm. Leveraging the former, the CUs and DUs autonomously optimize spectrum allocation and power control by only utilizing local information. Then, the base station (BS) determines the link matching utilizing the latter. Simulation results reveal that it achieves more than 96% WSEE of the optimal scheme and 98% WSEE of the centralized DRL-based scheme. It significantly enhances the network convergence speed with low centralized computational overheads. In addition, we also propose and utilize cooperative link sets for corresponding D2D links to accelerate the proposed scheme and reduce signaling exchange further: an average of about 85% WSEE of the optimal scheme is achieved, while more than 50% of signaling and distributed computing overheads are reduced.
AbstractList Device-to-device (D2D) technology enables direct communication between adjacent devices within cellular networks. Due to its high data rate, low latency, and performance improvement in spectrum and energy efficiency, it has been widely investigated and applied as a critical technology in 5G New Radio (NR). Cooperative D2D communication can achieve a win-win situation between cellular users (CUs) and D2D users (DUs) through cooperative relaying techniques. In addition to conventional overlay and underlay D2D communications, it has attracted extensive attention from academic and industrial circles in the past decade. This paper delves into optimizing joint spectrum allocation, power control, and link-matching between multiple CUs and DUs for cooperative D2D communications. Weighted sum energy efficiency (WSEE) is used as the performance metric to address the challenges of green communication and sustainable development. This mixed-integer fractional programming (MIFP) problem can be decomposed into: 1. a classic weighted bipartite graph matching; 2. a series of nonconvex spectrum allocation and power control problems between potentially matched cellular and D2D link pairs. To address this issue, we propose a hybrid centralized-distributed scheme based on deep reinforcement learning (DRL) and the Kuhn-Munkres (KM) algorithm. Leveraging the former, the CUs and DUs autonomously optimize spectrum allocation and power control by only utilizing local information. Then, the base station (BS) determines the link matching utilizing the latter. Simulation results reveal that it achieves more than 96% WSEE of the optimal scheme and 98% WSEE of the centralized DRL-based scheme. It significantly enhances the network convergence speed with low centralized computational overheads. In addition, we also propose and utilize cooperative link sets for corresponding D2D links to accelerate the proposed scheme and reduce signaling exchange further: an average of about 85% WSEE of the optimal scheme is achieved, while more than 50% of signaling and distributed computing overheads are reduced.
Author Tang, Xiaoqing
Yu, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0009-0009-3845-2401
  surname: Yu
  fullname: Yu, Yang
  email: yuyang@tgc.edu.cn
  organization: Electronic Information School, Hubei Three Gorges Polytechnic, Yichang, China
– sequence: 2
  givenname: Xiaoqing
  orcidid: 0000-0001-9704-3282
  surname: Tang
  fullname: Tang, Xiaoqing
  organization: School of Artificial Intelligence, Hubei University, Wuhan, China
BookMark eNp9UU1r3DAUNCWBpml-QXsw9OyNPm3puPWmSWCh0KRnIctPQYtX2kreQvLr-xKnEHqoLho9zYye3nyoTmKKUFWfKFlRSvTluu-v7u5WjDCx4pJRqcm76ozRVjdc8vbkDX5fXZSyI7gUlmR3Vj3dPA45jHUPcc52Ck8wNptQ5hyG4wxj_QNKOmYH9XqakrNzSLH-agveINgAHJARok9I2aNFvQWbY4gPNZbqPqUDZBT9hnrDNnje748xLDblY3Xq7VTg4nU_r35-u7rvb5rt9-vbfr1tnCB6bgYgaqCtd6AUUbK1g-JMMKa98KP0GoQgEhy30A6tVo4MnXeiQzi2mtGBn1e3i--Y7M4cctjb_GiSDealkPKDsXkObgLTOQ9W4wMSbTuJkBMyklYQAqPnCr2-LF6HnH4docxmh-OJ2L7hVBIpO8o4svTCcjmVksEbF-aXT-OMw2QoMc_JmSU585yceU0Otfwf7d-O_6_6vKgCALxRKMo6IfkfDSSnsg
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_app15084290
crossref_primary_10_1038_s41598_025_08290_x
Cites_doi 10.1109/TNET.2022.3152150
10.1109/TVT.2019.2897134
10.1109/LCOMM.2014.2351400
10.1109/TIT.2004.838089
10.1007/978-94-009-0035-6
10.1109/TVT.2023.3276647
10.1109/TGCN.2020.3036026
10.3390/app7050491
10.1109/JSAC.2023.3288261
10.1109/JSAC.2019.2933973
10.1109/LWC.2022.3170998
10.1016/j.comnet.2017.06.002
10.1109/mwc.2014.6757899
10.1109/LCOMM.2020.2984430
10.1109/comst.2014.2319555
10.1109/LWC.2018.2864644
10.1109/TVT.2023.3295821
10.1109/TNSE.2019.2917071
10.1109/TWC.2020.3001736
10.1109/comst.2018.2828120
10.1109/MWC.2015.7143335
10.1109/TWC.2017.2698032
10.1109/TCCN.2018.2809722
10.1109/LCOMM.2023.3292816
10.1109/TSP.2018.2812733
10.1002/9781119307600.ch1
10.1109/MWC.009.2300501
10.1561/0100000088
10.1109/MCOM.2017.1700410
10.1109/TMC.2012.231
10.1109/TVT.2015.2511924
10.1109/TII.2021.3139349
10.1109/ACCESS.2024.3447471
10.1109/COMST.2019.2916583
10.1109/ACCESS.2021.3090855
10.1109/JIOT.2022.3189445
10.1109/LWC.2020.3035898
10.1109/TWC.2021.3138733
10.1109/MWC.013.2300259
10.1038/nature14236
10.1109/TWC.2014.2360202
10.1109/MCOM.2017.1600271
10.1109/JCN.2016.000082
10.1109/TWC.2016.2646360
10.1109/ACCESS.2017.2669403
10.1109/TVT.2020.3046747
10.1109/lcomm.2020.3042490
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3521590
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 196623
ExternalDocumentID oai_doaj_org_article_7cfea9b8359e475a9b300d06400edf38
10_1109_ACCESS_2024_3521590
10812745
Genre orig-research
GrantInformation_xml – fundername: Research Project of Hubei Three Gorges Polytechnic
  grantid: 2024ZX01
– fundername: 2023 Scientific Research Plan Guiding Project of Hubei Provincial Department of Education
  grantid: B2023548
  funderid: 10.13039/100012554
– fundername: Research Platform Construction Project of Hubei Three Gorges Polytechnic
  grantid: 2024KYPT0201
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-be08b16fce880856ab8324229f4fd5f9e4405ec3ae6b698c0b7fc47698d6921b3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001386558700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:53:28 EDT 2025
Mon Jun 30 13:23:39 EDT 2025
Tue Nov 18 22:15:43 EST 2025
Sat Nov 29 04:27:16 EST 2025
Wed Aug 27 02:02:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-be08b16fce880856ab8324229f4fd5f9e4405ec3ae6b698c0b7fc47698d6921b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-3845-2401
0000-0001-9704-3282
OpenAccessLink https://ieeexplore.ieee.org/document/10812745
PQID 3150557123
PQPubID 4845423
PageCount 15
ParticipantIDs ieee_primary_10812745
doaj_primary_oai_doaj_org_article_7cfea9b8359e475a9b300d06400edf38
crossref_citationtrail_10_1109_ACCESS_2024_3521590
proquest_journals_3150557123
crossref_primary_10_1109_ACCESS_2024_3521590
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Mnih (ref24) 2013
ref15
ref14
ref53
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
Liu (ref39) 2024
ref37
ref36
ref31
ref30
ref33
ref32
Rockafellar (ref45) 1997
ref2
ref1
ref38
ref23
(ref52) 2024
ref26
ref25
Achiam (ref49) 2017
ref20
ref22
ref21
Liang (ref48) 2018
ref28
ref27
ref29
References_xml – ident: ref15
  doi: 10.1109/TNET.2022.3152150
– ident: ref25
  doi: 10.1109/TVT.2019.2897134
– ident: ref50
  doi: 10.1109/LCOMM.2014.2351400
– ident: ref7
  doi: 10.1109/TIT.2004.838089
– ident: ref41
  doi: 10.1007/978-94-009-0035-6
– ident: ref27
  doi: 10.1109/TVT.2023.3276647
– ident: ref11
  doi: 10.1109/TGCN.2020.3036026
– ident: ref51
  doi: 10.3390/app7050491
– ident: ref17
  doi: 10.1109/JSAC.2023.3288261
– ident: ref32
  doi: 10.1109/JSAC.2019.2933973
– ident: ref35
  doi: 10.1109/LWC.2022.3170998
– volume-title: NR; User Equipment (UE) Radio Transmission and Reception; Part 1: Range 1 Standalone, v18.7.0
  year: 2024
  ident: ref52
– ident: ref23
  doi: 10.1016/j.comnet.2017.06.002
– ident: ref3
  doi: 10.1109/mwc.2014.6757899
– ident: ref36
  doi: 10.1109/LCOMM.2020.2984430
– ident: ref4
  doi: 10.1109/comst.2014.2319555
– year: 2018
  ident: ref48
  article-title: Accelerated primal-dual policy optimization for safe reinforcement learning
  publication-title: arXiv:1802.06480
– ident: ref43
  doi: 10.1109/LWC.2018.2864644
– ident: ref14
  doi: 10.1109/TVT.2023.3295821
– ident: ref13
  doi: 10.1109/TNSE.2019.2917071
– ident: ref33
  doi: 10.1109/TWC.2020.3001736
– ident: ref2
  doi: 10.1109/comst.2018.2828120
– ident: ref6
  doi: 10.1109/MWC.2015.7143335
– ident: ref8
  doi: 10.1109/TWC.2017.2698032
– ident: ref30
  doi: 10.1109/TCCN.2018.2809722
– ident: ref38
  doi: 10.1109/LCOMM.2023.3292816
– ident: ref42
  doi: 10.1109/TSP.2018.2812733
– ident: ref1
  doi: 10.1002/9781119307600.ch1
– year: 2013
  ident: ref24
  article-title: Playing Atari with deep reinforcement learning
  publication-title: arXiv:1312.5602
– ident: ref19
  doi: 10.1109/MWC.009.2300501
– ident: ref40
  doi: 10.1561/0100000088
– ident: ref18
  doi: 10.1109/MCOM.2017.1700410
– ident: ref12
  doi: 10.1109/TMC.2012.231
– ident: ref21
  doi: 10.1109/TVT.2015.2511924
– volume-title: Convex Analysis
  year: 1997
  ident: ref45
– ident: ref31
  doi: 10.1109/TII.2021.3139349
– ident: ref34
  doi: 10.1109/ACCESS.2024.3447471
– ident: ref29
  doi: 10.1109/COMST.2019.2916583
– ident: ref46
  doi: 10.1109/ACCESS.2021.3090855
– ident: ref37
  doi: 10.1109/JIOT.2022.3189445
– ident: ref26
  doi: 10.1109/LWC.2020.3035898
– ident: ref44
  doi: 10.1109/TWC.2021.3138733
– ident: ref16
  doi: 10.1109/MWC.013.2300259
– ident: ref28
  doi: 10.1038/nature14236
– year: 2017
  ident: ref49
  article-title: Constrained policy optimization
  publication-title: arXiv:1705.10528
– ident: ref5
  doi: 10.1109/TWC.2014.2360202
– ident: ref20
  doi: 10.1109/MCOM.2017.1600271
– year: 2024
  ident: ref39
  article-title: Multi-user MISO with stacked intelligent metasurfaces: A DRL-based sum-rate optimization approach
  publication-title: arXiv:2408.04837
– ident: ref10
  doi: 10.1109/JCN.2016.000082
– ident: ref22
  doi: 10.1109/TWC.2016.2646360
– ident: ref47
  doi: 10.1109/ACCESS.2017.2669403
– ident: ref9
  doi: 10.1109/TVT.2020.3046747
– ident: ref53
  doi: 10.1109/lcomm.2020.3042490
SSID ssj0000816957
Score 2.3263736
Snippet Device-to-device (D2D) technology enables direct communication between adjacent devices within cellular networks. Due to its high data rate, low latency, and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 196609
SubjectTerms Algorithms
Cellular communication
Cellular networks
Clean energy
Communication
Cooperative communication
Cooperative control
Copper
Deep learning
deep reinforcement learning
Device-to-device communication
Distributed processing
Energy efficiency
Graph matching
Graph theory
Heuristic algorithms
Interference
Mathematical programming
Mixed integer
Network latency
Optimization
Power control
Power management
Relays
Resource allocation
Resource management
Signaling
Spectrum allocation
Sustainable development
Wireless communication
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-yMGjq9k8Nsmxtoon8aDgLWxeIkhbbBX01zvJplIR9OIthCzZzEwy38xuvkHoRIUEWuumotyxilPrq9bXrKJKac-t4NHbXGxC3tyohwd9u1DqK_0T1tEDd4I7ly6GVlsACjpwKaDJCPHp-xMJPrJ8zZdIvRBM5TNY1Y0WstAM1USf9wcDWBEEhJSfAegAL06-uaLM2F9KrPw4l7OzudpA6wUl4n73dptoKYy20NoCd-A2-rh-T5etcEnPPn0EXw0TC24qYBU8nuflcf85-askf3wBLstjaAxDmMCIzJrqcoIQF6LVRwxdeDAeT0LHCY6HdIi_XSOZ7qD7q8u7wXVVCilUDsK3WWUDUbZuoguwW5VoWhAnuGaqI6hCRBAswLbgWBsa22jliJXRcQlN32haW7aLlkfjUdhDGE4IqlrumWgY9zFVn2xtbL2g2tO2Jj1E5zI1rrCMp2IXzyZHG0SbThEmKcIURfTQ6ddDk45k4_fhF0lZX0MTQ3buALsxxW7MX3bTQztJ1QvzAdSRXPTQ4Vz3pmznqWEAm4WQ4OX3_2PuA7Sa1tNlcg7R8uzlNRyhFfc2e5q-HGdL_gSSxfUz
  priority: 102
  providerName: Directory of Open Access Journals
Title Hybrid Centralized-Distributed Resource Allocation Based on Deep Reinforcement Learning for Cooperative D2D Communications
URI https://ieeexplore.ieee.org/document/10812745
https://www.proquest.com/docview/3150557123
https://doaj.org/article/7cfea9b8359e475a9b300d06400edf38
Volume 12
WOSCitedRecordID wos001386558700033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PSxwxFA5VemgPaluLW63k0GPHZvJjkhzXXcWL0kML3sIkeSmC7C7uWqgH__a-ZLKLUlroZXiEhJnw5eW9vMz7HiGfDGSnte0aLoNoJPex6WMrGm6MjdIrmaIvxSb01ZW5vrZfa7J6yYUBgPLzGZxksdzlx3m4z6Ey1HA0R1qqLbKldTcka20CKrmChFW6Mgu1zH4ZTyY4CTwDcnmCfgYabvbM-hSS_lpV5Y-tuNiX893__LI9slMdSToekH9DXsDsLXn9hF7wHXm4-JXzsWiN4N48QGymmSg317iCSNehezq-zSYtQ0RP0apFisIUYIE9CrFqKDFEWrlYf1BsopP5fAEDbTid8il9lmmy3Cffz8--TS6aWmuhCXjCWzUemPFtlwKgQhvV9d5kV4vbhGipZEGiZwdB9ND5zprAvE5BahRjZ3nrxXuyPZvP4IBQ3ES46WUUqhMyplygsvepj4rbyPuWjQhfY-BCJSLP9TBuXTmQMOsG4FwGzlXgRuTzZtBi4OH4d_fTDO6maybRLg2Imqs66XRI0FucqMLpaYWiYCzmq00GMQkzIvsZ6SfvG0AekaP1WnFV45dOoGetlEZH4MNfhh2SV_kTh_jNEdle3d3DR_Iy_FzdLO-OSzAAn5ePZ8dlYf8Gd-L01A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEA5aBfWh_qp4tmoefHRrNpvsJo_Xu5YT6-FDhb6FTTJbCuXu6F2F9q_vTDZ3tIhC34aQsAlfJjOZ7HzD2BcD5LSWdSFVqAolfSzaWFaFNMZG5bXqok_FJprp1Jye2l85WT3lwgBA-vkM9klMb_lxHq4oVIYajuaoUfoxe0Kls3K61iakQjUkrG4yt1Ap7LfhaITLwFugVPvoaaDpFvfsT6Lpz3VV_jqMk4U5evnAub1i29mV5MMe-9fsEczesBd3CAbfspvJNWVk8RzDPb-BWIyJKpeqXEHk6-A9H16QUSOQ-AHatchRGAMssEeiVg0pisgzG-sZxyY-ms8X0BOH87Ec83u5Jssd9vvo8GQ0KXK1hSLgHW9VeBDGl3UXAFXa6Lr1hpwtaTvES3cWFPp2EKoWal9bE4RvuqAaFGNtZemrd2xrNp_Be8bxGJGmVbHSdaViRyUqW9-1UUsbZVuKAZNrDFzIVORUEePCpSuJsK4HzhFwLgM3YF83gxY9E8f_ux8QuJuuRKOdGhA1l7XSNaGD1uJCNS6v0ShWQkR63BQQu8oM2A4hfed7PcgDtrfeKy7r_NJV6Ftr3aAr8OEfwz6zZ5OTn8fu-Pv0xy57TtPtozl7bGt1eQUf2dPwZ3W-vPyUNvYt0Jz19w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Centralized-Distributed+Resource+Allocation+Based+on+Deep+Reinforcement+Learning+for+Cooperative+D2D+Communications&rft.jtitle=IEEE+access&rft.au=Yu%2C+Yang&rft.au=Tang%2C+Xiaoqing&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=196609&rft.epage=196623&rft_id=info:doi/10.1109%2FACCESS.2024.3521590&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3521590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon