Two-Phase Multitask Autoencoder-Based Deep Learning Framework for Subject-Independent EEG Motor Imagery Classification

Electroencephalography (EEG)-based motor imagery (MI) has potential applications in diverse fields including rehabilitation, drone control, and virtual reality. However, its practical use is hindered by low generalization performance in decoding brain signals, primarily due to the subject-dependency...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 12; s. 77356 - 77367
Hlavní autori: Jin, Changgyun, Song, Andrew H., Kim, Seong-Eun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electroencephalography (EEG)-based motor imagery (MI) has potential applications in diverse fields including rehabilitation, drone control, and virtual reality. However, its practical use is hindered by low generalization performance in decoding brain signals, primarily due to the subject-dependency of EEG signals. Although multitask autoencoder (MTAE) techniques have recently been used to mitigate this issue, these approaches encounter an imbalance problem between loss functions with different objectives, particularly between reconstruction loss and cross-entropy. To address this, we propose a novel two-phase multitask autoencoder (2PMTAE) framework that not only rectifies the imbalance issue but also ensures stable training of the MTAE. Our framework comprises two phases: first, the generation of a class-specific target signal, and second, the calculation of the reconstruction loss based on the generated target signals, effectively aligning the objectives of the two loss functions. In subject-independent experiments, our proposed method significantly outperformed state-of-the-art techniques, achieving accuracies of 71.68% and 75.78% on the BCI competition IV-2a and OpenBMI datasets, respectively. We also show that 2PMTAE is a generic framework for MI applications that can accept any encoder the practitioner wishes to employ. These results highlight the efficacy of our approach in enhancing the generalization performance of MI-EEG decoding.
AbstractList Electroencephalography (EEG)-based motor imagery (MI) has potential applications in diverse fields including rehabilitation, drone control, and virtual reality. However, its practical use is hindered by low generalization performance in decoding brain signals, primarily due to the subject-dependency of EEG signals. Although multitask autoencoder (MTAE) techniques have recently been used to mitigate this issue, these approaches encounter an imbalance problem between loss functions with different objectives, particularly between reconstruction loss and cross-entropy. To address this, we propose a novel two-phase multitask autoencoder (2PMTAE) framework that not only rectifies the imbalance issue but also ensures stable training of the MTAE. Our framework comprises two phases: first, the generation of a class-specific target signal, and second, the calculation of the reconstruction loss based on the generated target signals, effectively aligning the objectives of the two loss functions. In subject-independent experiments, our proposed method significantly outperformed state-of-the-art techniques, achieving accuracies of 71.68% and 75.78% on the BCI competition IV-2a and OpenBMI datasets, respectively. We also show that 2PMTAE is a generic framework for MI applications that can accept any encoder the practitioner wishes to employ. These results highlight the efficacy of our approach in enhancing the generalization performance of MI-EEG decoding.
Author Song, Andrew H.
Kim, Seong-Eun
Jin, Changgyun
Author_xml – sequence: 1
  givenname: Changgyun
  orcidid: 0009-0001-0558-8427
  surname: Jin
  fullname: Jin, Changgyun
  organization: Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
– sequence: 2
  givenname: Andrew H.
  orcidid: 0000-0001-9356-9156
  surname: Song
  fullname: Song, Andrew H.
  organization: Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 3
  givenname: Seong-Eun
  orcidid: 0000-0002-4518-4208
  surname: Kim
  fullname: Kim, Seong-Eun
  email: sekim@seoultech.ac.kr
  organization: Department of Applied Artificial Intelligence, Seoul National University of Science and Technology, Seoul, South Korea
BookMark eNp9kV9v2yAUxdHUSuvafoLtAWnPzrD5Y_yYeWkXKdUmpXtGGK4zUsdkgFf124_UnVTtYTwAuvf-jg6cd-hs9CMg9L4ki7Ikzadl266220VFKragjIiaijfooipFU1BOxdmr-1t0HeOe5CVzidcX6Pf9oy--_9QR8N00JJd0fMDLKXkYjbcQis-5ZfEXgCPegA6jG3f4JugDPPrwgHsf8Hbq9mBSsR4tHCFvY8Kr1S2-8yl31we9g_CE20HH6HpndHJ-vELnvR4iXL-cl-jHzeq-_Vpsvt2u2-WmMIw0qeis5oR2ggsrmRSsroWQQte9oZ3kwFndGUnKqqtNA53thCFN3XSUcwtWNoZeovWsa73eq2NwBx2elNdOPRd82CkdkjMDKKgqJjmzUljBaFNLwiVUjBIjaM-rKmt9nLWOwf-aICa191MYs31FSfZWUvE81cxTJvgYA_TK5E89vTkF7QZVEnVKTc2pqVNq6iW1zNJ_2L-O_099mCkHAK8IzggXnP4BPMKksg
CODEN IAECCG
CitedBy_id crossref_primary_10_1080_03091902_2025_2463577
crossref_primary_10_1016_j_rser_2025_116188
crossref_primary_10_1007_s00521_025_10979_z
Cites_doi 10.1109/JBHI.2023.3239053
10.1007/978-3-319-95918-4_9
10.1109/JBHI.2022.3224506
10.1109/TNSRE.2017.2757519
10.3389/fnhum.2022.1068165
10.1109/TNSRE.2022.3191869
10.1109/JBHI.2022.3198688
10.1109/JBHI.2023.3292452
10.1109/TII.2022.3227736
10.1088/1741-2552/ab0ab5
10.3389/fnagi.2016.00273
10.1109/TNNLS.2019.2946869
10.1007/s00521-021-06352-5
10.1109/TII.2022.3197419
10.1109/TII.2021.3132340
10.1109/BHI56158.2022.9926806
10.1093/gigascience/giz002
10.1109/86.895946
10.1109/TCDS.2023.3314351
10.1109/TBME.2021.3137184
10.1109/MSP.2008.4408441
10.1016/j.bspc.2021.102826
10.1109/JBHI.2023.3285268
10.1109/TNSRE.2023.3259730
10.1109/TIM.2021.3051996
10.1126/science.abd0380
10.1109/ACCESS.2022.3161489
10.3389/fnins.2012.00039
10.1007/s11042-021-10637-1
10.1109/TNSRE.2016.2646763
10.1109/TNNLS.2021.3084827
10.3390/brainsci13071109
10.1109/JBHI.2023.3243698
10.1038/s41586-021-03506-2
10.1109/ACCESS.2019.2919143
10.1109/TBME.2016.2631620
10.1002/hbm.23730
10.21236/ada164453
10.1109/TNSRE.2022.3149899
10.1016/j.patcog.2017.10.013
10.1109/TII.2022.3146552
10.1109/TNSRE.2018.2839116
10.1109/SMC42975.2020.9283028
10.1109/TCYB.2021.3073210
10.1126/scirobotics.aaw6844
10.1038/nature04968
10.1073/pnas.1817207116
10.1109/TNNLS.2018.2789927
10.1109/JBHI.2023.3242090
10.1109/JBHI.2023.3238421
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3406736
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 77367
ExternalDocumentID oai_doaj_org_article_e224854d86d643978058e2430c63f522
10_1109_ACCESS_2024_3406736
10540565
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea funded by the Korean Government
  grantid: RS-2023-002084912; 2020M3C1B8081320
  funderid: 10.13039/501100003725
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-bda503b656d84864776686a7fc3b85e547bc8012b7c9ebdb6c0979b355ded89c3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242940700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:47:41 EDT 2025
Mon Jun 30 07:23:59 EDT 2025
Tue Nov 18 22:11:50 EST 2025
Sat Nov 29 06:25:46 EST 2025
Wed Aug 27 02:06:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-bda503b656d84864776686a7fc3b85e547bc8012b7c9ebdb6c0979b355ded89c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-0558-8427
0000-0002-4518-4208
0000-0001-9356-9156
OpenAccessLink https://ieeexplore.ieee.org/document/10540565
PQID 3064713622
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3406736
proquest_journals_3064713622
ieee_primary_10540565
doaj_primary_oai_doaj_org_article_e224854d86d643978058e2430c63f522
crossref_citationtrail_10_1109_ACCESS_2024_3406736
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
Brunner (ref1) 2008; 16
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref6
  doi: 10.1109/JBHI.2023.3239053
– ident: ref8
  doi: 10.1007/978-3-319-95918-4_9
– volume: 16
  start-page: 1
  year: 2008
  ident: ref1
  publication-title: BCI Competition 2008–Graz Data Set A
– ident: ref26
  doi: 10.1109/JBHI.2022.3224506
– ident: ref42
  doi: 10.1109/TNSRE.2017.2757519
– ident: ref18
  doi: 10.3389/fnhum.2022.1068165
– ident: ref20
  doi: 10.1109/TNSRE.2022.3191869
– ident: ref27
  doi: 10.1109/JBHI.2022.3198688
– ident: ref24
  doi: 10.1109/JBHI.2023.3292452
– ident: ref32
  doi: 10.1109/TII.2022.3227736
– ident: ref7
  doi: 10.1088/1741-2552/ab0ab5
– ident: ref23
  doi: 10.3389/fnagi.2016.00273
– ident: ref16
  doi: 10.1109/TNNLS.2019.2946869
– ident: ref11
  doi: 10.1007/s00521-021-06352-5
– ident: ref49
  doi: 10.1109/TII.2022.3197419
– ident: ref31
  doi: 10.1109/TII.2021.3132340
– ident: ref33
  doi: 10.1109/BHI56158.2022.9926806
– ident: ref51
  doi: 10.1093/gigascience/giz002
– ident: ref41
  doi: 10.1109/86.895946
– ident: ref21
  doi: 10.1109/TCDS.2023.3314351
– ident: ref39
  doi: 10.1109/TBME.2021.3137184
– ident: ref40
  doi: 10.1109/MSP.2008.4408441
– ident: ref48
  doi: 10.1016/j.bspc.2021.102826
– ident: ref28
  doi: 10.1109/JBHI.2023.3285268
– ident: ref19
  doi: 10.1109/TNSRE.2023.3259730
– ident: ref43
  doi: 10.1109/TIM.2021.3051996
– ident: ref3
  doi: 10.1126/science.abd0380
– ident: ref47
  doi: 10.1109/ACCESS.2022.3161489
– ident: ref22
  doi: 10.3389/fnins.2012.00039
– ident: ref38
  doi: 10.1007/s11042-021-10637-1
– ident: ref13
  doi: 10.1109/TNSRE.2016.2646763
– ident: ref45
  doi: 10.1109/TNNLS.2021.3084827
– ident: ref50
  doi: 10.3390/brainsci13071109
– ident: ref35
  doi: 10.1109/JBHI.2023.3243698
– ident: ref4
  doi: 10.1038/s41586-021-03506-2
– ident: ref37
  doi: 10.1109/ACCESS.2019.2919143
– ident: ref34
  doi: 10.1109/TBME.2016.2631620
– ident: ref29
  doi: 10.1002/hbm.23730
– ident: ref36
  doi: 10.21236/ada164453
– ident: ref15
  doi: 10.1109/TNSRE.2022.3149899
– ident: ref44
  doi: 10.1016/j.patcog.2017.10.013
– ident: ref9
  doi: 10.1109/TII.2022.3146552
– ident: ref5
  doi: 10.1109/TNSRE.2018.2839116
– ident: ref46
  doi: 10.1109/SMC42975.2020.9283028
– ident: ref12
  doi: 10.1109/TCYB.2021.3073210
– ident: ref14
  doi: 10.1126/scirobotics.aaw6844
– ident: ref2
  doi: 10.1038/nature04968
– ident: ref10
  doi: 10.1073/pnas.1817207116
– ident: ref30
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref25
  doi: 10.1109/JBHI.2023.3242090
– ident: ref17
  doi: 10.1109/JBHI.2023.3238421
SSID ssj0000816957
Score 2.3508525
Snippet Electroencephalography (EEG)-based motor imagery (MI) has potential applications in diverse fields including rehabilitation, drone control, and virtual...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77356
SubjectTerms Brain modeling
Classification
Classification algorithms
Data models
Decoding
Deep learning
EEG
Electroencephalography
Feature extraction
Image capture
Image classification
Machine learning
Motor coordination
motor imagery
multitask autoencoder
Reconstruction
subject-independent
Task analysis
Training
Virtual reality
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUq1EN7QLQFdVta-dBjDU7i-OO4bHdbpBZxoBI3Kx47BQG7q90A4t_jcbyrrSqVC9fEkRPPZGaeNX6PkC_GQ-EVtIyr0DABRcuMxg4ALUXTIj-6TySuP9XJiT4_N6cbUl_YE9bTA_cLdxhKJN0SXkufkqfmtQ6lqDjIqo3FA0ZfrswGmEoxWBfS1CrTDBXcHA5Ho_hFERCW4qASKM8i_0pFibE_S6z8E5dTspnskO1cJdJh_3ZvyIswfUteb3AHviN3Z_czdnoRkxDtD9E2yys6vO1myEzpw4IdxVuefgthTjOJ6h86WbVi0Vir0hg0cBeGHa-lcDs6Hn-nv2YRiNPjG6S3eKBJNhMbipINd8nvyfhs9INlEQUGEbp1zPmm5pWLZZvXQuOxUym1bFQLldN1qIVygFnKKTDBeSeBG2VcLEN88NpAtUe2prNpeE-oM00lQ6kDktoE4A2IEgAiwnS6qIMZkHK1nhYywzgKXVzbhDS4sb0RLBrBZiMMyNf1Q_OeYOP_w4_QUOuhyI6dLkSfsdln7FM-MyC7aOaN-bBulfWA7K_sbvOvvLQI0SKSl2X54Tnm_khe4ff0uzj7ZKtb3IZP5CXcdZfLxefkxY8aovCK
  priority: 102
  providerName: Directory of Open Access Journals
Title Two-Phase Multitask Autoencoder-Based Deep Learning Framework for Subject-Independent EEG Motor Imagery Classification
URI https://ieeexplore.ieee.org/document/10540565
https://www.proquest.com/docview/3064713622
https://doaj.org/article/e224854d86d643978058e2430c63f522
Volume 12
WOSCitedRecordID wos001242940700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPIvYUiofOOKSTRw_jttlFyrRqoci9WbF4wkgYFPtZltx4bfjcbyrIgQSlyhKbMXJZ3semfmGsVc2wDhoaEWhsRESxq2whiIAjJJNS_zoIZG4ftBnZ-by0p7nZPWUC4OIKfgMj-g0_csPHazJVRZXOOkXqt5hO1qrIVlr61ChChK21plZaFzYN5PpNL5EtAFLeVRJqsiifpM-iaQ_V1X5YytO8mX-8D9H9og9yIoknwzIP2Z3cPGE3b9FL_iUXV_cdOL8c5RTfMizbVZf-WTdd0ReGXApjuOtwN8iXvHMs_qJzzfRWjyqszzuK-SoESfbark9n83e8dMu2ur85DsxYPzgqbImxRwlmPfYx_nsYvpe5DoLAqJ11wsfmrqofNTsgpGGMlOVMqrRLVTe1FhL7YEEmddg0QevoLDa-qipBAzGQvWM7S66BT5n3NumUlgaJN4bhKIBWQJANEK9GddoR6zcfH8HmYScamF8c8kYKawbQHMEmsugjdjrbaergYPj382PCdhtUyLQThciYi6vR4clcbnJYFRIOpkpaoOlrApQVRt10hHbI5RvPW8AeMQONvPE5dW-cmTFRWNfleX-X7q9YPdoiIPv5oDt9ss1vmR34br_sloeJkdAPJ7-nB2mSf0Lff_yUw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLdgIAGH8bWJwgAfOJLhOo5jH7uuZRVdtUORdrNi-2UgWDO16RD_PX6OW21CQ-IWJbZi52f7feS93yPkg_au70tXZ6yEKhOuX2daYQSAkqKqkR_dRxLXaTmbqfNzfZaS1WMuDADE4DM4xMv4L983bo2usrDDUb-QxX3yoBCCsy5da-tSwRoSuigTt1Cf6U-D4TBMI1iBXBzmAmuyyFvyJ9L0p7oqfx3GUcKMn_7n2J6R3aRK0kGH_XNyDxYvyJMbBIMvyfX8V5OdfQuSinaZttXqBx2s2wbpKz0ss6PwyNNjgCuamFYv6HgTr0WDQkvDyYKummyyrZfb0tHoMz1tgrVOJ5fIgfGbxtqaGHUUgd4jX8ej-fAkS5UWMhfsuzazvipYboNu55VQmJsqpZJVWbvcqgIKUVqHosyWToP1VjqmS22DruLBK-3yfbKzaBbwilCrq1wCV4DMN-BY5QR3zgUz1Kp-AbpH-Ob7G5doyLEaxk8TzRGmTQeaQdBMAq1HPm47XXUsHP9ufoTAbpsihXa8ERAzaUca4MjmJrySPmplihUKuMiZk3kdtNIe2UOUb7yvA7hHDjbrxKT9vjJoxwVzX3L--o5u78mjk_np1Ewnsy9vyGMcbufJOSA77XINb8lDd91-Xy3fxUX9B8_Y83Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Phase+Multitask+Autoencoder-Based+Deep+Learning+Framework+for+Subject-Independent+EEG+Motor+Imagery+Classification&rft.jtitle=IEEE+access&rft.au=Jin%2C+Changgyun&rft.au=Song%2C+Andrew+H.&rft.au=Kim%2C+Seong-Eun&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=77356&rft.epage=77367&rft_id=info:doi/10.1109%2FACCESS.2024.3406736&rft.externalDocID=10540565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon