From Technical Prerequisites to Improved Care: Distributed Edge AI for Tomographic Imaging

Recent years have seen a surge in AI-driven medical image processing, leading to significant improvements in diagnostic performance. However, medical imaging technologies tend to create staggering volumes of medical data, necessitating high-performance computing. Cloud systems with robust GPUs and r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 13; s. 1
Hlavní autoři: Akdemir, Bilgehan, Shahid, Hafiz Faheem, Brix, Mikael, Laakkola, Juho, Islam, Johirul, Kumar, Tanesh, Reponen, Jarmo, Nieminen, Miika T., Harjula, Erkki
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent years have seen a surge in AI-driven medical image processing, leading to significant improvements in diagnostic performance. However, medical imaging technologies tend to create staggering volumes of medical data, necessitating high-performance computing. Cloud systems with robust GPUs and resource capacity are optimal choices for DL-based medical image processing. However, transferring data to the cloud for processing strains communication links, introduces high communication latency, and raises privacy and security concerns. Consequently, despite the undisputed benefits of cloud computing, dedicated standalone local computers are still used for image reconstruction in today's systems. This localized strategy uses expensive hardware inefficiently and falls short of scalability and maintainability. Edge computing emerges as an innovative concept by bringing cloud processing capabilities closer to data sources. A continuum of computing including local, edge, and cloud tiers would offer a promising solution for medical image processing. According to literature survey, there are no significant works on utilizing edge cloud continuum for CBCT imaging. To fill this gap, we introduce novel 3-TECC architectural concept, specifically designed for CBCT data reconstruction in medical imaging. This article explores the evolving synergy among medical imaging, distributed AI, containerized solutions, and edge-cloud continuum technologies, highlighting their clinical implications and illuminating the potential for transformative patient care. We uncover challenges and opportunities this convergence provides with the CBCT image reconstruction use case, while aligning with regulatory compliance. The proposed 3-TECC architecture advocates a decentralized data processing paradigm, reducing reliance on the centralized approach and emphasizing the role of local-edge computing.
AbstractList Recent years have seen a surge in AI-driven medical image processing, leading to significant improvements in diagnostic performance. However, medical imaging technologies tend to create staggering volumes of medical data, necessitating high-performance computing. Cloud systems with robust GPUs and resource capacity are optimal choices for DL-based medical image processing. However, transferring data to the cloud for processing strains communication links, introduces high communication latency, and raises privacy and security concerns. Consequently, despite the undisputed benefits of cloud computing, dedicated standalone local computers are still used for image reconstruction in today's systems. This localized strategy uses expensive hardware inefficiently and falls short of scalability and maintainability. Edge computing emerges as an innovative concept by bringing cloud processing capabilities closer to data sources. A continuum of computing including local, edge, and cloud tiers would offer a promising solution for medical image processing. According to literature survey, there are no significant works on utilizing edge cloud continuum for CBCT imaging. To fill this gap, we introduce novel 3-TECC architectural concept, specifically designed for CBCT data reconstruction in medical imaging. This article explores the evolving synergy among medical imaging, distributed AI, containerized solutions, and edge-cloud continuum technologies, highlighting their clinical implications and illuminating the potential for transformative patient care. We uncover challenges and opportunities this convergence provides with the CBCT image reconstruction use case, while aligning with regulatory compliance. The proposed 3-TECC architecture advocates a decentralized data processing paradigm, reducing reliance on the centralized approach and emphasizing the role of local-edge computing.
Author Islam, Johirul
Nieminen, Miika T.
Laakkola, Juho
Shahid, Hafiz Faheem
Harjula, Erkki
Kumar, Tanesh
Akdemir, Bilgehan
Brix, Mikael
Reponen, Jarmo
Author_xml – sequence: 1
  givenname: Bilgehan
  orcidid: 0000-0003-4372-3041
  surname: Akdemir
  fullname: Akdemir, Bilgehan
  organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland
– sequence: 2
  givenname: Hafiz Faheem
  surname: Shahid
  fullname: Shahid, Hafiz Faheem
  organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland
– sequence: 3
  givenname: Mikael
  surname: Brix
  fullname: Brix, Mikael
  organization: Research Unit of Health Sciences and Technology (HST), University of Oulu, Oulu, Finland
– sequence: 4
  givenname: Juho
  surname: Laakkola
  fullname: Laakkola, Juho
  organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland
– sequence: 5
  givenname: Johirul
  orcidid: 0000-0002-7523-0666
  surname: Islam
  fullname: Islam, Johirul
  organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland
– sequence: 6
  givenname: Tanesh
  surname: Kumar
  fullname: Kumar, Tanesh
  organization: Department of Information and Communications Engineering, Aalto University, Finland
– sequence: 7
  givenname: Jarmo
  orcidid: 0000-0003-2306-3111
  surname: Reponen
  fullname: Reponen, Jarmo
  organization: Research Unit of Health Sciences and Technology (HST), University of Oulu, Oulu, Finland
– sequence: 8
  givenname: Miika T.
  surname: Nieminen
  fullname: Nieminen, Miika T.
  organization: Research Unit of Health Sciences and Technology (HST), University of Oulu, Oulu, Finland
– sequence: 9
  givenname: Erkki
  orcidid: 0000-0001-5331-209X
  surname: Harjula
  fullname: Harjula, Erkki
  organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland
BookMark eNp9kU9rGzEQxUVJoWmST9AeFnq2q_9a9Wa2TmoINBD30ovQakcbGXvlSHKh3z5KN4XQQ3UZzWN-jxnee3Q2xQkQ-kDwkhCsP6-6bn1_v6SYiiUTDFOt3qBzSqRe1Faevfq_Q1c573B9bZWEOkc_r1M8NFtwD1Nwdt_cJUjweAo5FMhNic3mcEzxFwxNZxN8ab6GXFLoT6Uq62GEZrVpfEzNNh7imOzxIbiK2DFM4yV66-0-w9VLvUA_rtfb7tvi9vvNplvdLhzHuix66XDveC8Vwz23VJIeC6UGz7lywEXL2IAJJlJ4LR0oRj1mjCgBfMBSe3aBNrPvEO3OHFM42PTbRBvMHyGm0dhUgtuDGVrNmOeKMs05HUB7aoE4L5nXvlpWr0-zVz368QS5mF08pamubxgRWmBBJK1Tep5yKeacwBsXii0hTiXZsDcEm-dkzJyMeU7GvCRTWfYP-3fj_1MfZyoAwCui5Yzilj0BAcqaFQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s00521_025_11475_0
Cites_doi 10.1109/ACCESS.2023.3281832
10.1007/s00521-023-09160-1
10.1109/ACCESS.2020.2988563
10.1109/TII.2021.3049141
10.1109/ACCESS.2022.3160738
10.1109/ACCESS.2017.2778504
10.1148/rg.220107
10.1109/TNSE.2021.3073897
10.1259/dmfr.20140224
10.1109/MCE.2017.2746096
10.3991/ijim.v16i20.34373
10.1109/ACCESS.2019.2936714
10.1016/j.compeleceng.2017.09.001
10.1016/j.artmed.2024.102861
10.1109/ACCESS.2020.3011503
10.1118/1.4752087
10.3390/s21072502
10.1109/COMST.2020.2970550
10.14778/3415478.3415530
10.1109/MNET.011.1900636
10.1016/j.bspc.2024.105963
10.1109/IEMCON53756.2021.9623076
10.1109/EHB52898.2021.9657740
10.1016/j.ejmp.2023.103184
10.1109/JBHI.2020.3007661
10.23996/fjhw.111777
10.1109/JBHI.2022.3192648
10.1109/PerComWorkshops59983.2024.10502691
10.1109/ISMICT58261.2023.10152231
10.1109/ACCESS.2015.2437951
10.1109/TGCN.2022.3186911
10.1109/JIOT.2021.3052778
10.1002/mrm.26977
10.1109/TSUSC.2022.3170508
10.1007/s44200-022-00014-0
10.1007/978-981-10-8603-8_9
10.1016/j.ultramic.2015.05.002
10.3390/s23115006
10.1016/j.compeleceng.2018.10.003
10.1007/springerreference_302333
10.1109/ACCESS.2021.3052469
10.1016/j.clsr.2024.105957
10.1109/ACCESS.2021.3102867
10.1016/j.neucom.2022.11.011
10.1109/ACCESS.2023.3344029
10.1148/radiol.230441
10.1609/aaai.v36i8.20825
10.1109/JIOT.2020.3014845
10.5220/0008019201550162
10.1016/j.comnet.2019.106984
10.1007/978-3-030-70604-3_5
10.1145/3341145
10.1007/978-3-031-47425-5_29
10.1093/rheumatology/ken180
10.23919/ICACT56868.2023.10079299
10.1109/CSCloud-EdgeCom49738.2020.00042
10.1016/j.icte.2023.02.007
10.1109/IOTM.0001.1900096
10.1109/ACCESS.2020.2997831
10.1002/spe.3078
10.14733/cadaps.2024.847-858
10.1016/j.neucom.2015.09.116
10.1109/ACCESS.2019.2898265
10.1109/ACCESS.2023.3337092
10.1109/TNSM.2021.3049824
10.1109/JBHI.2017.2776351
10.1109/ACCESS.2020.3047960
10.1007/s41666-020-00082-4
10.1109/SMART50582.2020.9337157
10.1109/JIOT.2022.3191881
10.1007/s12652-020-02113-9
10.1007/s10115-023-01894-7
10.1109/MC.2016.145
10.1145/3412357
10.1109/ICDCSW.2016.22
10.1109/ACCESS.2024.3358827
10.3390/electronics8070768
10.1016/j.hlc.2021.06.517
10.1109/JTEHM.2016.2597838
10.1145/3653297
10.1186/s40537-021-00444-8
10.1007/s10723-021-09558-y
10.1145/3298981
10.1016/j.ejmp.2020.11.012
10.1145/3377454
10.1109/ACCESS.2017.2739804
10.1109/ICSENS.2018.8589624
10.1109/TMI.2019.2914370
10.1016/j.patcog.2024.110424
10.3390/diagnostics11122183
10.1007/978-3-030-97929-4_1
10.3390/electronics11030494
10.1109/JPROC.2019.2921977
10.1007/s00259-021-05339-7
10.1109/COMST.2018.2849509
10.1007/s11831-022-09790-z
10.1109/ACCESS.2019.2962862
10.1007/978-3-031-32879-4_3
10.1002/ett.3710
10.1038/s41568-018-0016-5
10.1109/TII.2019.2902878
10.1038/s42256-021-00337-8
10.1088/1361-6560/ac145b
10.1016/j.ejmp.2021.07.035
10.1109/ACCESS.2022.3211512
10.23996/fjhw.122647
10.1016/j.aej.2023.01.065
10.1007/s13204-021-02152-4
10.1109/COMST.2022.3218527
10.1007/s44174-023-00113-9
10.1016/j.ejmp.2021.07.007
10.3390/s18124307
10.1007/s11042-021-11158-7
10.1109/JIOT.2021.3052910
10.1109/TCSS.2022.3232192
10.1007/s10586-022-03717-w
10.1007/978-3-030-37526-3_11
10.1016/j.future.2022.06.012
10.1148/radiol.2402042120
10.1109/GLOBECOM42002.2020.9348064
10.1007/s13042-024-02234-z
10.1088/2057-1976/ac605b
10.1109/ACCESS.2021.3098708
10.1117/12.3013750
10.1118/1.4811272
10.1118/1.1759828
10.1109/JIOT.2023.3329061
10.1088/2057-1976/2/5/055010
10.3390/s22145327
10.1109/ACCESS.2016.2624938
10.1148/radiol.2020192084
10.3233/web-190414
10.1109/TMI.2016.2528162
10.1109/JIOT.2016.2579198
10.1016/j.procs.2020.04.152
10.1016/j.ejmp.2017.07.024
10.1109/MCOM.2017.1600863
10.1080/03772063.2019.1654934
10.1007/s10586-020-03106-1
10.1016/j.media.2019.01.013
10.1038/s41746-020-00323-1
10.1002/mp.14624
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3530297
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_d8933f47239442de9f2ae1cf63f9f175
10_1109_ACCESS_2025_3530297
10843208
Genre orig-research
GrantInformation_xml – fundername: Flagship of Advanced Mathematics for Sensing, Imaging, and Modelling
  grantid: 359186
– fundername: Research Council of Finland DigiHealth
  grantid: 326291
– fundername: 6G Flagship programme
  grantid: 346208
– fundername: Business Finland
  grantid: 8095/31/2022
  funderid: 10.13039/501100014438
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-b6c0bc4b6730b4a261b0577df447ce45833d010165f96ce732f033175e4d069f3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405925700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:34 EDT 2025
Mon Jun 30 12:58:57 EDT 2025
Tue Nov 18 21:00:24 EST 2025
Sat Nov 29 04:27:19 EST 2025
Wed Aug 27 01:55:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-b6c0bc4b6730b4a261b0577df447ce45833d010165f96ce732f033175e4d069f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2306-3111
0000-0002-7523-0666
0000-0001-5331-209X
0000-0003-4372-3041
0009-0005-3350-0276
0000-0003-4646-6714
0009-0000-2256-2029
OpenAccessLink https://doaj.org/article/d8933f47239442de9f2ae1cf63f9f175
PQID 3159505162
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3530297
ieee_primary_10843208
doaj_primary_oai_doaj_org_article_d8933f47239442de9f2ae1cf63f9f175
proquest_journals_3159505162
crossref_citationtrail_10_1109_ACCESS_2025_3530297
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref58
Shahid (ref59) 2024
ref53
ref52
ref55
ref54
(ref6) 2024
McMahan (ref99)
Goodfellow (ref15) 2016
ref51
ref50
(ref135) 2024
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref3
(ref93) 2024
Vegesna (ref141) 2022; 9
(ref1) 2024
ref5
ref100
Reznik (ref87); 23
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref24
ref25
ref20
ref159
ref22
ref157
ref21
ref158
ref28
ref27
ref29
ref162
Vepakomma (ref107) 2018
ref160
ref161
ref13
ref12
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref124
ref10
ref98
ref125
(ref136) 2024
ref17
ref16
ref19
ref18
ref133
ref92
ref134
ref95
ref131
ref94
ref132
Shah (ref26) 2022; 16
ref130
Simonyan (ref9) 2014
ref91
ref90
(ref62) 2024
ref89
ref139
ref86
ref137
ref85
ref138
ref88
du Terrail (ref104)
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref80
Roth (ref68) 2023; 46
ref79
ref78
ref109
ref106
ref75
ref74
ref105
ref77
ref102
Nguyen (ref23) 2022; 1
ref76
ref103
ref2
Rajkovic (ref116) 2022
ref71
ref111
ref70
ref112
ref73
ref72
ref110
Poirot (ref108) 2019
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref66
ref113
ref65
ref114
ref60
ref122
ref123
(ref63) 2024
ref120
ref61
ref121
References_xml – ident: ref101
  doi: 10.1109/ACCESS.2023.3281832
– ident: ref86
  doi: 10.1007/s00521-023-09160-1
– ident: ref151
  doi: 10.1109/ACCESS.2020.2988563
– ident: ref73
  doi: 10.1109/TII.2021.3049141
– ident: ref115
  doi: 10.1109/ACCESS.2022.3160738
– ident: ref127
  doi: 10.1109/ACCESS.2017.2778504
– ident: ref95
  doi: 10.1148/rg.220107
– ident: ref98
  doi: 10.1109/TNSE.2021.3073897
– ident: ref43
  doi: 10.1259/dmfr.20140224
– ident: ref53
  doi: 10.1109/MCE.2017.2746096
– ident: ref119
  doi: 10.3991/ijim.v16i20.34373
– ident: ref113
  doi: 10.1109/ACCESS.2019.2936714
– ident: ref120
  doi: 10.1016/j.compeleceng.2017.09.001
– ident: ref156
  doi: 10.1016/j.artmed.2024.102861
– ident: ref160
  doi: 10.1109/ACCESS.2020.3011503
– ident: ref49
  doi: 10.1118/1.4752087
– ident: ref132
  doi: 10.3390/s21072502
– ident: ref154
  doi: 10.1109/COMST.2020.2970550
– ident: ref66
  doi: 10.14778/3415478.3415530
– ident: ref77
  doi: 10.1109/MNET.011.1900636
– start-page: 1273
  volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist.
  ident: ref99
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref81
  doi: 10.1016/j.bspc.2024.105963
– ident: ref48
  doi: 10.1109/IEMCON53756.2021.9623076
– volume: 46
  issue: 1
  year: 2023
  ident: ref68
  article-title: NVIDIA FLARE: Federated learning from simulation to real-world
  publication-title: IEEE Data Eng. Bull.
– ident: ref75
  doi: 10.1109/EHB52898.2021.9657740
– ident: ref4
  doi: 10.1016/j.ejmp.2023.103184
– ident: ref74
  doi: 10.1109/JBHI.2020.3007661
– ident: ref33
  doi: 10.23996/fjhw.111777
– ident: ref30
  doi: 10.1109/JBHI.2022.3192648
– ident: ref103
  doi: 10.1109/PerComWorkshops59983.2024.10502691
– ident: ref148
  doi: 10.1109/ISMICT58261.2023.10152231
– ident: ref56
  doi: 10.1109/ACCESS.2015.2437951
– ident: ref124
  doi: 10.1109/TGCN.2022.3186911
– ident: ref84
  doi: 10.1109/JIOT.2021.3052778
– ident: ref92
  doi: 10.1002/mrm.26977
– ident: ref133
  doi: 10.1109/TSUSC.2022.3170508
– ident: ref134
  doi: 10.1007/s44200-022-00014-0
– ident: ref117
  doi: 10.1007/978-981-10-8603-8_9
– ident: ref35
  doi: 10.1016/j.ultramic.2015.05.002
– ident: ref22
  doi: 10.3390/s23115006
– ident: ref76
  doi: 10.1016/j.compeleceng.2018.10.003
– ident: ref88
  doi: 10.1007/springerreference_302333
– volume-title: Health At a Glance: Europe 2022
  year: 2024
  ident: ref62
– ident: ref71
  doi: 10.1109/ACCESS.2021.3052469
– ident: ref5
  doi: 10.1016/j.clsr.2024.105957
– ident: ref32
  doi: 10.1109/ACCESS.2021.3102867
– ident: ref105
  doi: 10.1016/j.neucom.2022.11.011
– ident: ref142
  doi: 10.1109/ACCESS.2023.3344029
– ident: ref123
  doi: 10.1148/radiol.230441
– volume-title: What Are the GDPR Fines
  year: 2024
  ident: ref136
– ident: ref110
  doi: 10.1609/aaai.v36i8.20825
– ident: ref126
  doi: 10.1109/JIOT.2020.3014845
– volume-title: World Health Organization (WHO), Strengthening Medical Imaging
  year: 2024
  ident: ref1
– ident: ref70
  doi: 10.5220/0008019201550162
– ident: ref69
  doi: 10.1016/j.comnet.2019.106984
– ident: ref67
  doi: 10.1007/978-3-030-70604-3_5
– ident: ref129
  doi: 10.1145/3341145
– ident: ref157
  doi: 10.1007/978-3-031-47425-5_29
– ident: ref2
  doi: 10.1093/rheumatology/ken180
– volume-title: Siemens Healthhineers, MR-Only Radiotherapy Planning
  year: 2024
  ident: ref93
– ident: ref118
  doi: 10.23919/ICACT56868.2023.10079299
– volume-title: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons With Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (Text With EEA Relevance)
  year: 2024
  ident: ref63
– ident: ref72
  doi: 10.1109/CSCloud-EdgeCom49738.2020.00042
– ident: ref137
  doi: 10.1016/j.icte.2023.02.007
– ident: ref17
  doi: 10.1109/IOTM.0001.1900096
– ident: ref19
  doi: 10.1109/ACCESS.2020.2997831
– ident: ref21
  doi: 10.1002/spe.3078
– ident: ref83
  doi: 10.14733/cadaps.2024.847-858
– ident: ref11
  doi: 10.1016/j.neucom.2015.09.116
– ident: ref28
  doi: 10.1109/ACCESS.2019.2898265
– ident: ref130
  doi: 10.1109/ACCESS.2023.3337092
– volume-title: Finnish Ministry of Social Affairs and Health, Secondary Use of Health and Social Data
  year: 2024
  ident: ref135
– ident: ref149
  doi: 10.1109/TNSM.2021.3049824
– year: 2018
  ident: ref107
  article-title: Split learning for health: Distributed deep learning without sharing raw patient data
  publication-title: arXiv:1812.00564
– ident: ref131
  doi: 10.1109/JBHI.2017.2776351
– ident: ref85
  doi: 10.1109/ACCESS.2020.3047960
– ident: ref102
  doi: 10.1007/s41666-020-00082-4
– ident: ref112
  doi: 10.1109/SMART50582.2020.9337157
– ident: ref61
  doi: 10.1109/JIOT.2022.3191881
– ident: ref65
  doi: 10.1007/s12652-020-02113-9
– ident: ref8
  doi: 10.1007/s10115-023-01894-7
– volume: 1
  volume-title: Advances in Engineering and Intelligence Systems
  year: 2022
  ident: ref23
  article-title: HSSCIoT: An optimal framework based on Internet of Things-cloud computing for healthcare services selection in smart hospitals
– ident: ref57
  doi: 10.1109/MC.2016.145
– volume: 23
  start-page: 25
  volume-title: Proc. ETSI MEC
  ident: ref87
  article-title: Cloud RAN and MEC: A perfect pairing
– ident: ref106
  doi: 10.1145/3412357
– ident: ref145
  doi: 10.1109/ICDCSW.2016.22
– ident: ref45
  doi: 10.1109/ACCESS.2024.3358827
– ident: ref24
  doi: 10.3390/electronics8070768
– ident: ref139
  doi: 10.1016/j.hlc.2021.06.517
– ident: ref37
  doi: 10.1109/JTEHM.2016.2597838
– ident: ref143
  doi: 10.1145/3653297
– ident: ref94
  doi: 10.1186/s40537-021-00444-8
– ident: ref79
  doi: 10.1007/s10723-021-09558-y
– ident: ref100
  doi: 10.1145/3298981
– ident: ref91
  doi: 10.1016/j.ejmp.2020.11.012
– ident: ref97
  doi: 10.1145/3377454
– ident: ref54
  doi: 10.1109/ACCESS.2017.2739804
– ident: ref128
  doi: 10.1109/ICSENS.2018.8589624
– ident: ref50
  doi: 10.1109/TMI.2019.2914370
– ident: ref111
  doi: 10.1016/j.patcog.2024.110424
– ident: ref16
  doi: 10.3390/diagnostics11122183
– ident: ref162
  doi: 10.1007/978-3-030-97929-4_1
– ident: ref46
  doi: 10.3390/electronics11030494
– ident: ref152
  doi: 10.1109/JPROC.2019.2921977
– ident: ref109
  doi: 10.1007/s00259-021-05339-7
– year: 2022
  ident: ref116
  article-title: The role of resource awareness in medical information system life cycle
  publication-title: arXiv:2205.07778
– ident: ref55
  doi: 10.1109/COMST.2018.2849509
– year: 2019
  ident: ref108
  article-title: Split learning for collaborative deep learning in healthcare
  publication-title: arXiv:1912.12115
– ident: ref42
  doi: 10.1007/s11831-022-09790-z
– ident: ref13
  doi: 10.1109/ACCESS.2019.2962862
– ident: ref89
  doi: 10.1007/978-3-031-32879-4_3
– ident: ref31
  doi: 10.1002/ett.3710
– ident: ref12
  doi: 10.1038/s41568-018-0016-5
– ident: ref47
  doi: 10.1109/TII.2019.2902878
– ident: ref39
  doi: 10.1038/s42256-021-00337-8
– ident: ref40
  doi: 10.1088/1361-6560/ac145b
– ident: ref82
  doi: 10.1016/j.ejmp.2021.07.035
– ident: ref18
  doi: 10.1109/ACCESS.2022.3211512
– ident: ref34
  doi: 10.23996/fjhw.122647
– ident: ref51
  doi: 10.1016/j.aej.2023.01.065
– ident: ref52
  doi: 10.1007/s13204-021-02152-4
– ident: ref153
  doi: 10.1109/COMST.2022.3218527
– volume-title: Deep Learning
  year: 2016
  ident: ref15
– year: 2024
  ident: ref59
  article-title: Resource slicing through intelligent orchestration of energy-aware IoT services in edge-cloud continuum
  publication-title: arXiv:2412.03181
– ident: ref144
  doi: 10.1007/s44174-023-00113-9
– ident: ref3
  doi: 10.1016/j.ejmp.2021.07.007
– ident: ref159
  doi: 10.3390/s18124307
– ident: ref150
  doi: 10.1007/s11042-021-11158-7
– ident: ref78
  doi: 10.1109/JIOT.2021.3052910
– volume: 9
  start-page: 89
  year: 2022
  ident: ref141
  article-title: Using distributed ledger based blockchain technological advances to address IoT safety and confidentiality issues
  publication-title: Int. J. Current Eng. Sci. Res.
– ident: ref155
  doi: 10.1109/TCSS.2022.3232192
– ident: ref161
  doi: 10.1007/s10586-022-03717-w
– ident: ref20
  doi: 10.1007/978-3-030-37526-3_11
– ident: ref125
  doi: 10.1016/j.future.2022.06.012
– ident: ref146
  doi: 10.1148/radiol.2402042120
– ident: ref158
  doi: 10.1109/GLOBECOM42002.2020.9348064
– ident: ref121
  doi: 10.1007/s13042-024-02234-z
– year: 2014
  ident: ref9
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref64
  doi: 10.1088/2057-1976/ac605b
– ident: ref140
  doi: 10.1109/ACCESS.2021.3098708
– ident: ref60
  doi: 10.1117/12.3013750
– ident: ref147
  doi: 10.1118/1.4811272
– ident: ref44
  doi: 10.1118/1.1759828
– volume-title: Eu Artificial Intelligence Act
  year: 2024
  ident: ref6
– ident: ref96
  doi: 10.1109/JIOT.2023.3329061
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref104
  article-title: FLamby: Datasets and benchmarks for cross-silo federated learning in realistic healthcare settings
– ident: ref36
  doi: 10.1088/2057-1976/2/5/055010
– ident: ref80
  doi: 10.3390/s22145327
– ident: ref90
  doi: 10.1109/ACCESS.2016.2624938
– ident: ref122
  doi: 10.1148/radiol.2020192084
– ident: ref7
  doi: 10.3233/web-190414
– ident: ref10
  doi: 10.1109/TMI.2016.2528162
– ident: ref27
  doi: 10.1109/JIOT.2016.2579198
– ident: ref114
  doi: 10.1016/j.procs.2020.04.152
– ident: ref38
  doi: 10.1016/j.ejmp.2017.07.024
– volume: 16
  start-page: 50
  issue: 3
  year: 2022
  ident: ref26
  article-title: Cloud computing in healthcare: Opportunities, risks, and compliance
  publication-title: Revista Espanola de Documentacion Cientifica
– ident: ref58
  doi: 10.1109/MCOM.2017.1600863
– ident: ref25
  doi: 10.1080/03772063.2019.1654934
– ident: ref138
  doi: 10.1007/s10586-020-03106-1
– ident: ref14
  doi: 10.1016/j.media.2019.01.013
– ident: ref29
  doi: 10.1038/s41746-020-00323-1
– ident: ref41
  doi: 10.1002/mp.14624
SSID ssj0000816957
Score 2.3539758
Snippet Recent years have seen a surge in AI-driven medical image processing, leading to significant improvements in diagnostic performance. However, medical imaging...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms CBCT
Cloud computing
Computed tomography
Computer architecture
Data processing
distributed AI
Edge AI
edge cloud continuum
Edge computing
GDPR
Hospitals
Image edge detection
Image processing
Image reconstruction
Imaging
Literature reviews
Maintainability
Medical diagnostic imaging
Medical imaging
Technical requirements
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVpyCE9pG0-6KZp0KHHOLEtrbTKbbvNkkIJOaQQehG2NAoLzbr17vb3Z0ZSloXQQm9GSFj201gzI897jH2iasWq8qJQjRoVEkMdtDkQRRvqxomyUcPEM_tN39yM7u_NbS5Wj7UwABB_PoNzuoxn-b5zK0qVoYWPpKiptPeV1joVa60TKqQgYYY6MwtVpbkYTyb4EBgD1sNzQeo4xOy0sftEkv6sqvLiUxz3l-mb_5zZW7aXHUk-Tsi_Y1sw32evN-gFD9iPad898pg8Jyj4bQ89_F7N6MB4wZcdTxkF8JyqkC75FyLRJf0rbLnyD8DHXzn6tPyue0zE1jOHQ6Ks0SH7Pr26m1wXWUuhcBjBLYtWubJ1slVo0a1sMG5q0VPTPkipHdDhqfCRbm4YjHKgRR1KQb4FSF8qE8QR2553c3jPOAYhII2rdANU2VqZFkINjRQBNz7nxYDVz-_Yukw0TnoXP20MOEpjEzCWgLEZmAE7Ww_6lXg2_t39M4G37kok2bEBUbHZ5qxHX0wEqUn9XdYeDK4_qFxQIpiAjzZgh4Tkxv0SiAN28rwWbLbohRXo96G3WKn6-C_DPrBdmmLKz5yw7WW_go9sx_1Zzhb9aVysT_YX5Ks
  priority: 102
  providerName: IEEE
Title From Technical Prerequisites to Improved Care: Distributed Edge AI for Tomographic Imaging
URI https://ieeexplore.ieee.org/document/10843208
https://www.proquest.com/docview/3159505162
https://doaj.org/article/d8933f47239442de9f2ae1cf63f9f175
Volume 13
WOSCitedRecordID wos001405925700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_T-swELYQYoABPX6J8gB5YCSQxK5Ts5XSCiRADCAhFiuxz6gStJCWN76_nTs7oEhIsLBksOw4Pp99d3bu-xg7oGzFLHMiUaXqJRJDHVxzIJLK56UVaam6EWf2sri-7t3f65sW1Rf9ExbhgaPgjh3xwXtZEIW3zB1ofAlk1ivhtUfbR7svej2tYCrswb1M6W7RwAxlqT7uDwY4IgwI8-6RIKocgnlqmaKA2N9QrHzZl4OxGf1hq42XyPvx69bYAkzW2UoLO3CDPYzq6TMPJ-MkZ35TQw2vb2O6DZ7x-ZTH4wJwnFKMTvgZIeQSuRWWDN0j8P4FR4eV306fI2r12GKTwFm0ye5Gw9vBedIQJSQWw7N5UimbVlZWCpdrJUsMiip0wwrnpSws0M2ocAFLruu1slCI3KeCHAeQLlXaiy22OJlOYJtxjDBAapsVJVDaaqYr8DmUUni0ataJDss_ZGZsgyJOZBZPJkQTqTZR0IYEbRpBd9jhZ6OXCKLxffVTmozPqoSAHQpQL0yjF-YnveiwTZrKVn89KVBTOmz3Y25Ns1xnRqBTh65gpvKd3-j7L1um8cSTml22OK_fYI8t2X_z8azeD5qKz6v_w_2Qb_gOMIrpJQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQhgQ88HOIwgZ-4JGMxHaSem-lW7WJUu2hSBMvVmKfp0qs2dKWv58726sqIZB4iyxbcfL54rtz7vsY-0jVikXhZFY11TBTGOqgzYHMWi8aK_OmKiPP7LSezYZXV_oyFauHWhgACD-fwTFdhrN819kNpcrQwodKCirt3S-VEkUs19qmVEhDQpd14hYqcv15NB7jY2AUKMpjSfo4xO20s_8Emv6kq_LHxzjsMJNn_zm35-xpciX5KGL_gj2A5Uv2ZIdg8BX7Mem7Gx7S5wQGv-yhh7vNgo6MV3zd8ZhTAMepDumEnxKNLilgYcuZuwY-uuDo1fJ5dxOprRcWhwRhowP2fXI2H59nSU0hsxjDrbO2snlrVVuhTbeqwcipRV-tdl6p2gIdn0oXCOdKrysLtRQ-l-RdgHJ5pb18zfaW3RLeMI5hCChti7oBqm0tdAteQKOkx63POjlg4v4dG5uoxknx4qcJIUeuTQTGEDAmATNgn7aDbiPTxr-7fyHwtl2JJjs0IComWZ1x6I1Jr2rSf1fCgcYVCIX1lfTa46MN2AEhuXO_COKAHd6vBZNsemUken7oLxaVePuXYR_Yo_P5t6mZXsy-vmOPaboxW3PI9tb9Bo7YQ_trvVj178PC_Q0A1efy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Technical+Prerequisites+to+Improved+Care%3A+Distributed+Edge+AI+for+Tomographic+Imaging&rft.jtitle=IEEE+access&rft.au=Bilgehan+Akdemir&rft.au=Hafiz+Faheem+Shahid&rft.au=Mikael+A.+K.+Brix&rft.au=Juho+Laakkola&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=14317&rft.epage=14343&rft_id=info:doi/10.1109%2FACCESS.2025.3530297&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d8933f47239442de9f2ae1cf63f9f175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon