From Technical Prerequisites to Improved Care: Distributed Edge AI for Tomographic Imaging
Recent years have seen a surge in AI-driven medical image processing, leading to significant improvements in diagnostic performance. However, medical imaging technologies tend to create staggering volumes of medical data, necessitating high-performance computing. Cloud systems with robust GPUs and r...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent years have seen a surge in AI-driven medical image processing, leading to significant improvements in diagnostic performance. However, medical imaging technologies tend to create staggering volumes of medical data, necessitating high-performance computing. Cloud systems with robust GPUs and resource capacity are optimal choices for DL-based medical image processing. However, transferring data to the cloud for processing strains communication links, introduces high communication latency, and raises privacy and security concerns. Consequently, despite the undisputed benefits of cloud computing, dedicated standalone local computers are still used for image reconstruction in today's systems. This localized strategy uses expensive hardware inefficiently and falls short of scalability and maintainability. Edge computing emerges as an innovative concept by bringing cloud processing capabilities closer to data sources. A continuum of computing including local, edge, and cloud tiers would offer a promising solution for medical image processing. According to literature survey, there are no significant works on utilizing edge cloud continuum for CBCT imaging. To fill this gap, we introduce novel 3-TECC architectural concept, specifically designed for CBCT data reconstruction in medical imaging. This article explores the evolving synergy among medical imaging, distributed AI, containerized solutions, and edge-cloud continuum technologies, highlighting their clinical implications and illuminating the potential for transformative patient care. We uncover challenges and opportunities this convergence provides with the CBCT image reconstruction use case, while aligning with regulatory compliance. The proposed 3-TECC architecture advocates a decentralized data processing paradigm, reducing reliance on the centralized approach and emphasizing the role of local-edge computing. |
|---|---|
| AbstractList | Recent years have seen a surge in AI-driven medical image processing, leading to significant improvements in diagnostic performance. However, medical imaging technologies tend to create staggering volumes of medical data, necessitating high-performance computing. Cloud systems with robust GPUs and resource capacity are optimal choices for DL-based medical image processing. However, transferring data to the cloud for processing strains communication links, introduces high communication latency, and raises privacy and security concerns. Consequently, despite the undisputed benefits of cloud computing, dedicated standalone local computers are still used for image reconstruction in today's systems. This localized strategy uses expensive hardware inefficiently and falls short of scalability and maintainability. Edge computing emerges as an innovative concept by bringing cloud processing capabilities closer to data sources. A continuum of computing including local, edge, and cloud tiers would offer a promising solution for medical image processing. According to literature survey, there are no significant works on utilizing edge cloud continuum for CBCT imaging. To fill this gap, we introduce novel 3-TECC architectural concept, specifically designed for CBCT data reconstruction in medical imaging. This article explores the evolving synergy among medical imaging, distributed AI, containerized solutions, and edge-cloud continuum technologies, highlighting their clinical implications and illuminating the potential for transformative patient care. We uncover challenges and opportunities this convergence provides with the CBCT image reconstruction use case, while aligning with regulatory compliance. The proposed 3-TECC architecture advocates a decentralized data processing paradigm, reducing reliance on the centralized approach and emphasizing the role of local-edge computing. |
| Author | Islam, Johirul Nieminen, Miika T. Laakkola, Juho Shahid, Hafiz Faheem Harjula, Erkki Kumar, Tanesh Akdemir, Bilgehan Brix, Mikael Reponen, Jarmo |
| Author_xml | – sequence: 1 givenname: Bilgehan orcidid: 0000-0003-4372-3041 surname: Akdemir fullname: Akdemir, Bilgehan organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland – sequence: 2 givenname: Hafiz Faheem surname: Shahid fullname: Shahid, Hafiz Faheem organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland – sequence: 3 givenname: Mikael surname: Brix fullname: Brix, Mikael organization: Research Unit of Health Sciences and Technology (HST), University of Oulu, Oulu, Finland – sequence: 4 givenname: Juho surname: Laakkola fullname: Laakkola, Juho organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland – sequence: 5 givenname: Johirul orcidid: 0000-0002-7523-0666 surname: Islam fullname: Islam, Johirul organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland – sequence: 6 givenname: Tanesh surname: Kumar fullname: Kumar, Tanesh organization: Department of Information and Communications Engineering, Aalto University, Finland – sequence: 7 givenname: Jarmo orcidid: 0000-0003-2306-3111 surname: Reponen fullname: Reponen, Jarmo organization: Research Unit of Health Sciences and Technology (HST), University of Oulu, Oulu, Finland – sequence: 8 givenname: Miika T. surname: Nieminen fullname: Nieminen, Miika T. organization: Research Unit of Health Sciences and Technology (HST), University of Oulu, Oulu, Finland – sequence: 9 givenname: Erkki orcidid: 0000-0001-5331-209X surname: Harjula fullname: Harjula, Erkki organization: Centre for Wireless Communications - Networks and Systems (CWC-NS), University of Oulu, Oulu, Finland |
| BookMark | eNp9kU9rGzEQxUVJoWmST9AeFnq2q_9a9Wa2TmoINBD30ovQakcbGXvlSHKh3z5KN4XQQ3UZzWN-jxnee3Q2xQkQ-kDwkhCsP6-6bn1_v6SYiiUTDFOt3qBzSqRe1Faevfq_Q1c573B9bZWEOkc_r1M8NFtwD1Nwdt_cJUjweAo5FMhNic3mcEzxFwxNZxN8ab6GXFLoT6Uq62GEZrVpfEzNNh7imOzxIbiK2DFM4yV66-0-w9VLvUA_rtfb7tvi9vvNplvdLhzHuix66XDveC8Vwz23VJIeC6UGz7lywEXL2IAJJlJ4LR0oRj1mjCgBfMBSe3aBNrPvEO3OHFM42PTbRBvMHyGm0dhUgtuDGVrNmOeKMs05HUB7aoE4L5nXvlpWr0-zVz368QS5mF08pamubxgRWmBBJK1Tep5yKeacwBsXii0hTiXZsDcEm-dkzJyMeU7GvCRTWfYP-3fj_1MfZyoAwCui5Yzilj0BAcqaFQ |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s00521_025_11475_0 |
| Cites_doi | 10.1109/ACCESS.2023.3281832 10.1007/s00521-023-09160-1 10.1109/ACCESS.2020.2988563 10.1109/TII.2021.3049141 10.1109/ACCESS.2022.3160738 10.1109/ACCESS.2017.2778504 10.1148/rg.220107 10.1109/TNSE.2021.3073897 10.1259/dmfr.20140224 10.1109/MCE.2017.2746096 10.3991/ijim.v16i20.34373 10.1109/ACCESS.2019.2936714 10.1016/j.compeleceng.2017.09.001 10.1016/j.artmed.2024.102861 10.1109/ACCESS.2020.3011503 10.1118/1.4752087 10.3390/s21072502 10.1109/COMST.2020.2970550 10.14778/3415478.3415530 10.1109/MNET.011.1900636 10.1016/j.bspc.2024.105963 10.1109/IEMCON53756.2021.9623076 10.1109/EHB52898.2021.9657740 10.1016/j.ejmp.2023.103184 10.1109/JBHI.2020.3007661 10.23996/fjhw.111777 10.1109/JBHI.2022.3192648 10.1109/PerComWorkshops59983.2024.10502691 10.1109/ISMICT58261.2023.10152231 10.1109/ACCESS.2015.2437951 10.1109/TGCN.2022.3186911 10.1109/JIOT.2021.3052778 10.1002/mrm.26977 10.1109/TSUSC.2022.3170508 10.1007/s44200-022-00014-0 10.1007/978-981-10-8603-8_9 10.1016/j.ultramic.2015.05.002 10.3390/s23115006 10.1016/j.compeleceng.2018.10.003 10.1007/springerreference_302333 10.1109/ACCESS.2021.3052469 10.1016/j.clsr.2024.105957 10.1109/ACCESS.2021.3102867 10.1016/j.neucom.2022.11.011 10.1109/ACCESS.2023.3344029 10.1148/radiol.230441 10.1609/aaai.v36i8.20825 10.1109/JIOT.2020.3014845 10.5220/0008019201550162 10.1016/j.comnet.2019.106984 10.1007/978-3-030-70604-3_5 10.1145/3341145 10.1007/978-3-031-47425-5_29 10.1093/rheumatology/ken180 10.23919/ICACT56868.2023.10079299 10.1109/CSCloud-EdgeCom49738.2020.00042 10.1016/j.icte.2023.02.007 10.1109/IOTM.0001.1900096 10.1109/ACCESS.2020.2997831 10.1002/spe.3078 10.14733/cadaps.2024.847-858 10.1016/j.neucom.2015.09.116 10.1109/ACCESS.2019.2898265 10.1109/ACCESS.2023.3337092 10.1109/TNSM.2021.3049824 10.1109/JBHI.2017.2776351 10.1109/ACCESS.2020.3047960 10.1007/s41666-020-00082-4 10.1109/SMART50582.2020.9337157 10.1109/JIOT.2022.3191881 10.1007/s12652-020-02113-9 10.1007/s10115-023-01894-7 10.1109/MC.2016.145 10.1145/3412357 10.1109/ICDCSW.2016.22 10.1109/ACCESS.2024.3358827 10.3390/electronics8070768 10.1016/j.hlc.2021.06.517 10.1109/JTEHM.2016.2597838 10.1145/3653297 10.1186/s40537-021-00444-8 10.1007/s10723-021-09558-y 10.1145/3298981 10.1016/j.ejmp.2020.11.012 10.1145/3377454 10.1109/ACCESS.2017.2739804 10.1109/ICSENS.2018.8589624 10.1109/TMI.2019.2914370 10.1016/j.patcog.2024.110424 10.3390/diagnostics11122183 10.1007/978-3-030-97929-4_1 10.3390/electronics11030494 10.1109/JPROC.2019.2921977 10.1007/s00259-021-05339-7 10.1109/COMST.2018.2849509 10.1007/s11831-022-09790-z 10.1109/ACCESS.2019.2962862 10.1007/978-3-031-32879-4_3 10.1002/ett.3710 10.1038/s41568-018-0016-5 10.1109/TII.2019.2902878 10.1038/s42256-021-00337-8 10.1088/1361-6560/ac145b 10.1016/j.ejmp.2021.07.035 10.1109/ACCESS.2022.3211512 10.23996/fjhw.122647 10.1016/j.aej.2023.01.065 10.1007/s13204-021-02152-4 10.1109/COMST.2022.3218527 10.1007/s44174-023-00113-9 10.1016/j.ejmp.2021.07.007 10.3390/s18124307 10.1007/s11042-021-11158-7 10.1109/JIOT.2021.3052910 10.1109/TCSS.2022.3232192 10.1007/s10586-022-03717-w 10.1007/978-3-030-37526-3_11 10.1016/j.future.2022.06.012 10.1148/radiol.2402042120 10.1109/GLOBECOM42002.2020.9348064 10.1007/s13042-024-02234-z 10.1088/2057-1976/ac605b 10.1109/ACCESS.2021.3098708 10.1117/12.3013750 10.1118/1.4811272 10.1118/1.1759828 10.1109/JIOT.2023.3329061 10.1088/2057-1976/2/5/055010 10.3390/s22145327 10.1109/ACCESS.2016.2624938 10.1148/radiol.2020192084 10.3233/web-190414 10.1109/TMI.2016.2528162 10.1109/JIOT.2016.2579198 10.1016/j.procs.2020.04.152 10.1016/j.ejmp.2017.07.024 10.1109/MCOM.2017.1600863 10.1080/03772063.2019.1654934 10.1007/s10586-020-03106-1 10.1016/j.media.2019.01.013 10.1038/s41746-020-00323-1 10.1002/mp.14624 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3530297 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_d8933f47239442de9f2ae1cf63f9f175 10_1109_ACCESS_2025_3530297 10843208 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Flagship of Advanced Mathematics for Sensing, Imaging, and Modelling grantid: 359186 – fundername: Research Council of Finland DigiHealth grantid: 326291 – fundername: 6G Flagship programme grantid: 346208 – fundername: Business Finland grantid: 8095/31/2022 funderid: 10.13039/501100014438 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-b6c0bc4b6730b4a261b0577df447ce45833d010165f96ce732f033175e4d069f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001405925700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:34 EDT 2025 Mon Jun 30 12:58:57 EDT 2025 Tue Nov 18 21:00:24 EST 2025 Sat Nov 29 04:27:19 EST 2025 Wed Aug 27 01:55:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-b6c0bc4b6730b4a261b0577df447ce45833d010165f96ce732f033175e4d069f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2306-3111 0000-0002-7523-0666 0000-0001-5331-209X 0000-0003-4372-3041 0009-0005-3350-0276 0000-0003-4646-6714 0009-0000-2256-2029 |
| OpenAccessLink | https://doaj.org/article/d8933f47239442de9f2ae1cf63f9f175 |
| PQID | 3159505162 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3530297 ieee_primary_10843208 doaj_primary_oai_doaj_org_article_d8933f47239442de9f2ae1cf63f9f175 proquest_journals_3159505162 crossref_citationtrail_10_1109_ACCESS_2025_3530297 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref58 Shahid (ref59) 2024 ref53 ref52 ref55 ref54 (ref6) 2024 McMahan (ref99) Goodfellow (ref15) 2016 ref51 ref50 (ref135) 2024 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref4 ref3 (ref93) 2024 Vegesna (ref141) 2022; 9 (ref1) 2024 ref5 ref100 Reznik (ref87); 23 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref25 ref20 ref159 ref22 ref157 ref21 ref158 ref28 ref27 ref29 ref162 Vepakomma (ref107) 2018 ref160 ref161 ref13 ref12 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref124 ref10 ref98 ref125 (ref136) 2024 ref17 ref16 ref19 ref18 ref133 ref92 ref134 ref95 ref131 ref94 ref132 Shah (ref26) 2022; 16 ref130 Simonyan (ref9) 2014 ref91 ref90 (ref62) 2024 ref89 ref139 ref86 ref137 ref85 ref138 ref88 du Terrail (ref104) ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref80 Roth (ref68) 2023; 46 ref79 ref78 ref109 ref106 ref75 ref74 ref105 ref77 ref102 Nguyen (ref23) 2022; 1 ref76 ref103 ref2 Rajkovic (ref116) 2022 ref71 ref111 ref70 ref112 ref73 ref72 ref110 Poirot (ref108) 2019 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref66 ref113 ref65 ref114 ref60 ref122 ref123 (ref63) 2024 ref120 ref61 ref121 |
| References_xml | – ident: ref101 doi: 10.1109/ACCESS.2023.3281832 – ident: ref86 doi: 10.1007/s00521-023-09160-1 – ident: ref151 doi: 10.1109/ACCESS.2020.2988563 – ident: ref73 doi: 10.1109/TII.2021.3049141 – ident: ref115 doi: 10.1109/ACCESS.2022.3160738 – ident: ref127 doi: 10.1109/ACCESS.2017.2778504 – ident: ref95 doi: 10.1148/rg.220107 – ident: ref98 doi: 10.1109/TNSE.2021.3073897 – ident: ref43 doi: 10.1259/dmfr.20140224 – ident: ref53 doi: 10.1109/MCE.2017.2746096 – ident: ref119 doi: 10.3991/ijim.v16i20.34373 – ident: ref113 doi: 10.1109/ACCESS.2019.2936714 – ident: ref120 doi: 10.1016/j.compeleceng.2017.09.001 – ident: ref156 doi: 10.1016/j.artmed.2024.102861 – ident: ref160 doi: 10.1109/ACCESS.2020.3011503 – ident: ref49 doi: 10.1118/1.4752087 – ident: ref132 doi: 10.3390/s21072502 – ident: ref154 doi: 10.1109/COMST.2020.2970550 – ident: ref66 doi: 10.14778/3415478.3415530 – ident: ref77 doi: 10.1109/MNET.011.1900636 – start-page: 1273 volume-title: Proc. 20th Int. Conf. Artif. Intell. Statist. ident: ref99 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref81 doi: 10.1016/j.bspc.2024.105963 – ident: ref48 doi: 10.1109/IEMCON53756.2021.9623076 – volume: 46 issue: 1 year: 2023 ident: ref68 article-title: NVIDIA FLARE: Federated learning from simulation to real-world publication-title: IEEE Data Eng. Bull. – ident: ref75 doi: 10.1109/EHB52898.2021.9657740 – ident: ref4 doi: 10.1016/j.ejmp.2023.103184 – ident: ref74 doi: 10.1109/JBHI.2020.3007661 – ident: ref33 doi: 10.23996/fjhw.111777 – ident: ref30 doi: 10.1109/JBHI.2022.3192648 – ident: ref103 doi: 10.1109/PerComWorkshops59983.2024.10502691 – ident: ref148 doi: 10.1109/ISMICT58261.2023.10152231 – ident: ref56 doi: 10.1109/ACCESS.2015.2437951 – ident: ref124 doi: 10.1109/TGCN.2022.3186911 – ident: ref84 doi: 10.1109/JIOT.2021.3052778 – ident: ref92 doi: 10.1002/mrm.26977 – ident: ref133 doi: 10.1109/TSUSC.2022.3170508 – ident: ref134 doi: 10.1007/s44200-022-00014-0 – ident: ref117 doi: 10.1007/978-981-10-8603-8_9 – ident: ref35 doi: 10.1016/j.ultramic.2015.05.002 – ident: ref22 doi: 10.3390/s23115006 – ident: ref76 doi: 10.1016/j.compeleceng.2018.10.003 – ident: ref88 doi: 10.1007/springerreference_302333 – volume-title: Health At a Glance: Europe 2022 year: 2024 ident: ref62 – ident: ref71 doi: 10.1109/ACCESS.2021.3052469 – ident: ref5 doi: 10.1016/j.clsr.2024.105957 – ident: ref32 doi: 10.1109/ACCESS.2021.3102867 – ident: ref105 doi: 10.1016/j.neucom.2022.11.011 – ident: ref142 doi: 10.1109/ACCESS.2023.3344029 – ident: ref123 doi: 10.1148/radiol.230441 – volume-title: What Are the GDPR Fines year: 2024 ident: ref136 – ident: ref110 doi: 10.1609/aaai.v36i8.20825 – ident: ref126 doi: 10.1109/JIOT.2020.3014845 – volume-title: World Health Organization (WHO), Strengthening Medical Imaging year: 2024 ident: ref1 – ident: ref70 doi: 10.5220/0008019201550162 – ident: ref69 doi: 10.1016/j.comnet.2019.106984 – ident: ref67 doi: 10.1007/978-3-030-70604-3_5 – ident: ref129 doi: 10.1145/3341145 – ident: ref157 doi: 10.1007/978-3-031-47425-5_29 – ident: ref2 doi: 10.1093/rheumatology/ken180 – volume-title: Siemens Healthhineers, MR-Only Radiotherapy Planning year: 2024 ident: ref93 – ident: ref118 doi: 10.23919/ICACT56868.2023.10079299 – volume-title: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons With Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (Text With EEA Relevance) year: 2024 ident: ref63 – ident: ref72 doi: 10.1109/CSCloud-EdgeCom49738.2020.00042 – ident: ref137 doi: 10.1016/j.icte.2023.02.007 – ident: ref17 doi: 10.1109/IOTM.0001.1900096 – ident: ref19 doi: 10.1109/ACCESS.2020.2997831 – ident: ref21 doi: 10.1002/spe.3078 – ident: ref83 doi: 10.14733/cadaps.2024.847-858 – ident: ref11 doi: 10.1016/j.neucom.2015.09.116 – ident: ref28 doi: 10.1109/ACCESS.2019.2898265 – ident: ref130 doi: 10.1109/ACCESS.2023.3337092 – volume-title: Finnish Ministry of Social Affairs and Health, Secondary Use of Health and Social Data year: 2024 ident: ref135 – ident: ref149 doi: 10.1109/TNSM.2021.3049824 – year: 2018 ident: ref107 article-title: Split learning for health: Distributed deep learning without sharing raw patient data publication-title: arXiv:1812.00564 – ident: ref131 doi: 10.1109/JBHI.2017.2776351 – ident: ref85 doi: 10.1109/ACCESS.2020.3047960 – ident: ref102 doi: 10.1007/s41666-020-00082-4 – ident: ref112 doi: 10.1109/SMART50582.2020.9337157 – ident: ref61 doi: 10.1109/JIOT.2022.3191881 – ident: ref65 doi: 10.1007/s12652-020-02113-9 – ident: ref8 doi: 10.1007/s10115-023-01894-7 – volume: 1 volume-title: Advances in Engineering and Intelligence Systems year: 2022 ident: ref23 article-title: HSSCIoT: An optimal framework based on Internet of Things-cloud computing for healthcare services selection in smart hospitals – ident: ref57 doi: 10.1109/MC.2016.145 – volume: 23 start-page: 25 volume-title: Proc. ETSI MEC ident: ref87 article-title: Cloud RAN and MEC: A perfect pairing – ident: ref106 doi: 10.1145/3412357 – ident: ref145 doi: 10.1109/ICDCSW.2016.22 – ident: ref45 doi: 10.1109/ACCESS.2024.3358827 – ident: ref24 doi: 10.3390/electronics8070768 – ident: ref139 doi: 10.1016/j.hlc.2021.06.517 – ident: ref37 doi: 10.1109/JTEHM.2016.2597838 – ident: ref143 doi: 10.1145/3653297 – ident: ref94 doi: 10.1186/s40537-021-00444-8 – ident: ref79 doi: 10.1007/s10723-021-09558-y – ident: ref100 doi: 10.1145/3298981 – ident: ref91 doi: 10.1016/j.ejmp.2020.11.012 – ident: ref97 doi: 10.1145/3377454 – ident: ref54 doi: 10.1109/ACCESS.2017.2739804 – ident: ref128 doi: 10.1109/ICSENS.2018.8589624 – ident: ref50 doi: 10.1109/TMI.2019.2914370 – ident: ref111 doi: 10.1016/j.patcog.2024.110424 – ident: ref16 doi: 10.3390/diagnostics11122183 – ident: ref162 doi: 10.1007/978-3-030-97929-4_1 – ident: ref46 doi: 10.3390/electronics11030494 – ident: ref152 doi: 10.1109/JPROC.2019.2921977 – ident: ref109 doi: 10.1007/s00259-021-05339-7 – year: 2022 ident: ref116 article-title: The role of resource awareness in medical information system life cycle publication-title: arXiv:2205.07778 – ident: ref55 doi: 10.1109/COMST.2018.2849509 – year: 2019 ident: ref108 article-title: Split learning for collaborative deep learning in healthcare publication-title: arXiv:1912.12115 – ident: ref42 doi: 10.1007/s11831-022-09790-z – ident: ref13 doi: 10.1109/ACCESS.2019.2962862 – ident: ref89 doi: 10.1007/978-3-031-32879-4_3 – ident: ref31 doi: 10.1002/ett.3710 – ident: ref12 doi: 10.1038/s41568-018-0016-5 – ident: ref47 doi: 10.1109/TII.2019.2902878 – ident: ref39 doi: 10.1038/s42256-021-00337-8 – ident: ref40 doi: 10.1088/1361-6560/ac145b – ident: ref82 doi: 10.1016/j.ejmp.2021.07.035 – ident: ref18 doi: 10.1109/ACCESS.2022.3211512 – ident: ref34 doi: 10.23996/fjhw.122647 – ident: ref51 doi: 10.1016/j.aej.2023.01.065 – ident: ref52 doi: 10.1007/s13204-021-02152-4 – ident: ref153 doi: 10.1109/COMST.2022.3218527 – volume-title: Deep Learning year: 2016 ident: ref15 – year: 2024 ident: ref59 article-title: Resource slicing through intelligent orchestration of energy-aware IoT services in edge-cloud continuum publication-title: arXiv:2412.03181 – ident: ref144 doi: 10.1007/s44174-023-00113-9 – ident: ref3 doi: 10.1016/j.ejmp.2021.07.007 – ident: ref159 doi: 10.3390/s18124307 – ident: ref150 doi: 10.1007/s11042-021-11158-7 – ident: ref78 doi: 10.1109/JIOT.2021.3052910 – volume: 9 start-page: 89 year: 2022 ident: ref141 article-title: Using distributed ledger based blockchain technological advances to address IoT safety and confidentiality issues publication-title: Int. J. Current Eng. Sci. Res. – ident: ref155 doi: 10.1109/TCSS.2022.3232192 – ident: ref161 doi: 10.1007/s10586-022-03717-w – ident: ref20 doi: 10.1007/978-3-030-37526-3_11 – ident: ref125 doi: 10.1016/j.future.2022.06.012 – ident: ref146 doi: 10.1148/radiol.2402042120 – ident: ref158 doi: 10.1109/GLOBECOM42002.2020.9348064 – ident: ref121 doi: 10.1007/s13042-024-02234-z – year: 2014 ident: ref9 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref64 doi: 10.1088/2057-1976/ac605b – ident: ref140 doi: 10.1109/ACCESS.2021.3098708 – ident: ref60 doi: 10.1117/12.3013750 – ident: ref147 doi: 10.1118/1.4811272 – ident: ref44 doi: 10.1118/1.1759828 – volume-title: Eu Artificial Intelligence Act year: 2024 ident: ref6 – ident: ref96 doi: 10.1109/JIOT.2023.3329061 – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref104 article-title: FLamby: Datasets and benchmarks for cross-silo federated learning in realistic healthcare settings – ident: ref36 doi: 10.1088/2057-1976/2/5/055010 – ident: ref80 doi: 10.3390/s22145327 – ident: ref90 doi: 10.1109/ACCESS.2016.2624938 – ident: ref122 doi: 10.1148/radiol.2020192084 – ident: ref7 doi: 10.3233/web-190414 – ident: ref10 doi: 10.1109/TMI.2016.2528162 – ident: ref27 doi: 10.1109/JIOT.2016.2579198 – ident: ref114 doi: 10.1016/j.procs.2020.04.152 – ident: ref38 doi: 10.1016/j.ejmp.2017.07.024 – volume: 16 start-page: 50 issue: 3 year: 2022 ident: ref26 article-title: Cloud computing in healthcare: Opportunities, risks, and compliance publication-title: Revista Espanola de Documentacion Cientifica – ident: ref58 doi: 10.1109/MCOM.2017.1600863 – ident: ref25 doi: 10.1080/03772063.2019.1654934 – ident: ref138 doi: 10.1007/s10586-020-03106-1 – ident: ref14 doi: 10.1016/j.media.2019.01.013 – ident: ref29 doi: 10.1038/s41746-020-00323-1 – ident: ref41 doi: 10.1002/mp.14624 |
| SSID | ssj0000816957 |
| Score | 2.3539758 |
| Snippet | Recent years have seen a surge in AI-driven medical image processing, leading to significant improvements in diagnostic performance. However, medical imaging... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | CBCT Cloud computing Computed tomography Computer architecture Data processing distributed AI Edge AI edge cloud continuum Edge computing GDPR Hospitals Image edge detection Image processing Image reconstruction Imaging Literature reviews Maintainability Medical diagnostic imaging Medical imaging Technical requirements |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEBVpyCE9pG0-6KZp0KHHOLEtrbTKbbvNkkIJOaQQehG2NAoLzbr17vb3Z0ZSloXQQm9GSFj201gzI897jH2iasWq8qJQjRoVEkMdtDkQRRvqxomyUcPEM_tN39yM7u_NbS5Wj7UwABB_PoNzuoxn-b5zK0qVoYWPpKiptPeV1joVa60TKqQgYYY6MwtVpbkYTyb4EBgD1sNzQeo4xOy0sftEkv6sqvLiUxz3l-mb_5zZW7aXHUk-Tsi_Y1sw32evN-gFD9iPad898pg8Jyj4bQ89_F7N6MB4wZcdTxkF8JyqkC75FyLRJf0rbLnyD8DHXzn6tPyue0zE1jOHQ6Ks0SH7Pr26m1wXWUuhcBjBLYtWubJ1slVo0a1sMG5q0VPTPkipHdDhqfCRbm4YjHKgRR1KQb4FSF8qE8QR2553c3jPOAYhII2rdANU2VqZFkINjRQBNz7nxYDVz-_Yukw0TnoXP20MOEpjEzCWgLEZmAE7Ww_6lXg2_t39M4G37kok2bEBUbHZ5qxHX0wEqUn9XdYeDK4_qFxQIpiAjzZgh4Tkxv0SiAN28rwWbLbohRXo96G3WKn6-C_DPrBdmmLKz5yw7WW_go9sx_1Zzhb9aVysT_YX5Ks priority: 102 providerName: IEEE |
| Title | From Technical Prerequisites to Improved Care: Distributed Edge AI for Tomographic Imaging |
| URI | https://ieeexplore.ieee.org/document/10843208 https://www.proquest.com/docview/3159505162 https://doaj.org/article/d8933f47239442de9f2ae1cf63f9f175 |
| Volume | 13 |
| WOSCitedRecordID | wos001405925700039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV2_T-swELYQYoABPX6J8gB5YCSQxK5Ts5XSCiRADCAhFiuxz6gStJCWN76_nTs7oEhIsLBksOw4Pp99d3bu-xg7oGzFLHMiUaXqJRJDHVxzIJLK56UVaam6EWf2sri-7t3f65sW1Rf9ExbhgaPgjh3xwXtZEIW3zB1ofAlk1ivhtUfbR7svej2tYCrswb1M6W7RwAxlqT7uDwY4IgwI8-6RIKocgnlqmaKA2N9QrHzZl4OxGf1hq42XyPvx69bYAkzW2UoLO3CDPYzq6TMPJ-MkZ35TQw2vb2O6DZ7x-ZTH4wJwnFKMTvgZIeQSuRWWDN0j8P4FR4eV306fI2r12GKTwFm0ye5Gw9vBedIQJSQWw7N5UimbVlZWCpdrJUsMiip0wwrnpSws0M2ocAFLruu1slCI3KeCHAeQLlXaiy22OJlOYJtxjDBAapsVJVDaaqYr8DmUUni0ataJDss_ZGZsgyJOZBZPJkQTqTZR0IYEbRpBd9jhZ6OXCKLxffVTmozPqoSAHQpQL0yjF-YnveiwTZrKVn89KVBTOmz3Y25Ns1xnRqBTh65gpvKd3-j7L1um8cSTml22OK_fYI8t2X_z8azeD5qKz6v_w_2Qb_gOMIrpJQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQhgQ88HOIwgZ-4JGMxHaSem-lW7WJUu2hSBMvVmKfp0qs2dKWv58726sqIZB4iyxbcfL54rtz7vsY-0jVikXhZFY11TBTGOqgzYHMWi8aK_OmKiPP7LSezYZXV_oyFauHWhgACD-fwTFdhrN819kNpcrQwodKCirt3S-VEkUs19qmVEhDQpd14hYqcv15NB7jY2AUKMpjSfo4xO20s_8Emv6kq_LHxzjsMJNn_zm35-xpciX5KGL_gj2A5Uv2ZIdg8BX7Mem7Gx7S5wQGv-yhh7vNgo6MV3zd8ZhTAMepDumEnxKNLilgYcuZuwY-uuDo1fJ5dxOprRcWhwRhowP2fXI2H59nSU0hsxjDrbO2snlrVVuhTbeqwcipRV-tdl6p2gIdn0oXCOdKrysLtRQ-l-RdgHJ5pb18zfaW3RLeMI5hCChti7oBqm0tdAteQKOkx63POjlg4v4dG5uoxknx4qcJIUeuTQTGEDAmATNgn7aDbiPTxr-7fyHwtl2JJjs0IComWZ1x6I1Jr2rSf1fCgcYVCIX1lfTa46MN2AEhuXO_COKAHd6vBZNsemUken7oLxaVePuXYR_Yo_P5t6mZXsy-vmOPaboxW3PI9tb9Bo7YQ_trvVj178PC_Q0A1efy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Technical+Prerequisites+to+Improved+Care%3A+Distributed+Edge+AI+for+Tomographic+Imaging&rft.jtitle=IEEE+access&rft.au=Bilgehan+Akdemir&rft.au=Hafiz+Faheem+Shahid&rft.au=Mikael+A.+K.+Brix&rft.au=Juho+Laakkola&rft.date=2025-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=14317&rft.epage=14343&rft_id=info:doi/10.1109%2FACCESS.2025.3530297&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d8933f47239442de9f2ae1cf63f9f175 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |