Quantum Optimization Methods for Satellite Mission Planning
Satellite mission planning for Earth observation satellites is a combinatorial optimization problem that consists of selecting the optimal subset of imaging requests, subject to constraints, to be fulfilled during an orbit pass of a satellite. The ever-growing amount of satellites in orbit underscor...
Saved in:
| Published in: | IEEE access Vol. 12; pp. 71808 - 71820 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Satellite mission planning for Earth observation satellites is a combinatorial optimization problem that consists of selecting the optimal subset of imaging requests, subject to constraints, to be fulfilled during an orbit pass of a satellite. The ever-growing amount of satellites in orbit underscores the need to operate them efficiently, which requires solving many instances of the problem in short periods of time. However, current classical algorithms often fail to find the global optimum or take too long to execute. Here, we approach the problem from a quantum computing point of view, which offers a promising alternative that could lead to significant improvements in solution quality or execution speed in the future. To this end, we study a planning problem with a variety of intricate constraints and discuss methods to encode them for quantum computers. Additionally, we experimentally assess the performance of quantum annealing and the quantum approximate optimization algorithm on a realistic and diverse dataset. Our results identify key aspects like graph connectivity and constraint structure that influence the performance of the methods. We explore the limits of today's quantum algorithms and hardware, providing bounds on the problems that can be currently solved successfully and showing how the solution degrades as the complexity grows. This work aims to serve as a baseline for further research in the field and establish realistic expectations on current quantum optimization capabilities. |
|---|---|
| AbstractList | Satellite mission planning for Earth observation satellites is a combinatorial optimization problem that consists of selecting the optimal subset of imaging requests, subject to constraints, to be fulfilled during an orbit pass of a satellite. The ever-growing amount of satellites in orbit underscores the need to operate them efficiently, which requires solving many instances of the problem in short periods of time. However, current classical algorithms often fail to find the global optimum or take too long to execute. Here, we approach the problem from a quantum computing point of view, which offers a promising alternative that could lead to significant improvements in solution quality or execution speed in the future. To this end, we study a planning problem with a variety of intricate constraints and discuss methods to encode them for quantum computers. Additionally, we experimentally assess the performance of quantum annealing and the quantum approximate optimization algorithm on a realistic and diverse dataset. Our results identify key aspects like graph connectivity and constraint structure that influence the performance of the methods. We explore the limits of today’s quantum algorithms and hardware, providing bounds on the problems that can be currently solved successfully and showing how the solution degrades as the complexity grows. This work aims to serve as a baseline for further research in the field and establish realistic expectations on current quantum optimization capabilities. |
| Author | Makarov, Anton Osaba, Eneko del Barrio Cabello, Paloma Oregi, Izaskun Villar-Rodriguez, Esther Taddei, Marcio M. Franceschetto, Giacomo Perez-Herradon, Carlos |
| Author_xml | – sequence: 1 givenname: Anton orcidid: 0009-0006-6848-3653 surname: Makarov fullname: Makarov, Anton organization: GMV, Tres Cantos, Madrid, Spain – sequence: 2 givenname: Carlos orcidid: 0009-0004-9444-5509 surname: Perez-Herradon fullname: Perez-Herradon, Carlos email: cperez.h@gmv.com organization: GMV, Tres Cantos, Madrid, Spain – sequence: 3 givenname: Giacomo surname: Franceschetto fullname: Franceschetto, Giacomo organization: Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain – sequence: 4 givenname: Marcio M. orcidid: 0000-0002-8595-0501 surname: Taddei fullname: Taddei, Marcio M. organization: Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain – sequence: 5 givenname: Eneko orcidid: 0000-0001-7863-9910 surname: Osaba fullname: Osaba, Eneko organization: TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain – sequence: 6 givenname: Paloma surname: del Barrio Cabello fullname: del Barrio Cabello, Paloma organization: GMV, Tres Cantos, Madrid, Spain – sequence: 7 givenname: Esther orcidid: 0000-0003-3343-3737 surname: Villar-Rodriguez fullname: Villar-Rodriguez, Esther organization: TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain – sequence: 8 givenname: Izaskun orcidid: 0000-0002-3950-1668 surname: Oregi fullname: Oregi, Izaskun organization: TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain |
| BookMark | eNp9kE1PAyEQhonRRK39BXrYxHMrywAL8WQavxIbNdUzYVlQmu1SgR7017t1NTEehAOTYZ43k-cQ7Xahswgdl3hallieXcxml4vFlGBCp0AxkRLvoANScjkBBnz3V72PxiktcX9E32LVATp_3Ogub1bF_Tr7lf_Q2YeumNv8GppUuBCLhc62bX22xdyntP19aHXX-e7lCO053SY7_n5H6Pnq8ml2M7m7v76dXdxNDMUyT2pW1TXhpAQucdOIUgAVGipmsRHOudoxKhoOljAuHWhtDGGiEkQwUzkMMEK3Q24T9FKto1_p-K6C9uqrEeKL0jF701rFob_aSQqVpA1zwhJCWA0MU1ebivdZp0PWOoa3jU1ZLcMmdv36CjAvKRNMyn5KDlMmhpSidcr4_KUmR-1bVWK1Va8G9WqrXn2r71n4w_5s_D91MlDeWvuLYEArTuATY52Pzw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3525620 crossref_primary_10_3390_aerospace11090758 crossref_primary_10_1016_j_eij_2025_100713 crossref_primary_10_1016_j_jii_2025_100803 crossref_primary_10_3390_electronics13214244 crossref_primary_10_4218_etrij_2024_0153 crossref_primary_10_1140_epjqt_s40507_025_00369_8 crossref_primary_10_1007_s42484_025_00308_x crossref_primary_10_1002_qute_202400716 |
| Cites_doi | 10.1007/BF01343193 10.1088/1751-8121/ad00f0 10.1038/ncomms5213 10.1103/PhysRevX.10.021067 10.1016/j.physrep.2024.03.002 10.1023/A:1026488509554 10.1109/JSTARS.2023.3287154 10.1007/s10878-009-9215-z 10.1007/978-94-015-8330-5_4 10.1016/S0166-218X(01)00341-9 10.1088/2058-9565/aaadc2 10.1103/PhysRevE.58.5355 10.1109/tits.2022.3172241 10.1109/ACCESS.2022.3157286 10.23919/CCC52363.2021.9550193 10.1103/RevModPhys.90.015002 10.1007/s10288-019-00424-y 10.1109/QCE57702.2023.00079 10.1109/TAES.2021.3088490 10.1002/net.1975.5.1.45 10.1109/ACCESS.2022.3188117 10.21078/JSSI-2018-399-22 10.1109/ICSMC.2004.1399860 10.1155/2021/7819105 10.3389/fphy.2014.00005 10.1103/PhysRevA.102.062404 10.1080/01605682.2019.1609891 10.22331/q-2018-08-06-79 10.1007/978-3-031-48232-8_1 10.1023/A:1021950608048 10.1038/nature23655 10.1007/s10686-021-09731-x 10.1016/j.asr.2022.08.016 10.1016/j.pss.2020.105110 10.1016/j.ejor.2005.12.026 10.1109/ACCESS.2020.2970105 10.1103/PhysRevLett.115.040502 10.1109/QCE52317.2021.00016 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3402990 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 71820 |
| ExternalDocumentID | oai_doaj_org_article_63636af943794d5f8e2225b3504fbc76 10_1109_ACCESS_2024_3402990 10534762 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: FUNQIP, and European Union (EU) NextGenerationEU grantid: PRTR-C17.I1 – fundername: Government of Spain grantid: CEX2019-000910-S – fundername: Spanish Ministry of Science and Innovation under the Recovery, Transformation and Resilience Plan through CUCO grantid: MIG-20211005 – fundername: European Union (PASQuanS2.1) grantid: 101113690 – fundername: GMV, Fundació Cellex, Fundació Mir-Puig, Generalitat de Catalunya (CERCA Program) – fundername: Basque Government through Plan Complementario Comunicación Cuántica grantid: 2022/01341; A/20220551 – fundername: Giacomo Franceschetto was supported by the “la Caixa” Foundation Fellowship grantid: 100010434; LCF/BQ/DI23/11990070 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-b57bb26213690dd818348a375e0c8fffbf548d63e2569f3aacc25878285c7f033 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235935700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:34 EDT 2025 Mon Jun 30 02:24:44 EDT 2025 Sat Nov 29 06:25:44 EST 2025 Tue Nov 18 20:49:28 EST 2025 Wed Aug 27 02:05:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-b57bb26213690dd818348a375e0c8fffbf548d63e2569f3aacc25878285c7f033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3343-3737 0009-0004-9444-5509 0000-0002-8595-0501 0000-0002-3950-1668 0000-0001-7863-9910 0009-0006-6848-3653 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10534762 |
| PQID | 3061458599 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10534762 doaj_primary_oai_doaj_org_article_63636af943794d5f8e2225b3504fbc76 crossref_citationtrail_10_1109_ACCESS_2024_3402990 proquest_journals_3061458599 crossref_primary_10_1109_ACCESS_2024_3402990 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 Makarov (ref44) 2024 ref11 ref10 Combarro (ref20) 2023 ref17 ref16 ref19 ref18 Osaba (ref42) 2024 ref51 ref50 (ref37) 2024 ref46 ref48 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Stollenwerk (ref24) 2020 ref35 ref34 ref36 ref31 ref30 ref33 (ref38) 2024 ref32 Dubey (ref21) 2023 ref2 (ref41) 2021 ref1 ref39 ref23 ref26 ref25 ref22 Lubinski (ref43) 2023 Perron (ref45) 2024 (ref40) 2020 ref28 ref27 ref29 Farhi (ref15) 2014 Bergholm (ref47) 2018 |
| References_xml | – volume-title: D-Wave Syst. Inc year: 2021 ident: ref41 article-title: Hybrid solver for constrained quadratic models – year: 2023 ident: ref43 article-title: Optimization applications as quantum performance benchmarks publication-title: arXiv:2302.02278 – ident: ref36 doi: 10.1007/BF01343193 – ident: ref11 doi: 10.1088/1751-8121/ad00f0 – ident: ref28 doi: 10.1038/ncomms5213 – ident: ref50 doi: 10.1103/PhysRevX.10.021067 – ident: ref49 doi: 10.1016/j.physrep.2024.03.002 – ident: ref2 doi: 10.1023/A:1026488509554 – ident: ref26 doi: 10.1109/JSTARS.2023.3287154 – ident: ref5 doi: 10.1007/s10878-009-9215-z – ident: ref46 doi: 10.1007/978-94-015-8330-5_4 – ident: ref35 doi: 10.1016/S0166-218X(01)00341-9 – ident: ref22 doi: 10.1088/2058-9565/aaadc2 – ident: ref13 doi: 10.1103/PhysRevE.58.5355 – ident: ref23 doi: 10.1109/tits.2022.3172241 – year: 2024 ident: ref42 article-title: Hybrid quantum solvers in production: How to succeed in the NISQ era? publication-title: arXiv:2401.10302 – volume-title: D-Wave Syst. Inc year: 2020 ident: ref40 article-title: D-Wave Hybrid Solver Service: An Overview – ident: ref9 doi: 10.1109/ACCESS.2022.3157286 – ident: ref31 doi: 10.23919/CCC52363.2021.9550193 – ident: ref33 doi: 10.1103/RevModPhys.90.015002 – ident: ref34 doi: 10.1007/s10288-019-00424-y – ident: ref27 doi: 10.1109/QCE57702.2023.00079 – ident: ref25 doi: 10.1109/TAES.2021.3088490 – ident: ref3 doi: 10.1002/net.1975.5.1.45 – ident: ref14 doi: 10.1109/ACCESS.2022.3188117 – ident: ref30 doi: 10.21078/JSSI-2018-399-22 – volume-title: International Astronautical Congress year: 2023 ident: ref21 article-title: Satellite routing with quantum annealing: Collecting space debris and on-orbit servicing – volume-title: Google, Version v9.9 year: 2024 ident: ref45 article-title: Or-tools – ident: ref6 doi: 10.1109/ICSMC.2004.1399860 – ident: ref1 doi: 10.1155/2021/7819105 – ident: ref32 doi: 10.3389/fphy.2014.00005 – year: 2018 ident: ref47 article-title: PennyLane: Automatic differentiation of hybrid quantum-classical computations publication-title: arXiv:1811.04968 – volume-title: QPU-Specific Physical Properties: Advantage_system6.4 (User Manual), D-Wave Systems year: 2024 ident: ref37 – ident: ref51 doi: 10.1103/PhysRevA.102.062404 – ident: ref7 doi: 10.1080/01605682.2019.1609891 – ident: ref48 doi: 10.22331/q-2018-08-06-79 – year: 2014 ident: ref15 article-title: A quantum approximate optimization algorithm publication-title: arXiv:1411.4028 – ident: ref29 doi: 10.1007/978-3-031-48232-8_1 – ident: ref4 doi: 10.1023/A:1021950608048 – volume-title: A Practical Guide to Quantum Machine Learning and Quantum Optimization: Hands-on Approach to Modern Quantum Algorithms year: 2023 ident: ref20 – volume-title: Mendeley Data, V1 year: 2024 ident: ref44 article-title: Benchmark dataset and results for the satellite mission planning problem – ident: ref18 doi: 10.1038/nature23655 – year: 2020 ident: ref24 article-title: Image acquisition planning for Earth observation satellites with a quantum annealer publication-title: arXiv:2006.09724 – ident: ref16 doi: 10.1007/s10686-021-09731-x – ident: ref10 doi: 10.1016/j.asr.2022.08.016 – ident: ref19 doi: 10.1016/j.pss.2020.105110 – volume-title: QPU-Specific Physical Properties: Advantage2_prototype2.2 (User Manual), D-Wave Systems year: 2024 ident: ref38 – ident: ref8 doi: 10.1016/j.ejor.2005.12.026 – ident: ref12 doi: 10.1109/ACCESS.2020.2970105 – ident: ref17 doi: 10.1103/PhysRevLett.115.040502 – ident: ref39 doi: 10.1109/QCE52317.2021.00016 |
| SSID | ssj0000816957 |
| Score | 2.3614533 |
| Snippet | Satellite mission planning for Earth observation satellites is a combinatorial optimization problem that consists of selecting the optimal subset of imaging... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 71808 |
| SubjectTerms | Algorithms Annealing Approximation algorithms Cameras Combinatorial analysis Combinatorial optimization earth observation Fields (mathematics) Graph theory Mission planning Optimization Optimization methods Planning Quantum annealing quantum approximate optimization algorithm Quantum computers Quantum computing satellite mission planning Satellite observation Satellites |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_phYndKDR-vSJmkaPM3h8LKpqLBbaNIEBm7K1vn3-5JmoyDoRXorKWm_17z3vpJ-H0JXJtUVNpVJFMUqocTmSVFalWBrDZT3ymCqvdkEH4-LyUQ8tay-3J6wRh64Aa6XEzhKK5xuHq2YLYxjKIowTK3S3IttQ9fTIlM-BxdpLhgPMkMpFr3-YABPBIQwozcESJPPwq1S5BX7g8XKj7zsi83wAO2HLjHuN3d3iLbM_AjttbQDj9Ht8wpAWc3iR1j0s_A3ZTzyhtDLGFrR-KX0apu1iUdTt9d1Hq8dijrobXj_OnhIghNCooF_1YliXKksz1ICZLaqoMgSWpSEM4N1Ya1VFohHlRMDDYywpCy1zljBnTqd5hYTcoK25x9zc4piwsu04rjMlGFUA_nIUy1yKJXGcOBOLELZGhSpg0y4c6t4l54uYCEbJKVDUgYkI3S9ueizUcn4ffidQ3sz1Elc-xMQeBkCL_8KfIQ6Llat-RihkNoj1F0HT4b1uJTEEV9gRkKc_cfc52jXPU_zKaaLtuvFylygHf1VT5eLS_8qfgNwPN2s priority: 102 providerName: Directory of Open Access Journals |
| Title | Quantum Optimization Methods for Satellite Mission Planning |
| URI | https://ieeexplore.ieee.org/document/10534762 https://www.proquest.com/docview/3061458599 https://doaj.org/article/63636af943794d5f8e2225b3504fbc76 |
| Volume | 12 |
| WOSCitedRecordID | wos001235935700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTgW1xf9ODRatokTYMnXRQv6wMVvIUmmYDgruLuevS3O0mzy4IoSKGUktB0ppmZL818Q8gRFNZRcJAbTk3Oma_yuvEmp94DuncHlNtYbELe3NTPz-ouJavHXBgAiJvP4CRcxn_57s2Ow1IZznDBuAwWd15K2SZrTRdUQgUJJWRiFiqoOj3vdvElEAOW_IQhToqGd8b7RJL-VFXlhymO_uVq9Z8jWyMrKZDMzlvNr5M5GGyQ5Rl6wU1ydj9GuY372S3ahX5KuMx6sWb0MMNoNXtoIiHnCLLeS9gOO8gmRYy2yNPV5WP3Ok_FEnKLEG2UGyGNKauyYIh3nUM_zHjdMCmA2tp7bzxiE1cxwBhHedY01pailoHAzkpPGdsmC4O3AeyQjMmmcJI2pQHBLeKTqrCqQm8KIBFeiQ4pJ0LUNjGJh4IWrzoiCqp0K3kdJK-T5DvkeNrpvSXS-Lv5RdDOtGlgwY43UOw6TSpdMTwarwKnInfC1xDQq2GCcm-srDpkK6hq5nmtljpkf6JsnabsULOAjRE8KbX7S7c9shSG2C7A7JOF0ccYDsii_Ry9DD8OI5rHc-_r8jB-md_H395i |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RSxwxEB6KLWgf2motPWvrPvjo2uwm2Wzokz0qlnpniwq-hU0yAaGe4t35-51kc8dBsSD7siwJuzuzmcmXzXwfwD5WzjP0WFrBbCl4aMq2C7ZkISCld49MuCQ2ocbj9upK_87F6qkWBhHT5jM8jKfpX76_dfO4VEYjXHKhYsR9KYWoq75ca7mkEjUktFSZW6hi-uvRcEivQSiwFoeckFIKvSv5J9H0Z12Vf4JxyjDHb5_5bO_gTZ5KFke97zfhBU624PUKweB7-PZnTpab3xRnFBlucsllMUqq0dOC5qvFeZcoOWdYjK7jhthJsZAx2obL4x8Xw5MyyyWUjkDarLRSWVs3dcUJ8XpPmZiLtuNKInNtCMEGQie-4UizHB141zlXy1ZFCjunAuP8A6xNbif4EQquusor1tUWpXCEUJrK6YbyKaIigCUHUC-MaFzmEo-SFn9NwhRMm97yJlreZMsP4GDZ6a6n0vh_8-_RO8umkQc7XSCzmzysTMPp6IKOrIrCy9BixK-WSyaCdaoZwHZ01cr9ei8NYHfhbJMH7dTwiI4JPmm980S3PVg_uRidmtOf41-fYCM-br8cswtrs_s5foZX7mF2Pb3_kr7MRwZ-34M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Optimization+Methods+for+Satellite+Mission+Planning&rft.jtitle=IEEE+access&rft.au=Makarov%2C+Ant%C3%B3n&rft.au=P%C3%A9rez-Herrad%C3%B3n%2C+Carlos&rft.au=Franceschetto%2C+Giacomo&rft.au=Taddei%2C+M%C3%A1rcio+M.&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=71808&rft.epage=71820&rft_id=info:doi/10.1109%2FACCESS.2024.3402990&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3402990 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |