The Douglas–Rachford algorithm for convex and nonconvex feasibility problems

The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical methods of operations research (Heidelberg, Germany) Ročník 91; číslo 2; s. 201 - 240
Hlavní autori: Aragón Artacho, Francisco J., Campoy, Rubén, Tam, Matthew K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer Nature B.V
Predmet:
ISSN:1432-2994, 1432-5217
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm is guaranteed in the convex setting, the scheme has demonstrated to be a successful heuristic for solving combinatorial problems of different type. In this self-contained tutorial, we develop the convergence theory of projection algorithms within the framework of fixed point iterations, explain how to devise useful feasibility problem formulations, and demonstrate the application of the Douglas–Rachford method to said formulations. The paradigm is then illustrated on two concrete problems: a generalization of the “eight queens puzzle” known as the “( m ,  n )-queens problem”, and the problem of constructing a probability distribution with prescribed moments.
AbstractList The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm is guaranteed in the convex setting, the scheme has demonstrated to be a successful heuristic for solving combinatorial problems of different type. In this self-contained tutorial, we develop the convergence theory of projection algorithms within the framework of fixed point iterations, explain how to devise useful feasibility problem formulations, and demonstrate the application of the Douglas–Rachford method to said formulations. The paradigm is then illustrated on two concrete problems: a generalization of the “eight queens puzzle” known as the “(m, n)-queens problem”, and the problem of constructing a probability distribution with prescribed moments.
The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm is guaranteed in the convex setting, the scheme has demonstrated to be a successful heuristic for solving combinatorial problems of different type. In this self-contained tutorial, we develop the convergence theory of projection algorithms within the framework of fixed point iterations, explain how to devise useful feasibility problem formulations, and demonstrate the application of the Douglas–Rachford method to said formulations. The paradigm is then illustrated on two concrete problems: a generalization of the “eight queens puzzle” known as the “( m ,  n )-queens problem”, and the problem of constructing a probability distribution with prescribed moments.
Author Campoy, Rubén
Aragón Artacho, Francisco J.
Tam, Matthew K.
Author_xml – sequence: 1
  givenname: Francisco J.
  orcidid: 0000-0002-2445-8011
  surname: Aragón Artacho
  fullname: Aragón Artacho, Francisco J.
  email: francisco.aragon@ua.es
  organization: Department of Mathematics, University of Alicante
– sequence: 2
  givenname: Rubén
  surname: Campoy
  fullname: Campoy, Rubén
  organization: Department of Mathematics, University of Alicante
– sequence: 3
  givenname: Matthew K.
  surname: Tam
  fullname: Tam, Matthew K.
  organization: Institute for Numerical and Applied Mathematics, University of Göttingen
BookMark eNp9kM1KAzEUhYNUsK2-gKsB16M3PzNpllJ_oShIXYdMmrQp00lNpmJ3voNv6JOYOgXBRVf3Hjjnnss3QL3GNwahcwyXGIBfRQA8KnPAIgcoBc7FEepjRkleEMx7-50IwU7QIMYlJD9jpI-epguT3fjNvFbx-_PrRemF9WGWqXrug2sXqyzJTPvm3XxkqpllqXivrFHRVa527TZbB1_VZhVP0bFVdTRn-zlEr3e30_FDPnm-fxxfT3LNQLR5RUnJCsYqxjWzxgDnrKK00hj4TFteJaW0YYaDpcALRpThoiyNSFZLBR2ii-5uKn7bmNjKpd-EJlVKwgBGosCUJhfpXDr4GIOxch3cSoWtxCB33GTHTSZu8peb3J0e_Qtp16rW-aYNytWHo7SLxtTTzE34--pA6gdMz4VX
CitedBy_id crossref_primary_10_1007_s11228_021_00626_9
crossref_primary_10_1007_s11590_022_01923_4
crossref_primary_10_1007_s10589_023_00516_w
crossref_primary_10_1177_02783649251315203
crossref_primary_10_1109_LWC_2021_3126389
crossref_primary_10_1007_s11075_020_00941_6
crossref_primary_10_1007_s00211_025_01483_6
crossref_primary_10_1007_s10898_022_01264_7
crossref_primary_10_1002_nla_2391
crossref_primary_10_1137_20M1369038
crossref_primary_10_1007_s10589_022_00395_7
crossref_primary_10_1007_s10107_023_01978_w
crossref_primary_10_1007_s11075_023_01623_9
crossref_primary_10_1007_s11228_023_00702_2
crossref_primary_10_1109_MSP_2024_3379753
crossref_primary_10_1016_j_fss_2023_108634
crossref_primary_10_1007_s10589_021_00291_6
crossref_primary_10_1007_s10957_021_01878_z
crossref_primary_10_1007_s10589_022_00413_8
crossref_primary_10_1007_s10589_021_00275_6
crossref_primary_10_1016_j_bbrc_2024_150302
crossref_primary_10_1109_TASLP_2023_3332546
crossref_primary_10_1007_s10092_024_00616_x
crossref_primary_10_1007_s00186_024_00866_z
crossref_primary_10_1007_s10589_019_00155_0
crossref_primary_10_1137_23M1595412
Cites_doi 10.1090/S0002-9904-1967-11761-0
10.1007/s10957-013-0488-0
10.1137/100788100
10.1007/978-981-10-4774-9_5
10.1007/s10878-018-0250-5
10.1007/978-3-319-48311-5
10.1137/120902653
10.1109/TIT.2017.2754485
10.1007/s10898-018-0654-x
10.1080/02331934.2014.947499
10.1007/978-1-4614-7621-4_2
10.4064/fm-3-1-133-181
10.1007/s10898-015-0296-1
10.1017/S1446181114000145
10.1007/s11228-017-0461-4
10.1007/s10898-019-00744-7
10.1007/s10107-015-0963-5
10.1364/JOSAA.20.000040
10.1007/s00013-014-0652-2
10.1007/s11228-016-0399-y
10.1007/s10898-015-0380-6
10.1007/s10898-018-0677-3
10.1007/s10957-013-0381-x
10.1007/s11075-017-0399-5
10.1137/070681399
10.1016/j.jmaa.2014.06.075
10.1090/S0002-9939-1959-0105008-8
10.1080/10556788.2018.1504049
10.1017/S1446181118000391
10.1016/j.jat.2014.06.002
10.1007/BF01581204
10.1007/s11590-018-1249-7
10.1007/s10107-016-1086-3
10.1007/s10589-017-9942-5
10.1137/141001536
10.1016/j.orl.2018.10.003
10.1090/S0002-9947-1956-0084194-4
10.1137/0716071
10.1073/pnas.0606359104
10.1080/02331934.2014.957701
10.1007/s10898-012-9958-4
10.1007/BF02771588
10.1007/978-1-4684-9298-9
10.1007/BF02612715
10.1287/moor.2017.0898
10.1016/j.na.2003.11.004
10.1364/JOSAA.19.001334
10.1109/TSP.2014.2339801
10.1007/978-3-642-30901-4
10.1016/j.jat.2004.02.006
10.1080/02331934.2015.1051532
10.1007/s11228-017-0457-0
10.1137/16M1071079
10.1007/s10957-018-1443-x
10.1007/s10589-018-9989-y
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00186-019-00691-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Engineering Database (subscription)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
Business
EISSN 1432-5217
EndPage 240
ExternalDocumentID 10_1007_s00186_019_00691_9
GrantInformation_xml – fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: PGC2018-097960-B-C22
  funderid: http://dx.doi.org/10.13039/100014440
– fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España (ES)
  grantid: MTM2014-59179-C2-1-P; RYC-2013-13327
– fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España (ES)
  grantid: BES-2015-073360
GroupedDBID -4X
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
28-
29M
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACYUM
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBA
EBE
EBLON
EBO
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EOH
EPL
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O-J
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R-Y
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCF
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c409t-b3264544b47c4fee0774b33bc107dcf7b4b3ace4e70f307542ae7966e9e07f393
IEDL.DBID M7S
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-2994
IngestDate Tue Nov 04 23:13:04 EST 2025
Sat Nov 29 06:19:42 EST 2025
Tue Nov 18 22:00:53 EST 2025
Fri Feb 21 02:33:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 65K05
Projection methods
Douglas–Rachford
Eight queens problem
90C27
Feasibility problem
90-01
65-01
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-b3264544b47c4fee0774b33bc107dcf7b4b3ace4e70f307542ae7966e9e07f393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2445-8011
PQID 2400895133
PQPubID 32142
PageCount 40
ParticipantIDs proquest_journals_2400895133
crossref_primary_10_1007_s00186_019_00691_9
crossref_citationtrail_10_1007_s00186_019_00691_9
springer_journals_10_1007_s00186_019_00691_9
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Mathematical methods of operations research (Heidelberg, Germany)
PublicationTitleAbbrev Math Meth Oper Res
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Aragón Artacho, Campoy, Kotsireas, Tam (CR8) 2018; 35
Lamichhane, Lindstrom, Sims (CR53) 2019; 61
Dao, Tam (CR41) 2019; 73
Baillon, Bruck, Reich (CR11) 1978; 4
CR39
Censor (CR35) 1984; 20
Luke (CR57) 2008; 19
CR34
Bauschke, Noll (CR17) 2014; 102
Borwein, Tam (CR28) 2014; 160
Alwadani, Bauschke, Moursi, Wang (CR1) 2018; 46
Pazy (CR61) 1971; 9
Behling, Bello Cruz, Santos (CR24) 2018; 78
Aragón Artacho, Borwein, Tam (CR7) 2016; 65
Bauschke, Combettes, Luke (CR18) 2002; 19
von Neumann (CR68) 1950
Banach (CR12) 1922; 3
Dao, Phan (CR40) 2018; 72
Li, Pong (CR54) 2016; 159
Aragón Artacho, Borwein, Tam (CR6) 2014; 163
Kaczmarz (CR52) 1937; 35
Aragón Artacho, Campoy (CR4) 2018; 26
Censor, Mansour (CR37) 2016; 26
Elser (CR46) 2018; 64
Elser, Rankenburg, Thibault (CR47) 2007; 104
Cheney, Goldstein (CR38) 1959; 10
Bauschke, Dao (CR15) 2017; 27
Bauschke, Lukens, Moursi (CR22) 2017; 25
Thao (CR67) 2018; 70
Aragón Artacho, Censor, Gibali (CR9) 2019; 34
Bregman (CR33) 1965; 162
Aragón Artacho, Campoy (CR3) 2018; 69
Lions, Mercier (CR56) 1979; 16
Maohua, Weixuan, Wang (CR59) 1990; 3
CR13
Borwein, Lewis (CR26) 2010
CR55
CR10
Censor, Cegielski (CR36) 2015; 64
Bauschke, Noll, Phan (CR21) 2015; 421
Deutsch (CR42) 2001
Phan (CR62) 2016; 65
Luke, Nguyen, Tam (CR58) 2018; 43
Eckstein, Bertsekas (CR44) 1992; 55
Benoist (CR25) 2015; 63
Halperin (CR48) 1962; 23
Hundal (CR51) 2004; 57
Tam (CR66) 2018; 12
Bauschke, Bello Cruz, Nghia, Phan, Wang (CR20) 2014; 185
Borwein, Sims, Bauschke, Burachik, Combettes, Elser, Luke, Wolkowicz (CR27) 2011
Hesse, Luke, Neumann (CR50) 2014; 62
Borwein, Tam, Aussel, Lalitha (CR30) 2017
Opial (CR60) 1967; 73
Borwein, Tam (CR29) 2015; 16
Aragón Artacho, Borwein (CR2) 2013; 57
Aragón Artacho, Borwein, Tam (CR5) 2014; 55
Borwein, Lindstrom, Sims, Schneider, Skerritt (CR32) 2018; 26
Elser (CR45) 2003; 20
CR64
Hesse, Luke (CR49) 2013; 23
Pierra (CR63) 1984; 28
Borwein, Sims, Tam (CR31) 2015; 64
Douglas, Rachford (CR43) 1956; 82
Svaiter (CR65) 2011; 49
Bauschke, Combettes, Luke (CR19) 2004; 127
Bauschke, Moursi (CR16) 2017; 164
Bauschke, Dao, Lindstrom (CR23) 2019; 74
Bauschke, Combettes (CR14) 2017
W Cheney (691_CR38) 1959; 10
691_CR64
HH Bauschke (691_CR16) 2017; 164
Y Censor (691_CR37) 2016; 26
PL Lions (691_CR56) 1979; 16
BP Lamichhane (691_CR53) 2019; 61
J Eckstein (691_CR44) 1992; 55
R Behling (691_CR24) 2018; 78
J von Neumann (691_CR68) 1950
HH Bauschke (691_CR20) 2014; 185
JM Borwein (691_CR32) 2018; 26
V Elser (691_CR45) 2003; 20
F Deutsch (691_CR42) 2001
HH Bauschke (691_CR21) 2015; 421
691_CR13
HH Bauschke (691_CR19) 2004; 127
V Elser (691_CR46) 2018; 64
691_CR55
DR Luke (691_CR57) 2008; 19
R Hesse (691_CR50) 2014; 62
S Kaczmarz (691_CR52) 1937; 35
G Li (691_CR54) 2016; 159
691_CR10
J Borwein (691_CR26) 2010
Y Censor (691_CR36) 2015; 64
V Elser (691_CR47) 2007; 104
S Banach (691_CR12) 1922; 3
JM Borwein (691_CR28) 2014; 160
MN Dao (691_CR40) 2018; 72
G Pierra (691_CR63) 1984; 28
HH Bauschke (691_CR14) 2017
BF Svaiter (691_CR65) 2011; 49
LM Bregman (691_CR33) 1965; 162
HH Bauschke (691_CR23) 2019; 74
A Pazy (691_CR61) 1971; 9
JM Borwein (691_CR27) 2011
FJ Aragón Artacho (691_CR4) 2018; 26
HH Bauschke (691_CR15) 2017; 27
JB Baillon (691_CR11) 1978; 4
R Hesse (691_CR49) 2013; 23
FJ Aragón Artacho (691_CR8) 2018; 35
L Maohua (691_CR59) 1990; 3
JM Borwein (691_CR30) 2017
HM Phan (691_CR62) 2016; 65
HH Bauschke (691_CR17) 2014; 102
691_CR34
691_CR39
S Alwadani (691_CR1) 2018; 46
I Halperin (691_CR48) 1962; 23
HH Bauschke (691_CR22) 2017; 25
HS Hundal (691_CR51) 2004; 57
FJ Aragón Artacho (691_CR2) 2013; 57
FJ Aragón Artacho (691_CR3) 2018; 69
FJ Aragón Artacho (691_CR9) 2019; 34
J Benoist (691_CR25) 2015; 63
DR Luke (691_CR58) 2018; 43
Y Censor (691_CR35) 1984; 20
FJ Aragón Artacho (691_CR5) 2014; 55
J Douglas (691_CR43) 1956; 82
JM Borwein (691_CR29) 2015; 16
MN Dao (691_CR41) 2019; 73
FJ Aragón Artacho (691_CR7) 2016; 65
Z Opial (691_CR60) 1967; 73
HH Bauschke (691_CR18) 2002; 19
MK Tam (691_CR66) 2018; 12
NH Thao (691_CR67) 2018; 70
JM Borwein (691_CR31) 2015; 64
FJ Aragón Artacho (691_CR6) 2014; 163
References_xml – volume: 35
  start-page: 355
  year: 1937
  end-page: 357
  ident: CR52
  article-title: Angenäherte Auflösung von Systemen linearer Gleichungen
  publication-title: Bull Int Acad Sci Pologne A
– start-page: 93
  year: 2011
  end-page: 109
  ident: CR27
  article-title: The Douglas–Rachford algorithm in the absence of convexity
  publication-title: Fixed-point algorithms for inverse problems in science and engineering, springer optimization and its applications
– year: 2017
  ident: CR14
  publication-title: Convex analysis and monotone operator theory in hilbert spaces
– ident: CR39
– volume: 46
  start-page: 585
  issue: 6
  year: 2018
  end-page: 587
  ident: CR1
  article-title: On the asymptotic behaviour of the Aragón Artacho-Campoy algorithm
  publication-title: Oper Res Lett
– volume: 57
  start-page: 753
  issue: 3
  year: 2013
  end-page: 769
  ident: CR2
  article-title: Global convergence of a non-convex Douglas–Rachford iteration
  publication-title: J Glob Optim
– volume: 62
  start-page: 4868
  issue: 18
  year: 2014
  end-page: 4881
  ident: CR50
  article-title: Alternating projections and Douglas–Rachford for sparse affine feasibility
  publication-title: IEEE Trans Signal Process
– volume: 34
  start-page: 875
  issue: 4
  year: 2019
  end-page: 889
  ident: CR9
  article-title: The cyclic Douglas-Rachford algorithm with -sets-Douglas-Rachford operators
  publication-title: Optim Methods Softw
– volume: 12
  start-page: 1019
  issue: 5
  year: 2018
  end-page: 1027
  ident: CR66
  article-title: Algorithms based on unions of nonexpansive maps
  publication-title: Optim Lett
– volume: 57
  start-page: 35
  issue: 1
  year: 2004
  end-page: 61
  ident: CR51
  article-title: An alternating projection that does not converge in norm
  publication-title: Nonlin Anal Theory Methods Appl
– volume: 78
  start-page: 759
  issue: 3
  year: 2018
  end-page: 776
  ident: CR24
  article-title: Circumcentering the Douglas–Rachford method
  publication-title: Numer Algor
– volume: 65
  start-page: 309
  issue: 2
  year: 2016
  end-page: 327
  ident: CR7
  article-title: Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem
  publication-title: J Glob Optim
– volume: 23
  start-page: 96
  year: 1962
  end-page: 99
  ident: CR48
  article-title: The product of projection operators
  publication-title: Acta Sci Math
– volume: 55
  start-page: 299
  issue: 4
  year: 2014
  end-page: 326
  ident: CR5
  article-title: Douglas–Rachford feasibility methods for matrix completion problems
  publication-title: ANZIAM J
– volume: 74
  start-page: 79
  issue: 1
  year: 2019
  end-page: 93
  ident: CR23
  article-title: The Douglas–Rachford algorithm for a hyperplane and a doubleton
  publication-title: J Glob Optim
– volume: 19
  start-page: 1334
  issue: 7
  year: 2002
  end-page: 1345
  ident: CR18
  article-title: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization
  publication-title: J Opt Soc Am A:
– volume: 25
  start-page: 481
  issue: 3
  year: 2017
  end-page: 505
  ident: CR22
  article-title: Affine nonexpansive operators, Attouch-Théra duality and the Douglas–Rachford algorithm
  publication-title: Set-Valued Var Anal
– volume: 72
  start-page: 443
  issue: 3
  year: 2018
  end-page: 474
  ident: CR40
  article-title: Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems
  publication-title: J Glob Optim
– volume: 27
  start-page: 507
  issue: 1
  year: 2017
  end-page: 537
  ident: CR15
  article-title: On the finite convergence of the Douglas–Rachford algorithm for solving (not necessarily convex) feasibility problems in Euclidean spaces
  publication-title: SIAM J Optim
– year: 2010
  ident: CR26
  publication-title: Convex analysis and nonlinear optimization: theory and examples
– volume: 69
  start-page: 99
  issue: 1
  year: 2018
  end-page: 132
  ident: CR3
  article-title: A new projection method for finding the closest point in the intersection of convex sets
  publication-title: Comput Optim Appl
– volume: 159
  start-page: 371
  year: 2016
  end-page: 401
  ident: CR54
  article-title: Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems
  publication-title: Math Prog
– volume: 9
  start-page: 235
  year: 1971
  end-page: 240
  ident: CR61
  article-title: Asymptotic behavior of contractions in Hilbert space
  publication-title: Israel J Math
– volume: 26
  start-page: 474
  year: 2016
  end-page: 487
  ident: CR37
  article-title: New Douglas–Rachford algorithmic structures and their convergence analyses
  publication-title: SIAM J Optim
– volume: 421
  start-page: 1
  issue: 1
  year: 2015
  end-page: 20
  ident: CR21
  article-title: Linear and strong convergence of algorithms involving averaged nonexpansive operators
  publication-title: J Math Anal Appl
– volume: 160
  start-page: 1
  issue: 1
  year: 2014
  end-page: 29
  ident: CR28
  article-title: A cyclic Douglas–Rachford iteration scheme
  publication-title: J Optim Theory Appl
– ident: CR64
– volume: 70
  start-page: 841
  issue: 3
  year: 2018
  end-page: 863
  ident: CR67
  article-title: A convergent relaxation of the Douglas–Rachford algorithm
  publication-title: Comput Optim Appl
– start-page: 83
  year: 2017
  end-page: 100
  ident: CR30
  article-title: Reflection methods for inverse problems with applications to protein conformation determination. Forum for interdisciplinary mathematics
  publication-title: Generalized nash equilibrium problems, bilevel programming and MPEC
– volume: 127
  start-page: 178
  issue: 2
  year: 2004
  end-page: 192
  ident: CR19
  article-title: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces
  publication-title: J Approx Theory
– volume: 20
  start-page: 40
  issue: 1
  year: 2003
  end-page: 55
  ident: CR45
  article-title: Phase retrieval by iterated projections
  publication-title: J Opt Soc Am A:
– volume: 26
  start-page: 385
  issue: 2
  year: 2018
  end-page: 403
  ident: CR32
  article-title: Dynamics of the Douglas–Rachford method for ellipses and -spheres
  publication-title: Set-Valued Var Anal
– volume: 4
  start-page: 1
  issue: 1
  year: 1978
  end-page: 9
  ident: CR11
  article-title: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces
  publication-title: Houston J Math
– volume: 64
  start-page: 161
  issue: 1
  year: 2015
  end-page: 178
  ident: CR31
  article-title: Norm convergence of realistic projection and reflection methods
  publication-title: Optimization
– volume: 61
  start-page: 23
  issue: 1
  year: 2019
  end-page: 46
  ident: CR53
  article-title: Application of projection algorithms to differential equations: boundary value problems
  publication-title: ANZIAM J
– volume: 49
  start-page: 280
  issue: 1
  year: 2011
  end-page: 287
  ident: CR65
  article-title: On weak convergence of the Douglas–Rachford method
  publication-title: SIAM J Control Optim
– volume: 63
  start-page: 363
  issue: 2
  year: 2015
  end-page: 380
  ident: CR25
  article-title: The Douglas–Rachford algorithm for the case of the sphere and the line
  publication-title: J Global Optim
– ident: CR10
– volume: 3
  start-page: 133
  issue: 1
  year: 1922
  end-page: 181
  ident: CR12
  article-title: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales
  publication-title: Fund math
– volume: 162
  start-page: 688
  issue: 3
  year: 1965
  end-page: 692
  ident: CR33
  article-title: The method of successive projection for finding a common point of convex sets
  publication-title: Soviet Math Dokl
– volume: 23
  start-page: 2397
  issue: 4
  year: 2013
  end-page: 2419
  ident: CR49
  article-title: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems
  publication-title: SIAM J Optim
– volume: 43
  start-page: 1143
  issue: 4
  year: 2018
  end-page: 1176
  ident: CR58
  article-title: Quantitative convergence analysis of iterated expansive, set-valued mappings
  publication-title: Math Oper Res
– volume: 26
  start-page: 277
  issue: 2
  year: 2018
  end-page: 304
  ident: CR4
  article-title: Solving graph coloring problems with the Douglas–Rachford algorithm
  publication-title: Set-Valued Var Anal
– volume: 16
  start-page: 573
  issue: 4
  year: 2015
  end-page: 584
  ident: CR29
  article-title: The cyclic Douglas–Rachford method for inconsistent feasibility problems
  publication-title: J Nonlinear Convex Anal
– volume: 73
  start-page: 83
  issue: 1
  year: 2019
  end-page: 112
  ident: CR41
  article-title: A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting
  publication-title: J Glob Optim
– volume: 3
  start-page: 183
  issue: 2
  year: 1990
  end-page: 191
  ident: CR59
  article-title: A generalization of the -queen problem
  publication-title: J Systems Sci Math Sci
– volume: 20
  start-page: 83
  year: 1984
  end-page: 91
  ident: CR35
  article-title: Iterative methods for convex feasibility problems
  publication-title: Ann Discrete Math
– volume: 82
  start-page: 421
  year: 1956
  end-page: 439
  ident: CR43
  article-title: On the numerical solution of heat conduction problems in two and three space variables
  publication-title: Trans Amer Math Soc
– volume: 64
  start-page: 412
  issue: 1
  year: 2018
  end-page: 428
  ident: CR46
  article-title: The complexity of bit retrieval
  publication-title: IEEE Trans Inf Theory
– volume: 55
  start-page: 293
  issue: 1
  year: 1992
  end-page: 318
  ident: CR44
  article-title: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators
  publication-title: Math Program
– volume: 35
  start-page: 1061
  issue: 4
  year: 2018
  end-page: 1085
  ident: CR8
  article-title: A feasibility approach for constructing combinatorial designs of circulant type
  publication-title: J Comb Optim
– volume: 163
  start-page: 1
  issue: 1
  year: 2014
  end-page: 30
  ident: CR6
  article-title: Recent results on Douglas–Rachford methods for combinatorial optimization problem
  publication-title: J Optim Theory Appl
– volume: 28
  start-page: 96
  year: 1984
  end-page: 115
  ident: CR63
  article-title: Decomposition through formalization in a product space
  publication-title: Math Program
– year: 1950
  ident: CR68
  publication-title: Functional operators II: the geometry of orthogonal spaces
– ident: CR13
– volume: 164
  start-page: 263
  issue: 1–2
  year: 2017
  end-page: 284
  ident: CR16
  article-title: On the Douglas–Rachford algorithm
  publication-title: Math Program, Ser A
– volume: 104
  start-page: 418
  issue: 2
  year: 2007
  end-page: 423
  ident: CR47
  article-title: Searching with iterated maps
  publication-title: Proc Natl Acad Sci
– volume: 65
  start-page: 369
  issue: 2
  year: 2016
  end-page: 385
  ident: CR62
  article-title: Linear convergence of the Douglas–Rachford method for two closed sets
  publication-title: Optimization
– volume: 185
  start-page: 63
  year: 2014
  end-page: 79
  ident: CR20
  article-title: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle
  publication-title: J Approx Theory
– ident: CR34
– ident: CR55
– volume: 64
  start-page: 2343
  issue: 11
  year: 2015
  end-page: 2358
  ident: CR36
  article-title: Projection methods: an annotated bibliography of books and reviews
  publication-title: Optimization
– volume: 73
  start-page: 591
  issue: 4
  year: 1967
  end-page: 597
  ident: CR60
  article-title: Weak convergence of the sequence of successive approximations for nonexpansive mappings
  publication-title: Bull Am Math Soc
– volume: 102
  start-page: 589
  issue: 6
  year: 2014
  end-page: 600
  ident: CR17
  article-title: On the local convergence of the Douglas–Rachford algorithm
  publication-title: Arch Math
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  end-page: 979
  ident: CR56
  article-title: Splitting algorithms for the sum of two nonlinear operators
  publication-title: SIAM J Numer Anal
– year: 2001
  ident: CR42
  publication-title: Best approximation in inner product spaces, CMS books in mathematics/ouvrages de mathématiques de la SMC,
– volume: 10
  start-page: 448
  issue: 3
  year: 1959
  end-page: 450
  ident: CR38
  article-title: Proximity maps for convex sets
  publication-title: Proc Amer Math Soc
– volume: 19
  start-page: 714
  issue: 2
  year: 2008
  end-page: 739
  ident: CR57
  article-title: Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space
  publication-title: SIAM J Optim
– volume: 73
  start-page: 591
  issue: 4
  year: 1967
  ident: 691_CR60
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0002-9904-1967-11761-0
– volume: 163
  start-page: 1
  issue: 1
  year: 2014
  ident: 691_CR6
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-013-0488-0
– volume: 49
  start-page: 280
  issue: 1
  year: 2011
  ident: 691_CR65
  publication-title: SIAM J Control Optim
  doi: 10.1137/100788100
– start-page: 83
  volume-title: Generalized nash equilibrium problems, bilevel programming and MPEC
  year: 2017
  ident: 691_CR30
  doi: 10.1007/978-981-10-4774-9_5
– volume: 35
  start-page: 1061
  issue: 4
  year: 2018
  ident: 691_CR8
  publication-title: J Comb Optim
  doi: 10.1007/s10878-018-0250-5
– volume-title: Convex analysis and monotone operator theory in hilbert spaces
  year: 2017
  ident: 691_CR14
  doi: 10.1007/978-3-319-48311-5
– volume: 23
  start-page: 2397
  issue: 4
  year: 2013
  ident: 691_CR49
  publication-title: SIAM J Optim
  doi: 10.1137/120902653
– volume: 64
  start-page: 412
  issue: 1
  year: 2018
  ident: 691_CR46
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2017.2754485
– volume: 72
  start-page: 443
  issue: 3
  year: 2018
  ident: 691_CR40
  publication-title: J Glob Optim
  doi: 10.1007/s10898-018-0654-x
– volume: 64
  start-page: 161
  issue: 1
  year: 2015
  ident: 691_CR31
  publication-title: Optimization
  doi: 10.1080/02331934.2014.947499
– start-page: 93
  volume-title: Fixed-point algorithms for inverse problems in science and engineering, springer optimization and its applications
  year: 2011
  ident: 691_CR27
– ident: 691_CR13
  doi: 10.1007/978-1-4614-7621-4_2
– volume-title: Functional operators II: the geometry of orthogonal spaces
  year: 1950
  ident: 691_CR68
– volume: 3
  start-page: 133
  issue: 1
  year: 1922
  ident: 691_CR12
  publication-title: Fund math
  doi: 10.4064/fm-3-1-133-181
– volume: 63
  start-page: 363
  issue: 2
  year: 2015
  ident: 691_CR25
  publication-title: J Global Optim
  doi: 10.1007/s10898-015-0296-1
– volume: 55
  start-page: 299
  issue: 4
  year: 2014
  ident: 691_CR5
  publication-title: ANZIAM J
  doi: 10.1017/S1446181114000145
– volume: 26
  start-page: 277
  issue: 2
  year: 2018
  ident: 691_CR4
  publication-title: Set-Valued Var Anal
  doi: 10.1007/s11228-017-0461-4
– volume: 74
  start-page: 79
  issue: 1
  year: 2019
  ident: 691_CR23
  publication-title: J Glob Optim
  doi: 10.1007/s10898-019-00744-7
– volume: 159
  start-page: 371
  year: 2016
  ident: 691_CR54
  publication-title: Math Prog
  doi: 10.1007/s10107-015-0963-5
– volume: 20
  start-page: 40
  issue: 1
  year: 2003
  ident: 691_CR45
  publication-title: J Opt Soc Am A:
  doi: 10.1364/JOSAA.20.000040
– volume: 102
  start-page: 589
  issue: 6
  year: 2014
  ident: 691_CR17
  publication-title: Arch Math
  doi: 10.1007/s00013-014-0652-2
– volume: 25
  start-page: 481
  issue: 3
  year: 2017
  ident: 691_CR22
  publication-title: Set-Valued Var Anal
  doi: 10.1007/s11228-016-0399-y
– volume: 162
  start-page: 688
  issue: 3
  year: 1965
  ident: 691_CR33
  publication-title: Soviet Math Dokl
– volume: 65
  start-page: 309
  issue: 2
  year: 2016
  ident: 691_CR7
  publication-title: J Glob Optim
  doi: 10.1007/s10898-015-0380-6
– volume: 73
  start-page: 83
  issue: 1
  year: 2019
  ident: 691_CR41
  publication-title: J Glob Optim
  doi: 10.1007/s10898-018-0677-3
– ident: 691_CR55
– volume: 160
  start-page: 1
  issue: 1
  year: 2014
  ident: 691_CR28
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-013-0381-x
– volume: 78
  start-page: 759
  issue: 3
  year: 2018
  ident: 691_CR24
  publication-title: Numer Algor
  doi: 10.1007/s11075-017-0399-5
– volume: 19
  start-page: 714
  issue: 2
  year: 2008
  ident: 691_CR57
  publication-title: SIAM J Optim
  doi: 10.1137/070681399
– volume: 23
  start-page: 96
  year: 1962
  ident: 691_CR48
  publication-title: Acta Sci Math
– volume: 421
  start-page: 1
  issue: 1
  year: 2015
  ident: 691_CR21
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2014.06.075
– volume: 10
  start-page: 448
  issue: 3
  year: 1959
  ident: 691_CR38
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-1959-0105008-8
– volume: 34
  start-page: 875
  issue: 4
  year: 2019
  ident: 691_CR9
  publication-title: Optim Methods Softw
  doi: 10.1080/10556788.2018.1504049
– volume: 61
  start-page: 23
  issue: 1
  year: 2019
  ident: 691_CR53
  publication-title: ANZIAM J
  doi: 10.1017/S1446181118000391
– volume: 185
  start-page: 63
  year: 2014
  ident: 691_CR20
  publication-title: J Approx Theory
  doi: 10.1016/j.jat.2014.06.002
– volume: 55
  start-page: 293
  issue: 1
  year: 1992
  ident: 691_CR44
  publication-title: Math Program
  doi: 10.1007/BF01581204
– volume: 12
  start-page: 1019
  issue: 5
  year: 2018
  ident: 691_CR66
  publication-title: Optim Lett
  doi: 10.1007/s11590-018-1249-7
– volume: 164
  start-page: 263
  issue: 1–2
  year: 2017
  ident: 691_CR16
  publication-title: Math Program, Ser A
  doi: 10.1007/s10107-016-1086-3
– volume: 69
  start-page: 99
  issue: 1
  year: 2018
  ident: 691_CR3
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-017-9942-5
– volume: 26
  start-page: 474
  year: 2016
  ident: 691_CR37
  publication-title: SIAM J Optim
  doi: 10.1137/141001536
– volume: 46
  start-page: 585
  issue: 6
  year: 2018
  ident: 691_CR1
  publication-title: Oper Res Lett
  doi: 10.1016/j.orl.2018.10.003
– volume: 20
  start-page: 83
  year: 1984
  ident: 691_CR35
  publication-title: Ann Discrete Math
– volume: 82
  start-page: 421
  year: 1956
  ident: 691_CR43
  publication-title: Trans Amer Math Soc
  doi: 10.1090/S0002-9947-1956-0084194-4
– volume: 16
  start-page: 964
  issue: 6
  year: 1979
  ident: 691_CR56
  publication-title: SIAM J Numer Anal
  doi: 10.1137/0716071
– ident: 691_CR10
  doi: 10.1007/s11228-017-0461-4
– volume: 104
  start-page: 418
  issue: 2
  year: 2007
  ident: 691_CR47
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0606359104
– volume: 64
  start-page: 2343
  issue: 11
  year: 2015
  ident: 691_CR36
  publication-title: Optimization
  doi: 10.1080/02331934.2014.957701
– volume: 57
  start-page: 753
  issue: 3
  year: 2013
  ident: 691_CR2
  publication-title: J Glob Optim
  doi: 10.1007/s10898-012-9958-4
– volume: 35
  start-page: 355
  year: 1937
  ident: 691_CR52
  publication-title: Bull Int Acad Sci Pologne A
– volume: 9
  start-page: 235
  year: 1971
  ident: 691_CR61
  publication-title: Israel J Math
  doi: 10.1007/BF02771588
– volume-title: Best approximation in inner product spaces, CMS books in mathematics/ouvrages de mathématiques de la SMC,
  year: 2001
  ident: 691_CR42
  doi: 10.1007/978-1-4684-9298-9
– volume: 28
  start-page: 96
  year: 1984
  ident: 691_CR63
  publication-title: Math Program
  doi: 10.1007/BF02612715
– volume: 43
  start-page: 1143
  issue: 4
  year: 2018
  ident: 691_CR58
  publication-title: Math Oper Res
  doi: 10.1287/moor.2017.0898
– volume: 16
  start-page: 573
  issue: 4
  year: 2015
  ident: 691_CR29
  publication-title: J Nonlinear Convex Anal
– volume: 57
  start-page: 35
  issue: 1
  year: 2004
  ident: 691_CR51
  publication-title: Nonlin Anal Theory Methods Appl
  doi: 10.1016/j.na.2003.11.004
– volume: 4
  start-page: 1
  issue: 1
  year: 1978
  ident: 691_CR11
  publication-title: Houston J Math
– volume: 19
  start-page: 1334
  issue: 7
  year: 2002
  ident: 691_CR18
  publication-title: J Opt Soc Am A:
  doi: 10.1364/JOSAA.19.001334
– ident: 691_CR64
– volume: 62
  start-page: 4868
  issue: 18
  year: 2014
  ident: 691_CR50
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2339801
– ident: 691_CR34
  doi: 10.1007/978-3-642-30901-4
– volume-title: Convex analysis and nonlinear optimization: theory and examples
  year: 2010
  ident: 691_CR26
– volume: 127
  start-page: 178
  issue: 2
  year: 2004
  ident: 691_CR19
  publication-title: J Approx Theory
  doi: 10.1016/j.jat.2004.02.006
– volume: 3
  start-page: 183
  issue: 2
  year: 1990
  ident: 691_CR59
  publication-title: J Systems Sci Math Sci
– volume: 65
  start-page: 369
  issue: 2
  year: 2016
  ident: 691_CR62
  publication-title: Optimization
  doi: 10.1080/02331934.2015.1051532
– volume: 26
  start-page: 385
  issue: 2
  year: 2018
  ident: 691_CR32
  publication-title: Set-Valued Var Anal
  doi: 10.1007/s11228-017-0457-0
– volume: 27
  start-page: 507
  issue: 1
  year: 2017
  ident: 691_CR15
  publication-title: SIAM J Optim
  doi: 10.1137/16M1071079
– ident: 691_CR39
  doi: 10.1007/s10957-018-1443-x
– volume: 70
  start-page: 841
  issue: 3
  year: 2018
  ident: 691_CR67
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-018-9989-y
SSID ssj0001442
Score 2.417857
Snippet The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 201
SubjectTerms Algorithms
Business and Management
Calculus of Variations and Optimal Control; Optimization
Combinatorial analysis
Convergence
Feasibility
Mathematics
Mathematics and Statistics
Operations research
Operations Research/Decision Theory
Optimization
Original Article
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IXpwdVVcXSUHbxrYbdOmOYooHnQRX3grSZrqwror21X05n_wH_pLnMS0PlBBj0PTtOQxMx_5Mh_AZsBzoxIuaaSZpky2Iyp1K6EawUYUKy545lRLDnmnk1xeimN_Kawo2e7lkaTz1NVlN6sfZ9GvoLa8bpuKcZjEcJdYwYaT04vK_yJEcGecLAwoOlvmr8p838fncPSeY345FnXRZr_2v_-chzmfXZKdt-WwAGOmX4fpktxeh1op4kD8nq7D7IeKhGgdVWVci0Xo4CIiPsV-eXo-kfracuGJ7F0Nht3R9Q1Bkzji-gOR_Yz0B31v5UZ64u0j8aI1xRKc7--d7R5QL8BANcK-EVWY27GIMcW4ZrkxLcwVVRgqjZgx0zlXaEltmOGtHH1FxAJpOOInI7BpHopwGSbww2YFSBKEkuVCBXGWYTyU0ije1nGcSxOHWaga0C7nIdW-OrkVyeilVV1lN64pjmvqxjUVDdiq3rl9q83xa-tmOb2p36dFahm0ibAaNw3YLqfz_fHPva3-rfkazAQWqDvKTxMmRsM7sw5T-n7ULYYbbv2-AnKc6dY
  priority: 102
  providerName: Springer Nature
Title The Douglas–Rachford algorithm for convex and nonconvex feasibility problems
URI https://link.springer.com/article/10.1007/s00186-019-00691-9
https://www.proquest.com/docview/2400895133
Volume 91
WOSCitedRecordID wos000531816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-5217
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001442
  issn: 1432-2994
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswEB3xEuIueBTQLY_KC3Zg0SROHK8QIBASUFXlzSayHQeQuIVLC4Id_8Af8iWMjdMCEmzYWBrFsS2NPZ6xj-cALIW8MCrlksaaacpkEFOp6ynVGGzEieKC5461ZI83GunpqWj6A7eOh1WWNtEZ6vxG2zPyVYt1TIVlI1m7_U8ta5S9XfUUGoMwbLMkBA66d9CzxBgsuNtOFoUUzS7zj2bc0znLRmdjaUFtst6Ais8bU9_b_HJB6vad7YnfjngSxr3HSdbfp8gUDJh2BUZLwHsFJkpiB-LXeQX-fMhSOA0NnErEO9qvzy8tqS8tIp7I6wvsrnv5j6BIHHz9kch2Tto3bS8VRnr47RPx1DWdGTja3jrc3KGehoFqDP66VKGHx2LGFOOaFcbU0WNUUaQ0Ro65LrhCSWrDDK8XaDFiFkrDMYoyAqsWkYhmYQg7Nn-BpGEkWSFUmOQ57opSGsUDnSSFNEmUR6oKQamDTPsc5ZYq4zrrZVd2estQb5nTWyaqsNz75_Y9Q8ePtRdKZWV-tXayvqaqsFKqu__5-9bmfm5tHsZCG547oM8CDHXv7s0ijOiH7lXnrgaD_OSsBsMbW41mC6VdTrHcr2_W3CzGshmfY9k6OH4DN1n1mg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0hQCwHlgKirD7ACSzaxImTA0KIRaCWCiGQuAXbcSgSlKVlu_EP_AcfxZcwdp0WkODGgaMVx5HjN2M_ezwPYMnjmZYRFzRQTFEmygEVqhRRhWQjCCWPeWpVS6q8VotOT-PDHnjL78KYsMrcJ1pHnV4rs0e-ZmIdo9iokWzc3FKjGmVOV3MJjTYsKvr5ESlbc31_G8d32fN2d4639qhTFaAKuUyLSlywsIAxybhimdYlXABJ35cKiVCqMi6xJJRmmpcyNICAeUJzJAU6xqqZb5IvocvvY37EjV1VOO14fiQn9nSV-R5FN8_cJR17Vc-o3xnuHlOTHLhM468TYXd1--1A1s5zu6P_7Q-NwYhbUZPNtgmMQ49uFGAgD-gvwGguXEGcHyvA8KcsjBNQQ1Mhjki8v7weCVU3Ef9EXJ5j91r1K4JFYsPzn4hopKRx3XClTAsXXvxMnDRPcxJO_qS7U9CLH9bTQCLPFyyLpRemKc76QmjJyyoMM6FDP_VlEcr5mCfK5WA3UiCXSSd7tMVJgjhJLE6SuAgrnXdu2hlIfq09l4Mjcd6omXSRUYTVHF7dxz-3NvN7a4swuHd8UE2q-7XKLAx5ZivCBjXNQW_r7l7PQ796aF007xasnRA4-2vYfQBc7kuk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTuMwFL1CgNCw4NEZRHl6ASvGok2cOFkghIAKBKoqBBKaTcZ2bECCAm15dMc_8Dd8Dl_Cteu0MNKwY8HSiuPI8fH1Pfb1PQArATdaJlzQSDFFmahGVKhKQhWSjSiWPOW5Uy055PV6cnqaNobgpbgLY8MqC5voDHV-rewe-bqNdUxSq0aybnxYRGOntnlzS62ClD1pLeQ0ehA50N0HpG_tjf0dHOvVIKjtHm_vUa8wQBXymg6V6LywiDHJuGJG6wo6QzIMpUJSlCvDJZaE0kzzisHJELFAaI4EQadY1YQ2EROa_xGOHNOGEzaiP_1VAImKO2llYUDR5DN_Ycdd27NKeJbHp9QmCq7S9OOiOPB0_zmcdWtebfI7_60pmPCeNtnqTY1pGNLNEowVgf4lmCwELYi3byUYf5ed8SfUcQoRTzBen56PhDq3NwGIuDzD7nXOrwgWiQvbfySimZPmddOXjBY-7LhLvGRP-xecfEl3Z2AYP6xngSRBKJhJZRDnOXoDQmjJqyqOjdBxmIeyDNVi_DPlc7NbiZDLrJ9V2mEmQ8xkDjNZWoa1_js3vcwkn9ZeKICSeSvVzgYoKcPvAmqDx_9vbe7z1pZhDNGWHe7XD-bhR2B3KFys0wIMd1p3ehFG1X3not1aclOGwN-vRt0bxt9UyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Douglas%E2%80%93Rachford+algorithm+for+convex+and+nonconvex+feasibility+problems&rft.jtitle=Mathematical+methods+of+operations+research+%28Heidelberg%2C+Germany%29&rft.au=Arag%C3%B3n+Artacho%2C+Francisco+J.&rft.au=Campoy%2C+Rub%C3%A9n&rft.au=Tam%2C+Matthew+K.&rft.date=2020-04-01&rft.issn=1432-2994&rft.eissn=1432-5217&rft.volume=91&rft.issue=2&rft.spage=201&rft.epage=240&rft_id=info:doi/10.1007%2Fs00186-019-00691-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00186_019_00691_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-2994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-2994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-2994&client=summon