The Douglas–Rachford algorithm for convex and nonconvex feasibility problems
The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm...
Uložené v:
| Vydané v: | Mathematical methods of operations research (Heidelberg, Germany) Ročník 91; číslo 2; s. 201 - 240 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1432-2994, 1432-5217 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm is guaranteed in the convex setting, the scheme has demonstrated to be a successful heuristic for solving combinatorial problems of different type. In this self-contained tutorial, we develop the convergence theory of projection algorithms within the framework of fixed point iterations, explain how to devise useful feasibility problem formulations, and demonstrate the application of the Douglas–Rachford method to said formulations. The paradigm is then illustrated on two concrete problems: a generalization of the “eight queens puzzle” known as the “(
m
,
n
)-queens problem”, and the problem of constructing a probability distribution with prescribed moments. |
|---|---|
| AbstractList | The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm is guaranteed in the convex setting, the scheme has demonstrated to be a successful heuristic for solving combinatorial problems of different type. In this self-contained tutorial, we develop the convergence theory of projection algorithms within the framework of fixed point iterations, explain how to devise useful feasibility problem formulations, and demonstrate the application of the Douglas–Rachford method to said formulations. The paradigm is then illustrated on two concrete problems: a generalization of the “eight queens puzzle” known as the “(m, n)-queens problem”, and the problem of constructing a probability distribution with prescribed moments. The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the problem at hand is prescribed in terms of constraint sets having efficiently computable nearest points. Although the convergence of the algorithm is guaranteed in the convex setting, the scheme has demonstrated to be a successful heuristic for solving combinatorial problems of different type. In this self-contained tutorial, we develop the convergence theory of projection algorithms within the framework of fixed point iterations, explain how to devise useful feasibility problem formulations, and demonstrate the application of the Douglas–Rachford method to said formulations. The paradigm is then illustrated on two concrete problems: a generalization of the “eight queens puzzle” known as the “( m , n )-queens problem”, and the problem of constructing a probability distribution with prescribed moments. |
| Author | Campoy, Rubén Aragón Artacho, Francisco J. Tam, Matthew K. |
| Author_xml | – sequence: 1 givenname: Francisco J. orcidid: 0000-0002-2445-8011 surname: Aragón Artacho fullname: Aragón Artacho, Francisco J. email: francisco.aragon@ua.es organization: Department of Mathematics, University of Alicante – sequence: 2 givenname: Rubén surname: Campoy fullname: Campoy, Rubén organization: Department of Mathematics, University of Alicante – sequence: 3 givenname: Matthew K. surname: Tam fullname: Tam, Matthew K. organization: Institute for Numerical and Applied Mathematics, University of Göttingen |
| BookMark | eNp9kM1KAzEUhYNUsK2-gKsB16M3PzNpllJ_oShIXYdMmrQp00lNpmJ3voNv6JOYOgXBRVf3Hjjnnss3QL3GNwahcwyXGIBfRQA8KnPAIgcoBc7FEepjRkleEMx7-50IwU7QIMYlJD9jpI-epguT3fjNvFbx-_PrRemF9WGWqXrug2sXqyzJTPvm3XxkqpllqXivrFHRVa527TZbB1_VZhVP0bFVdTRn-zlEr3e30_FDPnm-fxxfT3LNQLR5RUnJCsYqxjWzxgDnrKK00hj4TFteJaW0YYaDpcALRpThoiyNSFZLBR2ii-5uKn7bmNjKpd-EJlVKwgBGosCUJhfpXDr4GIOxch3cSoWtxCB33GTHTSZu8peb3J0e_Qtp16rW-aYNytWHo7SLxtTTzE34--pA6gdMz4VX |
| CitedBy_id | crossref_primary_10_1007_s11228_021_00626_9 crossref_primary_10_1007_s11590_022_01923_4 crossref_primary_10_1007_s10589_023_00516_w crossref_primary_10_1177_02783649251315203 crossref_primary_10_1109_LWC_2021_3126389 crossref_primary_10_1007_s11075_020_00941_6 crossref_primary_10_1007_s00211_025_01483_6 crossref_primary_10_1007_s10898_022_01264_7 crossref_primary_10_1002_nla_2391 crossref_primary_10_1137_20M1369038 crossref_primary_10_1007_s10589_022_00395_7 crossref_primary_10_1007_s10107_023_01978_w crossref_primary_10_1007_s11075_023_01623_9 crossref_primary_10_1007_s11228_023_00702_2 crossref_primary_10_1109_MSP_2024_3379753 crossref_primary_10_1016_j_fss_2023_108634 crossref_primary_10_1007_s10589_021_00291_6 crossref_primary_10_1007_s10957_021_01878_z crossref_primary_10_1007_s10589_022_00413_8 crossref_primary_10_1007_s10589_021_00275_6 crossref_primary_10_1016_j_bbrc_2024_150302 crossref_primary_10_1109_TASLP_2023_3332546 crossref_primary_10_1007_s10092_024_00616_x crossref_primary_10_1007_s00186_024_00866_z crossref_primary_10_1007_s10589_019_00155_0 crossref_primary_10_1137_23M1595412 |
| Cites_doi | 10.1090/S0002-9904-1967-11761-0 10.1007/s10957-013-0488-0 10.1137/100788100 10.1007/978-981-10-4774-9_5 10.1007/s10878-018-0250-5 10.1007/978-3-319-48311-5 10.1137/120902653 10.1109/TIT.2017.2754485 10.1007/s10898-018-0654-x 10.1080/02331934.2014.947499 10.1007/978-1-4614-7621-4_2 10.4064/fm-3-1-133-181 10.1007/s10898-015-0296-1 10.1017/S1446181114000145 10.1007/s11228-017-0461-4 10.1007/s10898-019-00744-7 10.1007/s10107-015-0963-5 10.1364/JOSAA.20.000040 10.1007/s00013-014-0652-2 10.1007/s11228-016-0399-y 10.1007/s10898-015-0380-6 10.1007/s10898-018-0677-3 10.1007/s10957-013-0381-x 10.1007/s11075-017-0399-5 10.1137/070681399 10.1016/j.jmaa.2014.06.075 10.1090/S0002-9939-1959-0105008-8 10.1080/10556788.2018.1504049 10.1017/S1446181118000391 10.1016/j.jat.2014.06.002 10.1007/BF01581204 10.1007/s11590-018-1249-7 10.1007/s10107-016-1086-3 10.1007/s10589-017-9942-5 10.1137/141001536 10.1016/j.orl.2018.10.003 10.1090/S0002-9947-1956-0084194-4 10.1137/0716071 10.1073/pnas.0606359104 10.1080/02331934.2014.957701 10.1007/s10898-012-9958-4 10.1007/BF02771588 10.1007/978-1-4684-9298-9 10.1007/BF02612715 10.1287/moor.2017.0898 10.1016/j.na.2003.11.004 10.1364/JOSAA.19.001334 10.1109/TSP.2014.2339801 10.1007/978-3-642-30901-4 10.1016/j.jat.2004.02.006 10.1080/02331934.2015.1051532 10.1007/s11228-017-0457-0 10.1137/16M1071079 10.1007/s10957-018-1443-x 10.1007/s10589-018-9989-y |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s00186-019-00691-9 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Engineering Database (subscription) Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science Business |
| EISSN | 1432-5217 |
| EndPage | 240 |
| ExternalDocumentID | 10_1007_s00186_019_00691_9 |
| GrantInformation_xml | – fundername: Ministerio de Ciencia, Innovación y Universidades grantid: PGC2018-097960-B-C22 funderid: http://dx.doi.org/10.13039/100014440 – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España (ES) grantid: MTM2014-59179-C2-1-P; RYC-2013-13327 – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España (ES) grantid: BES-2015-073360 |
| GroupedDBID | -4X -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 28- 29M 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACYUM ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBA EBE EBLON EBO EBR EBS EBU ECS EDO EIOEI EJD EMK EOH EPL ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O-J O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R-Y R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCF SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c409t-b3264544b47c4fee0774b33bc107dcf7b4b3ace4e70f307542ae7966e9e07f393 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-2994 |
| IngestDate | Tue Nov 04 23:13:04 EST 2025 Sat Nov 29 06:19:42 EST 2025 Tue Nov 18 22:00:53 EST 2025 Fri Feb 21 02:33:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 65K05 Projection methods Douglas–Rachford Eight queens problem 90C27 Feasibility problem 90-01 65-01 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-b3264544b47c4fee0774b33bc107dcf7b4b3ace4e70f307542ae7966e9e07f393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2445-8011 |
| PQID | 2400895133 |
| PQPubID | 32142 |
| PageCount | 40 |
| ParticipantIDs | proquest_journals_2400895133 crossref_primary_10_1007_s00186_019_00691_9 crossref_citationtrail_10_1007_s00186_019_00691_9 springer_journals_10_1007_s00186_019_00691_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Mathematical methods of operations research (Heidelberg, Germany) |
| PublicationTitleAbbrev | Math Meth Oper Res |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Aragón Artacho, Campoy, Kotsireas, Tam (CR8) 2018; 35 Lamichhane, Lindstrom, Sims (CR53) 2019; 61 Dao, Tam (CR41) 2019; 73 Baillon, Bruck, Reich (CR11) 1978; 4 CR39 Censor (CR35) 1984; 20 Luke (CR57) 2008; 19 CR34 Bauschke, Noll (CR17) 2014; 102 Borwein, Tam (CR28) 2014; 160 Alwadani, Bauschke, Moursi, Wang (CR1) 2018; 46 Pazy (CR61) 1971; 9 Behling, Bello Cruz, Santos (CR24) 2018; 78 Aragón Artacho, Borwein, Tam (CR7) 2016; 65 Bauschke, Combettes, Luke (CR18) 2002; 19 von Neumann (CR68) 1950 Banach (CR12) 1922; 3 Dao, Phan (CR40) 2018; 72 Li, Pong (CR54) 2016; 159 Aragón Artacho, Borwein, Tam (CR6) 2014; 163 Kaczmarz (CR52) 1937; 35 Aragón Artacho, Campoy (CR4) 2018; 26 Censor, Mansour (CR37) 2016; 26 Elser (CR46) 2018; 64 Elser, Rankenburg, Thibault (CR47) 2007; 104 Cheney, Goldstein (CR38) 1959; 10 Bauschke, Dao (CR15) 2017; 27 Bauschke, Lukens, Moursi (CR22) 2017; 25 Thao (CR67) 2018; 70 Aragón Artacho, Censor, Gibali (CR9) 2019; 34 Bregman (CR33) 1965; 162 Aragón Artacho, Campoy (CR3) 2018; 69 Lions, Mercier (CR56) 1979; 16 Maohua, Weixuan, Wang (CR59) 1990; 3 CR13 Borwein, Lewis (CR26) 2010 CR55 CR10 Censor, Cegielski (CR36) 2015; 64 Bauschke, Noll, Phan (CR21) 2015; 421 Deutsch (CR42) 2001 Phan (CR62) 2016; 65 Luke, Nguyen, Tam (CR58) 2018; 43 Eckstein, Bertsekas (CR44) 1992; 55 Benoist (CR25) 2015; 63 Halperin (CR48) 1962; 23 Hundal (CR51) 2004; 57 Tam (CR66) 2018; 12 Bauschke, Bello Cruz, Nghia, Phan, Wang (CR20) 2014; 185 Borwein, Sims, Bauschke, Burachik, Combettes, Elser, Luke, Wolkowicz (CR27) 2011 Hesse, Luke, Neumann (CR50) 2014; 62 Borwein, Tam, Aussel, Lalitha (CR30) 2017 Opial (CR60) 1967; 73 Borwein, Tam (CR29) 2015; 16 Aragón Artacho, Borwein (CR2) 2013; 57 Aragón Artacho, Borwein, Tam (CR5) 2014; 55 Borwein, Lindstrom, Sims, Schneider, Skerritt (CR32) 2018; 26 Elser (CR45) 2003; 20 CR64 Hesse, Luke (CR49) 2013; 23 Pierra (CR63) 1984; 28 Borwein, Sims, Tam (CR31) 2015; 64 Douglas, Rachford (CR43) 1956; 82 Svaiter (CR65) 2011; 49 Bauschke, Combettes, Luke (CR19) 2004; 127 Bauschke, Moursi (CR16) 2017; 164 Bauschke, Dao, Lindstrom (CR23) 2019; 74 Bauschke, Combettes (CR14) 2017 W Cheney (691_CR38) 1959; 10 691_CR64 HH Bauschke (691_CR16) 2017; 164 Y Censor (691_CR37) 2016; 26 PL Lions (691_CR56) 1979; 16 BP Lamichhane (691_CR53) 2019; 61 J Eckstein (691_CR44) 1992; 55 R Behling (691_CR24) 2018; 78 J von Neumann (691_CR68) 1950 HH Bauschke (691_CR20) 2014; 185 JM Borwein (691_CR32) 2018; 26 V Elser (691_CR45) 2003; 20 F Deutsch (691_CR42) 2001 HH Bauschke (691_CR21) 2015; 421 691_CR13 HH Bauschke (691_CR19) 2004; 127 V Elser (691_CR46) 2018; 64 691_CR55 DR Luke (691_CR57) 2008; 19 R Hesse (691_CR50) 2014; 62 S Kaczmarz (691_CR52) 1937; 35 G Li (691_CR54) 2016; 159 691_CR10 J Borwein (691_CR26) 2010 Y Censor (691_CR36) 2015; 64 V Elser (691_CR47) 2007; 104 S Banach (691_CR12) 1922; 3 JM Borwein (691_CR28) 2014; 160 MN Dao (691_CR40) 2018; 72 G Pierra (691_CR63) 1984; 28 HH Bauschke (691_CR14) 2017 BF Svaiter (691_CR65) 2011; 49 LM Bregman (691_CR33) 1965; 162 HH Bauschke (691_CR23) 2019; 74 A Pazy (691_CR61) 1971; 9 JM Borwein (691_CR27) 2011 FJ Aragón Artacho (691_CR4) 2018; 26 HH Bauschke (691_CR15) 2017; 27 JB Baillon (691_CR11) 1978; 4 R Hesse (691_CR49) 2013; 23 FJ Aragón Artacho (691_CR8) 2018; 35 L Maohua (691_CR59) 1990; 3 JM Borwein (691_CR30) 2017 HM Phan (691_CR62) 2016; 65 HH Bauschke (691_CR17) 2014; 102 691_CR34 691_CR39 S Alwadani (691_CR1) 2018; 46 I Halperin (691_CR48) 1962; 23 HH Bauschke (691_CR22) 2017; 25 HS Hundal (691_CR51) 2004; 57 FJ Aragón Artacho (691_CR2) 2013; 57 FJ Aragón Artacho (691_CR3) 2018; 69 FJ Aragón Artacho (691_CR9) 2019; 34 J Benoist (691_CR25) 2015; 63 DR Luke (691_CR58) 2018; 43 Y Censor (691_CR35) 1984; 20 FJ Aragón Artacho (691_CR5) 2014; 55 J Douglas (691_CR43) 1956; 82 JM Borwein (691_CR29) 2015; 16 MN Dao (691_CR41) 2019; 73 FJ Aragón Artacho (691_CR7) 2016; 65 Z Opial (691_CR60) 1967; 73 HH Bauschke (691_CR18) 2002; 19 MK Tam (691_CR66) 2018; 12 NH Thao (691_CR67) 2018; 70 JM Borwein (691_CR31) 2015; 64 FJ Aragón Artacho (691_CR6) 2014; 163 |
| References_xml | – volume: 35 start-page: 355 year: 1937 end-page: 357 ident: CR52 article-title: Angenäherte Auflösung von Systemen linearer Gleichungen publication-title: Bull Int Acad Sci Pologne A – start-page: 93 year: 2011 end-page: 109 ident: CR27 article-title: The Douglas–Rachford algorithm in the absence of convexity publication-title: Fixed-point algorithms for inverse problems in science and engineering, springer optimization and its applications – year: 2017 ident: CR14 publication-title: Convex analysis and monotone operator theory in hilbert spaces – ident: CR39 – volume: 46 start-page: 585 issue: 6 year: 2018 end-page: 587 ident: CR1 article-title: On the asymptotic behaviour of the Aragón Artacho-Campoy algorithm publication-title: Oper Res Lett – volume: 57 start-page: 753 issue: 3 year: 2013 end-page: 769 ident: CR2 article-title: Global convergence of a non-convex Douglas–Rachford iteration publication-title: J Glob Optim – volume: 62 start-page: 4868 issue: 18 year: 2014 end-page: 4881 ident: CR50 article-title: Alternating projections and Douglas–Rachford for sparse affine feasibility publication-title: IEEE Trans Signal Process – volume: 34 start-page: 875 issue: 4 year: 2019 end-page: 889 ident: CR9 article-title: The cyclic Douglas-Rachford algorithm with -sets-Douglas-Rachford operators publication-title: Optim Methods Softw – volume: 12 start-page: 1019 issue: 5 year: 2018 end-page: 1027 ident: CR66 article-title: Algorithms based on unions of nonexpansive maps publication-title: Optim Lett – volume: 57 start-page: 35 issue: 1 year: 2004 end-page: 61 ident: CR51 article-title: An alternating projection that does not converge in norm publication-title: Nonlin Anal Theory Methods Appl – volume: 78 start-page: 759 issue: 3 year: 2018 end-page: 776 ident: CR24 article-title: Circumcentering the Douglas–Rachford method publication-title: Numer Algor – volume: 65 start-page: 309 issue: 2 year: 2016 end-page: 327 ident: CR7 article-title: Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem publication-title: J Glob Optim – volume: 23 start-page: 96 year: 1962 end-page: 99 ident: CR48 article-title: The product of projection operators publication-title: Acta Sci Math – volume: 55 start-page: 299 issue: 4 year: 2014 end-page: 326 ident: CR5 article-title: Douglas–Rachford feasibility methods for matrix completion problems publication-title: ANZIAM J – volume: 74 start-page: 79 issue: 1 year: 2019 end-page: 93 ident: CR23 article-title: The Douglas–Rachford algorithm for a hyperplane and a doubleton publication-title: J Glob Optim – volume: 19 start-page: 1334 issue: 7 year: 2002 end-page: 1345 ident: CR18 article-title: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization publication-title: J Opt Soc Am A: – volume: 25 start-page: 481 issue: 3 year: 2017 end-page: 505 ident: CR22 article-title: Affine nonexpansive operators, Attouch-Théra duality and the Douglas–Rachford algorithm publication-title: Set-Valued Var Anal – volume: 72 start-page: 443 issue: 3 year: 2018 end-page: 474 ident: CR40 article-title: Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems publication-title: J Glob Optim – volume: 27 start-page: 507 issue: 1 year: 2017 end-page: 537 ident: CR15 article-title: On the finite convergence of the Douglas–Rachford algorithm for solving (not necessarily convex) feasibility problems in Euclidean spaces publication-title: SIAM J Optim – year: 2010 ident: CR26 publication-title: Convex analysis and nonlinear optimization: theory and examples – volume: 69 start-page: 99 issue: 1 year: 2018 end-page: 132 ident: CR3 article-title: A new projection method for finding the closest point in the intersection of convex sets publication-title: Comput Optim Appl – volume: 159 start-page: 371 year: 2016 end-page: 401 ident: CR54 article-title: Douglas–Rachford splitting for nonconvex optimization with application to nonconvex feasibility problems publication-title: Math Prog – volume: 9 start-page: 235 year: 1971 end-page: 240 ident: CR61 article-title: Asymptotic behavior of contractions in Hilbert space publication-title: Israel J Math – volume: 26 start-page: 474 year: 2016 end-page: 487 ident: CR37 article-title: New Douglas–Rachford algorithmic structures and their convergence analyses publication-title: SIAM J Optim – volume: 421 start-page: 1 issue: 1 year: 2015 end-page: 20 ident: CR21 article-title: Linear and strong convergence of algorithms involving averaged nonexpansive operators publication-title: J Math Anal Appl – volume: 160 start-page: 1 issue: 1 year: 2014 end-page: 29 ident: CR28 article-title: A cyclic Douglas–Rachford iteration scheme publication-title: J Optim Theory Appl – ident: CR64 – volume: 70 start-page: 841 issue: 3 year: 2018 end-page: 863 ident: CR67 article-title: A convergent relaxation of the Douglas–Rachford algorithm publication-title: Comput Optim Appl – start-page: 83 year: 2017 end-page: 100 ident: CR30 article-title: Reflection methods for inverse problems with applications to protein conformation determination. Forum for interdisciplinary mathematics publication-title: Generalized nash equilibrium problems, bilevel programming and MPEC – volume: 127 start-page: 178 issue: 2 year: 2004 end-page: 192 ident: CR19 article-title: Finding best approximation pairs relative to two closed convex sets in Hilbert spaces publication-title: J Approx Theory – volume: 20 start-page: 40 issue: 1 year: 2003 end-page: 55 ident: CR45 article-title: Phase retrieval by iterated projections publication-title: J Opt Soc Am A: – volume: 26 start-page: 385 issue: 2 year: 2018 end-page: 403 ident: CR32 article-title: Dynamics of the Douglas–Rachford method for ellipses and -spheres publication-title: Set-Valued Var Anal – volume: 4 start-page: 1 issue: 1 year: 1978 end-page: 9 ident: CR11 article-title: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces publication-title: Houston J Math – volume: 64 start-page: 161 issue: 1 year: 2015 end-page: 178 ident: CR31 article-title: Norm convergence of realistic projection and reflection methods publication-title: Optimization – volume: 61 start-page: 23 issue: 1 year: 2019 end-page: 46 ident: CR53 article-title: Application of projection algorithms to differential equations: boundary value problems publication-title: ANZIAM J – volume: 49 start-page: 280 issue: 1 year: 2011 end-page: 287 ident: CR65 article-title: On weak convergence of the Douglas–Rachford method publication-title: SIAM J Control Optim – volume: 63 start-page: 363 issue: 2 year: 2015 end-page: 380 ident: CR25 article-title: The Douglas–Rachford algorithm for the case of the sphere and the line publication-title: J Global Optim – ident: CR10 – volume: 3 start-page: 133 issue: 1 year: 1922 end-page: 181 ident: CR12 article-title: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales publication-title: Fund math – volume: 162 start-page: 688 issue: 3 year: 1965 end-page: 692 ident: CR33 article-title: The method of successive projection for finding a common point of convex sets publication-title: Soviet Math Dokl – volume: 23 start-page: 2397 issue: 4 year: 2013 end-page: 2419 ident: CR49 article-title: Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems publication-title: SIAM J Optim – volume: 43 start-page: 1143 issue: 4 year: 2018 end-page: 1176 ident: CR58 article-title: Quantitative convergence analysis of iterated expansive, set-valued mappings publication-title: Math Oper Res – volume: 26 start-page: 277 issue: 2 year: 2018 end-page: 304 ident: CR4 article-title: Solving graph coloring problems with the Douglas–Rachford algorithm publication-title: Set-Valued Var Anal – volume: 16 start-page: 573 issue: 4 year: 2015 end-page: 584 ident: CR29 article-title: The cyclic Douglas–Rachford method for inconsistent feasibility problems publication-title: J Nonlinear Convex Anal – volume: 73 start-page: 83 issue: 1 year: 2019 end-page: 112 ident: CR41 article-title: A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting publication-title: J Glob Optim – volume: 3 start-page: 183 issue: 2 year: 1990 end-page: 191 ident: CR59 article-title: A generalization of the -queen problem publication-title: J Systems Sci Math Sci – volume: 20 start-page: 83 year: 1984 end-page: 91 ident: CR35 article-title: Iterative methods for convex feasibility problems publication-title: Ann Discrete Math – volume: 82 start-page: 421 year: 1956 end-page: 439 ident: CR43 article-title: On the numerical solution of heat conduction problems in two and three space variables publication-title: Trans Amer Math Soc – volume: 64 start-page: 412 issue: 1 year: 2018 end-page: 428 ident: CR46 article-title: The complexity of bit retrieval publication-title: IEEE Trans Inf Theory – volume: 55 start-page: 293 issue: 1 year: 1992 end-page: 318 ident: CR44 article-title: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators publication-title: Math Program – volume: 35 start-page: 1061 issue: 4 year: 2018 end-page: 1085 ident: CR8 article-title: A feasibility approach for constructing combinatorial designs of circulant type publication-title: J Comb Optim – volume: 163 start-page: 1 issue: 1 year: 2014 end-page: 30 ident: CR6 article-title: Recent results on Douglas–Rachford methods for combinatorial optimization problem publication-title: J Optim Theory Appl – volume: 28 start-page: 96 year: 1984 end-page: 115 ident: CR63 article-title: Decomposition through formalization in a product space publication-title: Math Program – year: 1950 ident: CR68 publication-title: Functional operators II: the geometry of orthogonal spaces – ident: CR13 – volume: 164 start-page: 263 issue: 1–2 year: 2017 end-page: 284 ident: CR16 article-title: On the Douglas–Rachford algorithm publication-title: Math Program, Ser A – volume: 104 start-page: 418 issue: 2 year: 2007 end-page: 423 ident: CR47 article-title: Searching with iterated maps publication-title: Proc Natl Acad Sci – volume: 65 start-page: 369 issue: 2 year: 2016 end-page: 385 ident: CR62 article-title: Linear convergence of the Douglas–Rachford method for two closed sets publication-title: Optimization – volume: 185 start-page: 63 year: 2014 end-page: 79 ident: CR20 article-title: The rate of linear convergence of the Douglas–Rachford algorithm for subspaces is the cosine of the Friedrichs angle publication-title: J Approx Theory – ident: CR34 – ident: CR55 – volume: 64 start-page: 2343 issue: 11 year: 2015 end-page: 2358 ident: CR36 article-title: Projection methods: an annotated bibliography of books and reviews publication-title: Optimization – volume: 73 start-page: 591 issue: 4 year: 1967 end-page: 597 ident: CR60 article-title: Weak convergence of the sequence of successive approximations for nonexpansive mappings publication-title: Bull Am Math Soc – volume: 102 start-page: 589 issue: 6 year: 2014 end-page: 600 ident: CR17 article-title: On the local convergence of the Douglas–Rachford algorithm publication-title: Arch Math – volume: 16 start-page: 964 issue: 6 year: 1979 end-page: 979 ident: CR56 article-title: Splitting algorithms for the sum of two nonlinear operators publication-title: SIAM J Numer Anal – year: 2001 ident: CR42 publication-title: Best approximation in inner product spaces, CMS books in mathematics/ouvrages de mathématiques de la SMC, – volume: 10 start-page: 448 issue: 3 year: 1959 end-page: 450 ident: CR38 article-title: Proximity maps for convex sets publication-title: Proc Amer Math Soc – volume: 19 start-page: 714 issue: 2 year: 2008 end-page: 739 ident: CR57 article-title: Finding best approximation pairs relative to a convex and a prox-regular set in a Hilbert space publication-title: SIAM J Optim – volume: 73 start-page: 591 issue: 4 year: 1967 ident: 691_CR60 publication-title: Bull Am Math Soc doi: 10.1090/S0002-9904-1967-11761-0 – volume: 163 start-page: 1 issue: 1 year: 2014 ident: 691_CR6 publication-title: J Optim Theory Appl doi: 10.1007/s10957-013-0488-0 – volume: 49 start-page: 280 issue: 1 year: 2011 ident: 691_CR65 publication-title: SIAM J Control Optim doi: 10.1137/100788100 – start-page: 83 volume-title: Generalized nash equilibrium problems, bilevel programming and MPEC year: 2017 ident: 691_CR30 doi: 10.1007/978-981-10-4774-9_5 – volume: 35 start-page: 1061 issue: 4 year: 2018 ident: 691_CR8 publication-title: J Comb Optim doi: 10.1007/s10878-018-0250-5 – volume-title: Convex analysis and monotone operator theory in hilbert spaces year: 2017 ident: 691_CR14 doi: 10.1007/978-3-319-48311-5 – volume: 23 start-page: 2397 issue: 4 year: 2013 ident: 691_CR49 publication-title: SIAM J Optim doi: 10.1137/120902653 – volume: 64 start-page: 412 issue: 1 year: 2018 ident: 691_CR46 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2017.2754485 – volume: 72 start-page: 443 issue: 3 year: 2018 ident: 691_CR40 publication-title: J Glob Optim doi: 10.1007/s10898-018-0654-x – volume: 64 start-page: 161 issue: 1 year: 2015 ident: 691_CR31 publication-title: Optimization doi: 10.1080/02331934.2014.947499 – start-page: 93 volume-title: Fixed-point algorithms for inverse problems in science and engineering, springer optimization and its applications year: 2011 ident: 691_CR27 – ident: 691_CR13 doi: 10.1007/978-1-4614-7621-4_2 – volume-title: Functional operators II: the geometry of orthogonal spaces year: 1950 ident: 691_CR68 – volume: 3 start-page: 133 issue: 1 year: 1922 ident: 691_CR12 publication-title: Fund math doi: 10.4064/fm-3-1-133-181 – volume: 63 start-page: 363 issue: 2 year: 2015 ident: 691_CR25 publication-title: J Global Optim doi: 10.1007/s10898-015-0296-1 – volume: 55 start-page: 299 issue: 4 year: 2014 ident: 691_CR5 publication-title: ANZIAM J doi: 10.1017/S1446181114000145 – volume: 26 start-page: 277 issue: 2 year: 2018 ident: 691_CR4 publication-title: Set-Valued Var Anal doi: 10.1007/s11228-017-0461-4 – volume: 74 start-page: 79 issue: 1 year: 2019 ident: 691_CR23 publication-title: J Glob Optim doi: 10.1007/s10898-019-00744-7 – volume: 159 start-page: 371 year: 2016 ident: 691_CR54 publication-title: Math Prog doi: 10.1007/s10107-015-0963-5 – volume: 20 start-page: 40 issue: 1 year: 2003 ident: 691_CR45 publication-title: J Opt Soc Am A: doi: 10.1364/JOSAA.20.000040 – volume: 102 start-page: 589 issue: 6 year: 2014 ident: 691_CR17 publication-title: Arch Math doi: 10.1007/s00013-014-0652-2 – volume: 25 start-page: 481 issue: 3 year: 2017 ident: 691_CR22 publication-title: Set-Valued Var Anal doi: 10.1007/s11228-016-0399-y – volume: 162 start-page: 688 issue: 3 year: 1965 ident: 691_CR33 publication-title: Soviet Math Dokl – volume: 65 start-page: 309 issue: 2 year: 2016 ident: 691_CR7 publication-title: J Glob Optim doi: 10.1007/s10898-015-0380-6 – volume: 73 start-page: 83 issue: 1 year: 2019 ident: 691_CR41 publication-title: J Glob Optim doi: 10.1007/s10898-018-0677-3 – ident: 691_CR55 – volume: 160 start-page: 1 issue: 1 year: 2014 ident: 691_CR28 publication-title: J Optim Theory Appl doi: 10.1007/s10957-013-0381-x – volume: 78 start-page: 759 issue: 3 year: 2018 ident: 691_CR24 publication-title: Numer Algor doi: 10.1007/s11075-017-0399-5 – volume: 19 start-page: 714 issue: 2 year: 2008 ident: 691_CR57 publication-title: SIAM J Optim doi: 10.1137/070681399 – volume: 23 start-page: 96 year: 1962 ident: 691_CR48 publication-title: Acta Sci Math – volume: 421 start-page: 1 issue: 1 year: 2015 ident: 691_CR21 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2014.06.075 – volume: 10 start-page: 448 issue: 3 year: 1959 ident: 691_CR38 publication-title: Proc Amer Math Soc doi: 10.1090/S0002-9939-1959-0105008-8 – volume: 34 start-page: 875 issue: 4 year: 2019 ident: 691_CR9 publication-title: Optim Methods Softw doi: 10.1080/10556788.2018.1504049 – volume: 61 start-page: 23 issue: 1 year: 2019 ident: 691_CR53 publication-title: ANZIAM J doi: 10.1017/S1446181118000391 – volume: 185 start-page: 63 year: 2014 ident: 691_CR20 publication-title: J Approx Theory doi: 10.1016/j.jat.2014.06.002 – volume: 55 start-page: 293 issue: 1 year: 1992 ident: 691_CR44 publication-title: Math Program doi: 10.1007/BF01581204 – volume: 12 start-page: 1019 issue: 5 year: 2018 ident: 691_CR66 publication-title: Optim Lett doi: 10.1007/s11590-018-1249-7 – volume: 164 start-page: 263 issue: 1–2 year: 2017 ident: 691_CR16 publication-title: Math Program, Ser A doi: 10.1007/s10107-016-1086-3 – volume: 69 start-page: 99 issue: 1 year: 2018 ident: 691_CR3 publication-title: Comput Optim Appl doi: 10.1007/s10589-017-9942-5 – volume: 26 start-page: 474 year: 2016 ident: 691_CR37 publication-title: SIAM J Optim doi: 10.1137/141001536 – volume: 46 start-page: 585 issue: 6 year: 2018 ident: 691_CR1 publication-title: Oper Res Lett doi: 10.1016/j.orl.2018.10.003 – volume: 20 start-page: 83 year: 1984 ident: 691_CR35 publication-title: Ann Discrete Math – volume: 82 start-page: 421 year: 1956 ident: 691_CR43 publication-title: Trans Amer Math Soc doi: 10.1090/S0002-9947-1956-0084194-4 – volume: 16 start-page: 964 issue: 6 year: 1979 ident: 691_CR56 publication-title: SIAM J Numer Anal doi: 10.1137/0716071 – ident: 691_CR10 doi: 10.1007/s11228-017-0461-4 – volume: 104 start-page: 418 issue: 2 year: 2007 ident: 691_CR47 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0606359104 – volume: 64 start-page: 2343 issue: 11 year: 2015 ident: 691_CR36 publication-title: Optimization doi: 10.1080/02331934.2014.957701 – volume: 57 start-page: 753 issue: 3 year: 2013 ident: 691_CR2 publication-title: J Glob Optim doi: 10.1007/s10898-012-9958-4 – volume: 35 start-page: 355 year: 1937 ident: 691_CR52 publication-title: Bull Int Acad Sci Pologne A – volume: 9 start-page: 235 year: 1971 ident: 691_CR61 publication-title: Israel J Math doi: 10.1007/BF02771588 – volume-title: Best approximation in inner product spaces, CMS books in mathematics/ouvrages de mathématiques de la SMC, year: 2001 ident: 691_CR42 doi: 10.1007/978-1-4684-9298-9 – volume: 28 start-page: 96 year: 1984 ident: 691_CR63 publication-title: Math Program doi: 10.1007/BF02612715 – volume: 43 start-page: 1143 issue: 4 year: 2018 ident: 691_CR58 publication-title: Math Oper Res doi: 10.1287/moor.2017.0898 – volume: 16 start-page: 573 issue: 4 year: 2015 ident: 691_CR29 publication-title: J Nonlinear Convex Anal – volume: 57 start-page: 35 issue: 1 year: 2004 ident: 691_CR51 publication-title: Nonlin Anal Theory Methods Appl doi: 10.1016/j.na.2003.11.004 – volume: 4 start-page: 1 issue: 1 year: 1978 ident: 691_CR11 publication-title: Houston J Math – volume: 19 start-page: 1334 issue: 7 year: 2002 ident: 691_CR18 publication-title: J Opt Soc Am A: doi: 10.1364/JOSAA.19.001334 – ident: 691_CR64 – volume: 62 start-page: 4868 issue: 18 year: 2014 ident: 691_CR50 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2339801 – ident: 691_CR34 doi: 10.1007/978-3-642-30901-4 – volume-title: Convex analysis and nonlinear optimization: theory and examples year: 2010 ident: 691_CR26 – volume: 127 start-page: 178 issue: 2 year: 2004 ident: 691_CR19 publication-title: J Approx Theory doi: 10.1016/j.jat.2004.02.006 – volume: 3 start-page: 183 issue: 2 year: 1990 ident: 691_CR59 publication-title: J Systems Sci Math Sci – volume: 65 start-page: 369 issue: 2 year: 2016 ident: 691_CR62 publication-title: Optimization doi: 10.1080/02331934.2015.1051532 – volume: 26 start-page: 385 issue: 2 year: 2018 ident: 691_CR32 publication-title: Set-Valued Var Anal doi: 10.1007/s11228-017-0457-0 – volume: 27 start-page: 507 issue: 1 year: 2017 ident: 691_CR15 publication-title: SIAM J Optim doi: 10.1137/16M1071079 – ident: 691_CR39 doi: 10.1007/s10957-018-1443-x – volume: 70 start-page: 841 issue: 3 year: 2018 ident: 691_CR67 publication-title: Comput Optim Appl doi: 10.1007/s10589-018-9989-y |
| SSID | ssj0001442 |
| Score | 2.417857 |
| Snippet | The Douglas–Rachford algorithm is an optimization method that can be used for solving feasibility problems. To apply the method, it is necessary that the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 201 |
| SubjectTerms | Algorithms Business and Management Calculus of Variations and Optimal Control; Optimization Combinatorial analysis Convergence Feasibility Mathematics Mathematics and Statistics Operations research Operations Research/Decision Theory Optimization Original Article |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58IXpwdVVcXSUHbxrYbdOmOYooHnQRX3grSZrqwror21X05n_wH_pLnMS0PlBBj0PTtOQxMx_5Mh_AZsBzoxIuaaSZpky2Iyp1K6EawUYUKy545lRLDnmnk1xeimN_Kawo2e7lkaTz1NVlN6sfZ9GvoLa8bpuKcZjEcJdYwYaT04vK_yJEcGecLAwoOlvmr8p838fncPSeY345FnXRZr_2v_-chzmfXZKdt-WwAGOmX4fpktxeh1op4kD8nq7D7IeKhGgdVWVci0Xo4CIiPsV-eXo-kfracuGJ7F0Nht3R9Q1Bkzji-gOR_Yz0B31v5UZ64u0j8aI1xRKc7--d7R5QL8BANcK-EVWY27GIMcW4ZrkxLcwVVRgqjZgx0zlXaEltmOGtHH1FxAJpOOInI7BpHopwGSbww2YFSBKEkuVCBXGWYTyU0ije1nGcSxOHWaga0C7nIdW-OrkVyeilVV1lN64pjmvqxjUVDdiq3rl9q83xa-tmOb2p36dFahm0ibAaNw3YLqfz_fHPva3-rfkazAQWqDvKTxMmRsM7sw5T-n7ULYYbbv2-AnKc6dY priority: 102 providerName: Springer Nature |
| Title | The Douglas–Rachford algorithm for convex and nonconvex feasibility problems |
| URI | https://link.springer.com/article/10.1007/s00186-019-00691-9 https://www.proquest.com/docview/2400895133 |
| Volume | 91 |
| WOSCitedRecordID | wos000531816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-5217 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001442 issn: 1432-2994 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswEB3xEuIueBTQLY_KC3Zg0SROHK8QIBASUFXlzSayHQeQuIVLC4Id_8Af8iWMjdMCEmzYWBrFsS2NPZ6xj-cALIW8MCrlksaaacpkEFOp6ynVGGzEieKC5461ZI83GunpqWj6A7eOh1WWNtEZ6vxG2zPyVYt1TIVlI1m7_U8ta5S9XfUUGoMwbLMkBA66d9CzxBgsuNtOFoUUzS7zj2bc0znLRmdjaUFtst6Ais8bU9_b_HJB6vad7YnfjngSxr3HSdbfp8gUDJh2BUZLwHsFJkpiB-LXeQX-fMhSOA0NnErEO9qvzy8tqS8tIp7I6wvsrnv5j6BIHHz9kch2Tto3bS8VRnr47RPx1DWdGTja3jrc3KGehoFqDP66VKGHx2LGFOOaFcbU0WNUUaQ0Ro65LrhCSWrDDK8XaDFiFkrDMYoyAqsWkYhmYQg7Nn-BpGEkWSFUmOQ57opSGsUDnSSFNEmUR6oKQamDTPsc5ZYq4zrrZVd2estQb5nTWyaqsNz75_Y9Q8ePtRdKZWV-tXayvqaqsFKqu__5-9bmfm5tHsZCG547oM8CDHXv7s0ijOiH7lXnrgaD_OSsBsMbW41mC6VdTrHcr2_W3CzGshmfY9k6OH4DN1n1mg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0hQCwHlgKirD7ACSzaxImTA0KIRaCWCiGQuAXbcSgSlKVlu_EP_AcfxZcwdp0WkODGgaMVx5HjN2M_ezwPYMnjmZYRFzRQTFEmygEVqhRRhWQjCCWPeWpVS6q8VotOT-PDHnjL78KYsMrcJ1pHnV4rs0e-ZmIdo9iokWzc3FKjGmVOV3MJjTYsKvr5ESlbc31_G8d32fN2d4639qhTFaAKuUyLSlywsIAxybhimdYlXABJ35cKiVCqMi6xJJRmmpcyNICAeUJzJAU6xqqZb5IvocvvY37EjV1VOO14fiQn9nSV-R5FN8_cJR17Vc-o3xnuHlOTHLhM468TYXd1--1A1s5zu6P_7Q-NwYhbUZPNtgmMQ49uFGAgD-gvwGguXEGcHyvA8KcsjBNQQ1Mhjki8v7weCVU3Ef9EXJ5j91r1K4JFYsPzn4hopKRx3XClTAsXXvxMnDRPcxJO_qS7U9CLH9bTQCLPFyyLpRemKc76QmjJyyoMM6FDP_VlEcr5mCfK5WA3UiCXSSd7tMVJgjhJLE6SuAgrnXdu2hlIfq09l4Mjcd6omXSRUYTVHF7dxz-3NvN7a4swuHd8UE2q-7XKLAx5ZivCBjXNQW_r7l7PQ796aF007xasnRA4-2vYfQBc7kuk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTuMwFL1CgNCw4NEZRHl6ASvGok2cOFkghIAKBKoqBBKaTcZ2bECCAm15dMc_8Dd8Dl_Cteu0MNKwY8HSiuPI8fH1Pfb1PQArATdaJlzQSDFFmahGVKhKQhWSjSiWPOW5Uy055PV6cnqaNobgpbgLY8MqC5voDHV-rewe-bqNdUxSq0aybnxYRGOntnlzS62ClD1pLeQ0ehA50N0HpG_tjf0dHOvVIKjtHm_vUa8wQBXymg6V6LywiDHJuGJG6wo6QzIMpUJSlCvDJZaE0kzzisHJELFAaI4EQadY1YQ2EROa_xGOHNOGEzaiP_1VAImKO2llYUDR5DN_Ycdd27NKeJbHp9QmCq7S9OOiOPB0_zmcdWtebfI7_60pmPCeNtnqTY1pGNLNEowVgf4lmCwELYi3byUYf5ed8SfUcQoRTzBen56PhDq3NwGIuDzD7nXOrwgWiQvbfySimZPmddOXjBY-7LhLvGRP-xecfEl3Z2AYP6xngSRBKJhJZRDnOXoDQmjJqyqOjdBxmIeyDNVi_DPlc7NbiZDLrJ9V2mEmQ8xkDjNZWoa1_js3vcwkn9ZeKICSeSvVzgYoKcPvAmqDx_9vbe7z1pZhDNGWHe7XD-bhR2B3KFys0wIMd1p3ehFG1X3not1aclOGwN-vRt0bxt9UyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Douglas%E2%80%93Rachford+algorithm+for+convex+and+nonconvex+feasibility+problems&rft.jtitle=Mathematical+methods+of+operations+research+%28Heidelberg%2C+Germany%29&rft.au=Arag%C3%B3n+Artacho%2C+Francisco+J.&rft.au=Campoy%2C+Rub%C3%A9n&rft.au=Tam%2C+Matthew+K.&rft.date=2020-04-01&rft.issn=1432-2994&rft.eissn=1432-5217&rft.volume=91&rft.issue=2&rft.spage=201&rft.epage=240&rft_id=info:doi/10.1007%2Fs00186-019-00691-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00186_019_00691_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-2994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-2994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-2994&client=summon |