Hyper-Sharpening: A First Approach on SIM-GA Data

This paper aims at defining a new paradigm (hypersharpening) in remote sensing image fusion. In fact, due to the development of new instruments, thinking only in terms of pansharpening is reductive. Even though some expressions as hyperspectral (HS) pansharpening already exist, there is not a suitab...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 8; no. 6; pp. 3008 - 3024
Main Authors: Selva, Massimo, Aiazzi, Bruno, Butera, Francesco, Chiarantini, Leandro, Baronti, Stefano
Format: Journal Article
Language:English
Published: IEEE 01.06.2015
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper aims at defining a new paradigm (hypersharpening) in remote sensing image fusion. In fact, due to the development of new instruments, thinking only in terms of pansharpening is reductive. Even though some expressions as hyperspectral (HS) pansharpening already exist, there is not a suitable definition when multispectral/hyperspectral data are used as source to extract spatial details. After defining the hypersharpening framework, we draw the readers' attention to its peculiar characteristics, by proposing and evaluating two hypersharpening methods. Experiments are carried out on the data produced by the updated version of SIM-GA imager, designed by Selex ES, which is composed by a panchromatic camera and two spectrometers in the VNIR and SWIR spectral ranges, respectively. Owing to the different resolution factors among panchromatic, VNIR and SWIR data sets, we can apply hypersharpening to fuse SWIR data to VNIR resolution. Comparisons of hypersharpening with "traditional" pansharpening show hypersharpening is more effective.
AbstractList This paper aims at defining a new paradigm (hypersharpening) in remote sensing image fusion. In fact, due to the development of new instruments, thinking only in terms of pansharpening is reductive. Even though some expressions as hyperspectral (HS) pansharpening already exist, there is not a suitable definition when multispectral/hyperspectral data are used as source to extract spatial details. After defining the hypersharpening framework, we draw the readers' attention to its peculiar characteristics, by proposing and evaluating two hypersharpening methods. Experiments are carried out on the data produced by the updated version of SIM-GA imager, designed by Selex ES, which is composed by a panchromatic camera and two spectrometers in the VNIR and SWIR spectral ranges, respectively. Owing to the different resolution factors among panchromatic, VNIR and SWIR data sets, we can apply hypersharpening to fuse SWIR data to VNIR resolution. Comparisons of hypersharpening with "traditional" pansharpening show hypersharpening is more effective.
Author Baronti, Stefano
Aiazzi, Bruno
Selva, Massimo
Butera, Francesco
Chiarantini, Leandro
Author_xml – sequence: 1
  givenname: Massimo
  surname: Selva
  fullname: Selva, Massimo
  email: m.selva@ifac.cnr.it
  organization: Instituto di Fisica Applicata Nello Carrara, CNR Area della Ricerca di Firenze, Sesto Fiorentino, FI, Italy
– sequence: 2
  givenname: Bruno
  surname: Aiazzi
  fullname: Aiazzi, Bruno
  email: b.aiazzi@ifac.cnr.it
  organization: Instituto di Fisica Applicata Nello Carrara, CNR Area della Ricerca di Firenze, Sesto Fiorentino, FI, Italy
– sequence: 3
  givenname: Francesco
  surname: Butera
  fullname: Butera, Francesco
  email: francesco.butera@selex-es.com
  organization: Selex ES, Florence, Italy
– sequence: 4
  givenname: Leandro
  surname: Chiarantini
  fullname: Chiarantini, Leandro
  email: leandro.chiarantini@selex-es.com
  organization: Selex ES, Florence, Italy
– sequence: 5
  givenname: Stefano
  surname: Baronti
  fullname: Baronti, Stefano
  email: s.baronti@ifac.cnr.it
  organization: Instituto di Fisica Applicata Nello Carrara, CNR Area della Ricerca di Firenze, Sesto Fiorentino, FI, Italy
BookMark eNqFj71OwzAURi1UJNrCE3TJC7j42jcxZosK_UFFSKTM0Y3jUKOSRE6Wvj2tUjGwMH3T-Y7OhI3qpnaMzUDMAYS5f8l26Xs2lwLiuUQUwsgrNpYQA4dYxSM2BqMMBxR4wyZd9yVEIrVRYwbrY-sCz_YUWlf7-vMxSqOlD10fpW0bGrL7qKmjbPPKV2n0RD3dsuuKDp27u-yUfSyfd4s1376tNot0yy0K0_NCFqWjRBZJ7Jx2JzUUypIiBNRUmrKslEEJBhNpC1vqygrULjEPSLbCRE2ZGn5taLouuCpvg_-mcMxB5OfqfKjOz9X5pfpEmT-U9T31vqn7QP7wDzsbWO-c-7VpUKgR1A_m4mZt
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1007_s12517_022_10243_x
crossref_primary_10_1109_ACCESS_2020_2981690
crossref_primary_10_1109_LGRS_2022_3194257
crossref_primary_10_1109_TGRS_2023_3307346
crossref_primary_10_3390_rs14174390
crossref_primary_10_1109_LGRS_2017_2777916
crossref_primary_10_1109_JSTARS_2016_2585158
crossref_primary_10_1109_LGRS_2019_2926308
crossref_primary_10_1109_LGRS_2022_3215281
crossref_primary_10_1109_JSTARS_2024_3457814
crossref_primary_10_3390_rs16050875
crossref_primary_10_1109_TGRS_2020_3006534
crossref_primary_10_3390_math9111265
crossref_primary_10_3390_s23042341
crossref_primary_10_1109_TGRS_2021_3063105
crossref_primary_10_1109_TGRS_2024_3378849
crossref_primary_10_1109_TPAMI_2020_3015691
crossref_primary_10_1088_2631_8695_ad3a34
crossref_primary_10_1109_TGRS_2024_3391014
crossref_primary_10_3390_rs10081308
crossref_primary_10_3390_rs14184520
crossref_primary_10_1109_MGRS_2017_2762087
crossref_primary_10_1080_2150704X_2017_1354262
crossref_primary_10_1109_LGRS_2018_2884087
crossref_primary_10_1016_j_isprsjprs_2018_07_012
crossref_primary_10_3390_rs17121983
crossref_primary_10_1016_j_eswa_2024_125742
crossref_primary_10_1109_TGRS_2020_3039046
crossref_primary_10_1109_TGRS_2023_3267890
crossref_primary_10_1109_LGRS_2022_3151779
crossref_primary_10_3390_rs12162535
crossref_primary_10_1080_01431161_2017_1392640
crossref_primary_10_1109_TGRS_2019_2918932
crossref_primary_10_1109_TNNLS_2024_3400809
crossref_primary_10_1016_j_cmpb_2022_106964
crossref_primary_10_1109_TGRS_2022_3215902
crossref_primary_10_1109_TGRS_2020_3046321
crossref_primary_10_3390_rs10050800
crossref_primary_10_1016_j_infrared_2024_105617
crossref_primary_10_1109_JSTARS_2016_2569480
crossref_primary_10_1364_AO_389485
crossref_primary_10_1109_TCI_2024_3488569
crossref_primary_10_3390_rs13122296
crossref_primary_10_1109_MGRS_2016_2637824
crossref_primary_10_1109_TGRS_2021_3079518
crossref_primary_10_1109_TGRS_2025_3586641
crossref_primary_10_1109_JSTARS_2019_2908984
crossref_primary_10_1109_TGRS_2024_3514893
crossref_primary_10_1016_j_isprsjprs_2024_12_004
crossref_primary_10_1109_JSTARS_2023_3314085
crossref_primary_10_1109_TGRS_2019_2930764
crossref_primary_10_1109_TGRS_2025_3590066
crossref_primary_10_12677_mos_2024_133292
crossref_primary_10_3390_app10207313
crossref_primary_10_3390_rs8121033
crossref_primary_10_1016_j_asr_2022_02_051
crossref_primary_10_1109_JSTARS_2020_3009250
crossref_primary_10_1109_JSTARS_2022_3224987
crossref_primary_10_1016_j_inffus_2023_03_011
crossref_primary_10_1016_j_jhydrol_2019_02_013
crossref_primary_10_1109_MGRS_2024_3495516
crossref_primary_10_1080_10095020_2024_2380476
crossref_primary_10_1109_TGRS_2023_3319512
crossref_primary_10_1109_JSTARS_2021_3097178
crossref_primary_10_1109_TGRS_2021_3108122
crossref_primary_10_1007_s10933_021_00204_x
crossref_primary_10_1007_s11431_021_1978_6
crossref_primary_10_1109_TGRS_2023_3332176
crossref_primary_10_1109_TGRS_2019_2927766
crossref_primary_10_3390_rs16213979
crossref_primary_10_3390_rs11050492
crossref_primary_10_1109_TGRS_2019_2916654
crossref_primary_10_14358_PERS_24_00003R2
crossref_primary_10_1109_TGRS_2017_2742002
crossref_primary_10_3390_jimaging4100118
crossref_primary_10_3390_rs12050882
crossref_primary_10_1016_j_asr_2021_08_003
crossref_primary_10_1016_j_inffus_2025_103295
crossref_primary_10_1109_TGRS_2018_2877124
crossref_primary_10_1109_TGRS_2021_3133670
crossref_primary_10_1109_JSTARS_2024_3406762
crossref_primary_10_1109_TGRS_2022_3207230
crossref_primary_10_1109_TGRS_2022_3229086
crossref_primary_10_1109_TGRS_2018_2867284
crossref_primary_10_1080_0035919X_2022_2144538
crossref_primary_10_1016_j_asr_2024_05_045
crossref_primary_10_3390_rs13163226
crossref_primary_10_1109_ACCESS_2017_2710226
crossref_primary_10_1111_phor_70019
crossref_primary_10_3390_rs14041021
crossref_primary_10_1016_j_inffus_2023_102158
crossref_primary_10_1109_MGRS_2020_3019315
crossref_primary_10_1002_esp_70064
crossref_primary_10_1007_s11432_022_3609_4
crossref_primary_10_1016_j_jag_2023_103560
crossref_primary_10_3934_ipi_2025039
crossref_primary_10_1016_j_image_2024_117247
crossref_primary_10_1109_TGRS_2024_3423422
crossref_primary_10_3390_rs14215306
crossref_primary_10_1109_TGRS_2021_3128279
crossref_primary_10_1109_JSTARS_2025_3562278
crossref_primary_10_1109_LGRS_2021_3110204
crossref_primary_10_3390_rs10030445
crossref_primary_10_1109_LGRS_2023_3288004
crossref_primary_10_1007_s41207_025_00872_5
crossref_primary_10_1117_1_JRS_19_016512
crossref_primary_10_1109_TGRS_2025_3550946
crossref_primary_10_1109_LGRS_2017_2737820
crossref_primary_10_3390_rs16244694
crossref_primary_10_1109_JAS_2022_106013
crossref_primary_10_3390_s21041265
crossref_primary_10_1109_MGRS_2018_2890023
crossref_primary_10_3390_rs11060633
crossref_primary_10_1109_TIP_2020_2968773
crossref_primary_10_1109_TGRS_2020_2994968
crossref_primary_10_1109_TGRS_2024_3407967
crossref_primary_10_1109_TNNLS_2023_3278928
crossref_primary_10_3390_rs16071248
crossref_primary_10_1080_01431161_2023_2249600
crossref_primary_10_3390_rs9111156
crossref_primary_10_1109_TIP_2020_3009830
crossref_primary_10_1016_j_rse_2016_10_030
crossref_primary_10_1109_TGRS_2023_3323480
crossref_primary_10_3390_app10165583
crossref_primary_10_3390_app15042217
crossref_primary_10_1109_TGRS_2022_3146296
crossref_primary_10_1109_TGRS_2021_3135501
crossref_primary_10_1080_01431161_2016_1163749
crossref_primary_10_1109_LGRS_2023_3344944
crossref_primary_10_1016_j_chemolab_2020_104097
crossref_primary_10_1109_TIP_2021_3098246
crossref_primary_10_1080_01431161_2024_2429784
crossref_primary_10_1109_TGRS_2022_3217061
crossref_primary_10_1016_j_rse_2017_04_013
crossref_primary_10_1109_TCYB_2023_3238200
crossref_primary_10_3390_rs9040316
crossref_primary_10_1016_j_inffus_2020_11_001
crossref_primary_10_1016_j_isprsjprs_2022_04_001
crossref_primary_10_3390_rs17040666
crossref_primary_10_1109_TNNLS_2021_3084682
crossref_primary_10_1109_TCSVT_2024_3507860
crossref_primary_10_1109_TGRS_2016_2628889
crossref_primary_10_3390_rs15030638
crossref_primary_10_3390_rs9101080
crossref_primary_10_1109_ACCESS_2020_3026925
crossref_primary_10_3390_rs9050443
crossref_primary_10_1109_TSP_2018_2876362
crossref_primary_10_3390_rs9040391
crossref_primary_10_1109_JSTARS_2025_3535963
crossref_primary_10_1109_TGRS_2025_3599879
crossref_primary_10_1109_TGRS_2024_3382402
crossref_primary_10_3390_s19132873
crossref_primary_10_1109_TCI_2022_3214149
crossref_primary_10_3390_app11010288
crossref_primary_10_1109_JSTARS_2019_2910990
crossref_primary_10_1080_01431161_2024_2406034
crossref_primary_10_1016_j_inffus_2024_102803
crossref_primary_10_1109_TGRS_2023_3244750
crossref_primary_10_1007_s11432_022_3610_5
crossref_primary_10_3390_rs11192315
crossref_primary_10_1109_TGRS_2025_3578150
crossref_primary_10_1016_j_isprsjprs_2024_07_003
crossref_primary_10_1109_TGRS_2022_3168511
crossref_primary_10_1080_01431161_2022_2109223
crossref_primary_10_3390_rs13204074
crossref_primary_10_1109_TGRS_2020_3000267
crossref_primary_10_1109_TPAMI_2024_3523364
crossref_primary_10_1007_s10712_018_9485_z
crossref_primary_10_3390_rs16163107
crossref_primary_10_1109_JSTARS_2017_2785411
crossref_primary_10_3390_rs12122003
crossref_primary_10_1109_JSTARS_2019_2902847
crossref_primary_10_1109_JSTARS_2021_3132135
crossref_primary_10_1109_MGRS_2022_3170092
crossref_primary_10_1109_TGRS_2017_2766080
crossref_primary_10_1109_TGRS_2022_3208125
crossref_primary_10_3390_rs17121973
crossref_primary_10_1080_15481603_2023_2233725
crossref_primary_10_1109_TGRS_2021_3124240
Cites_doi 10.1186/1687-6180-2012-207
10.1109/ICASSP.2014.6854186
10.1137/1.9780898719574
10.1126/science.290.5500.2319
10.1109/TGRS.2014.2361734
10.1109/TGRS.2007.901007
10.1109/36.763274
10.1109/TGRS.2008.918089
10.14358/PERS.74.2.193
10.1109/LGRS.2007.909934
10.1016/0034-4257(93)90013-N
10.1049/ip-vis:20010314
10.1109/TGRS.2006.881801
10.1109/97.995823
10.1109/TGRS.2010.2067219
10.1109/TGRS.2002.803623
10.1109/IGARSS.2013.6723731
10.1109/TGRS.2009.2017737
10.1109/TGRS.2004.842292
10.1109/TGRS.2004.830644
10.1109/JSTSP.2011.2104938
10.1016/0034-4257(87)90088-5
10.1109/TGRS.2012.2213604
10.1109/36.3001
10.1109/TGRS.2014.2375320
10.1016/S1566-2535(01)00036-7
10.1109/TGRS.2003.819189
10.1117/12.2030560
10.1109/LGRS.2013.2294476
10.1017/CBO9780511804441
10.1109/TGRS.2004.837324
10.1109/TGRS.2011.2161320
10.1109/TGRS.2005.856106
10.1109/TGRS.2006.864389
10.1016/S0924-2716(03)00013-3
10.1109/TGRS.2012.2230332
10.1117/12.463143
10.1109/TIP.2004.829779
10.1016/j.cageo.2006.06.008
10.1109/TIT.2006.871582
10.1109/WHISPERS.2010.5594968
10.14358/PERS.72.5.591
10.1109/IGARSS.2011.6049308
10.1109/WHISPERS.2011.6080866
10.1109/PROC.1972.8817
10.1016/S0034-4257(99)00074-7
10.1109/TGRS.2014.2381272
10.1016/S0034-4257(97)00090-4
10.1007/978-1-4757-1904-8
10.1109/36.54356
10.1109/LGRS.2008.2012003
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSTARS.2015.2440092
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 3024
ExternalDocumentID 10_1109_JSTARS_2015_2440092
7134741
Genre orig-research
GrantInformation_xml – fundername: Agenzia Spaziale Italiana (ASI)
  grantid: CNR-IFAC/SOASAR/111213
  funderid: 10.13039/501100003981
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c409t-b2bdea62b65ee7e1401b3ca3a4147ad9ddf394219462cbcd7fc047e6984acf463
IEDL.DBID RIE
ISICitedReferencesCount 227
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359264000060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Tue Nov 18 22:16:04 EST 2025
Sat Nov 29 06:38:25 EST 2025
Wed Aug 27 02:51:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Dimensionality reduction
pansharpening
hyperspectral (HS)
remote sensing
image fusion
hypersharpening
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-b2bdea62b65ee7e1401b3ca3a4147ad9ddf394219462cbcd7fc047e6984acf463
PageCount 17
ParticipantIDs crossref_primary_10_1109_JSTARS_2015_2440092
ieee_primary_7134741
crossref_citationtrail_10_1109_JSTARS_2015_2440092
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref56
ref59
ref15
ref58
ref14
kruse (ref41) 0; i
ref52
ref54
ref10
ref17
ref16
ref19
aiazzi (ref3) 2011
ref18
ref51
ref50
ref46
ref47
ref42
ref44
ref43
ref49
ross (ref55) 2004
ref7
aiazzi (ref28) 0; 4885
ref9
ref6
ref5
(ref57) 2014
ref40
ranchin (ref4) 2000; 66
ref35
harsanyi (ref48) 0
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref38
jolliffe (ref39) 1986
ref24
wald (ref53) 1997; 63
ref23
selva (ref33) 0
ref26
ref25
ref20
ref22
ref21
carper (ref8) 1990; 56
tenenbaum (ref45) 2000; 290
ref27
tu (ref12) 2001; 148
ref29
ref60
shettigara (ref11) 1992; 58
ref61
References_xml – ident: ref30
  doi: 10.1186/1687-6180-2012-207
– ident: ref35
  doi: 10.1109/ICASSP.2014.6854186
– ident: ref58
  doi: 10.1137/1.9780898719574
– start-page: 503
  year: 2011
  ident: ref3
  article-title: 25 years of pansharpening: A critical review and new developments
  publication-title: Signal and Image Processing for Remote sensing
– volume: 290
  start-page: 2319
  year: 2000
  ident: ref45
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– ident: ref38
  doi: 10.1109/TGRS.2014.2361734
– ident: ref13
  doi: 10.1109/TGRS.2007.901007
– ident: ref5
  doi: 10.1109/36.763274
– ident: ref44
  doi: 10.1109/TGRS.2008.918089
– ident: ref29
  doi: 10.14358/PERS.74.2.193
– ident: ref31
  doi: 10.1109/LGRS.2007.909934
– ident: ref60
  doi: 10.1016/0034-4257(93)90013-N
– volume: 148
  start-page: 217
  year: 2001
  ident: ref12
  article-title: blind separation of spectral signatures in hyperspectral imagery
  publication-title: Vision Image and Signal Processing IEE Proceedings-
  doi: 10.1049/ip-vis:20010314
– volume: 66
  start-page: 49
  year: 2000
  ident: ref4
  article-title: Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation
  publication-title: Photogramm Eng Remote Sens
– ident: ref47
  doi: 10.1109/TGRS.2006.881801
– volume: i
  start-page: 407
  year: 0
  ident: ref41
  article-title: Automated spectral analysis: A geological example using AVIRIS data, North Grapevine Mountains, Nevada
  publication-title: Proc 10th Thematic Conf Geol Remote Sensing
– ident: ref61
  doi: 10.1109/97.995823
– ident: ref16
  doi: 10.1109/TGRS.2010.2067219
– ident: ref7
  doi: 10.1109/TGRS.2002.803623
– ident: ref23
  doi: 10.1109/IGARSS.2013.6723731
– volume: 58
  start-page: 561
  year: 1992
  ident: ref11
  article-title: A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set
  publication-title: Photogramm Eng Remote Sens
– ident: ref26
  doi: 10.1109/TGRS.2009.2017737
– ident: ref46
  doi: 10.1109/TGRS.2004.842292
– ident: ref21
  doi: 10.1109/TGRS.2004.830644
– ident: ref2
  doi: 10.1109/JSTSP.2011.2104938
– year: 2014
  ident: ref57
  publication-title: CVX MATLAB Software for Disciplined Convex Programming
– ident: ref10
  doi: 10.1016/0034-4257(87)90088-5
– ident: ref18
  doi: 10.1109/TGRS.2012.2213604
– ident: ref40
  doi: 10.1109/36.3001
– ident: ref37
  doi: 10.1109/TGRS.2014.2375320
– ident: ref9
  doi: 10.1016/S1566-2535(01)00036-7
– year: 2004
  ident: ref55
  publication-title: Introduction to Probability and Statistics for Engineers and Scientists
– volume: 56
  start-page: 459
  year: 1990
  ident: ref8
  article-title: The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data
  publication-title: Photogramm Eng Remote Sens
– ident: ref49
  doi: 10.1109/TGRS.2003.819189
– ident: ref59
  doi: 10.1117/12.2030560
– ident: ref32
  doi: 10.1109/LGRS.2013.2294476
– ident: ref56
  doi: 10.1017/CBO9780511804441
– year: 0
  ident: ref48
  article-title: Determining the number and identity of spectral endmembers: An integrated approach using Neyman-Pearson eigenthresholding and iterative constrained RMS error minimization
  publication-title: Proc 9th Thematic Conf Geol Remote Sens
– ident: ref25
  doi: 10.1109/TGRS.2004.837324
– ident: ref22
  doi: 10.1109/TGRS.2011.2161320
– ident: ref6
  doi: 10.1109/TGRS.2005.856106
– ident: ref50
  doi: 10.1109/TGRS.2006.864389
– ident: ref54
  doi: 10.1016/S0924-2716(03)00013-3
– ident: ref17
  doi: 10.1109/TGRS.2012.2230332
– volume: 4885
  start-page: 46
  year: 0
  ident: ref28
  article-title: Context modeling for joint spectral and radiometric distortion minimization in pyramid-based fusion of MS and P image data
  publication-title: Proc SPIE
  doi: 10.1117/12.463143
– ident: ref24
  doi: 10.1109/TIP.2004.829779
– ident: ref14
  doi: 10.1016/j.cageo.2006.06.008
– ident: ref15
  doi: 10.1109/TIT.2006.871582
– ident: ref27
  doi: 10.1109/WHISPERS.2010.5594968
– ident: ref52
  doi: 10.14358/PERS.72.5.591
– ident: ref34
  doi: 10.1109/IGARSS.2011.6049308
– ident: ref43
  doi: 10.1109/WHISPERS.2011.6080866
– ident: ref51
  doi: 10.1109/PROC.1972.8817
– ident: ref20
  doi: 10.1016/S0034-4257(99)00074-7
– ident: ref36
  doi: 10.1109/TGRS.2014.2381272
– ident: ref19
  doi: 10.1016/S0034-4257(97)00090-4
– year: 1986
  ident: ref39
  publication-title: Principal Component Analysis
  doi: 10.1007/978-1-4757-1904-8
– ident: ref42
  doi: 10.1109/36.54356
– start-page: 1
  year: 0
  ident: ref33
  article-title: Hyper-sharpening of hyperspectral data: A first approach
  publication-title: Proc 6nd Workshop Hyperspectral Image Signal Process Evol Remote Sens (WHISPERS)
– volume: 63
  start-page: 691
  year: 1997
  ident: ref53
  article-title: Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images
  publication-title: Photogramm Eng Remote Sens
– ident: ref1
  doi: 10.1109/LGRS.2008.2012003
SSID ssj0062793
Score 2.5362773
Snippet This paper aims at defining a new paradigm (hypersharpening) in remote sensing image fusion. In fact, due to the development of new instruments, thinking only...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3008
SubjectTerms Correlation
Dimensionality reduction
hypersharpening
hyperspectral (HS)
Hyperspectral sensors
image fusion
Instruments
Noise
pansharpening
remote sensing
Spatial resolution
Title Hyper-Sharpening: A First Approach on SIM-GA Data
URI https://ieeexplore.ieee.org/document/7134741
Volume 8
WOSCitedRecordID wos000359264000060&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1zKPji1xTnF3nwcdnaJk0a34q6TdAhTmVvJV-FgXRjdoL_3iTthoIIvpWSQDgNufek954DwGVuY4A2UYxEKAkiisWI51wjhXNqE-aASG_f9nrPRqNkMuGPDdBZ98IYY3zxmem6R_8vX8_U0l2V9Xzfo-tS32CMVb1aq1OXRswL7Np8hCMnGVMrDIUB79ktnj6NXRlX3LXRzMkM_YhC32xVfFTp7_5vPXtgp84eYVp97n3QMMUB2Bp4d97PFgiHllUukBNhnht34XEFU9if2gQPprV2OJwVcHz3gAYpvBGlOAQv_dvn6yGqPRGQskysRDKS2ggaSRobw4yjRxIrgQUJCROaa51jTuwxRGikpNIsVwFhhvKECJUTio9As5gV5hhAZeI80qGOLeMhWiRSMoGJZCrBQvKAtkG0wihTtWC48614yzxxCHhWAZs5YLMa2DborCfNK72Mv4e3HKzroTWiJ7-_PgXbbnJVqXUGmuViac7Bpvoop--LC78fvgALErAQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA3DC_ribYrz2gcfl61N06Txrai74DbETdlbya0wkG3MTvDfm6TdUBDBt1LSUE5Dvu-k33cOADeZiQFKowjyQGCIJY0gy5iCMsyISZh9LJx922uPDgbxeMyeKqC-7oXRWrviM92wl-5fvprJpT0qa7q-R9ulvhlhjIKiW2u17xJEncSuyUgYtKIxpcZQ4LOmWeTJ89AWckUNE8-s0NCPOPTNWMXFldb-_97oAOyV-aOXFB_8EFT09Ahst50_72cVBB3DKxfQyjDPtT3yuPUSrzUxKZ6XlOrh3mzqDbt92E68e57zY_DSehjddWDpigCl4WI5FEgozQkSJNKaakuQRCh5yHGAKVdMqSxkBh2GCZJCKppJH1NNWIy5zDAJT8DGdDbVp8CTOsqQClRkOA9WPBaC8hALKuOQC-aTGkArjFJZSoZb54q31FEHn6UFsKkFNi2BrYH6-qF5oZjx9_CqhXU9tET07Pfb12CnM-r30l538HgOdu1ERd3WBdjIF0t9CbbkRz55X1y5tfEFZgGzVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyper-Sharpening%3A+A+First+Approach+on+SIM-GA+Data&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Selva%2C+Massimo&rft.au=Aiazzi%2C+Bruno&rft.au=Butera%2C+Francesco&rft.au=Chiarantini%2C+Leandro&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=8&rft.issue=6&rft.spage=3008&rft.epage=3024&rft_id=info:doi/10.1109%2FJSTARS.2015.2440092&rft.externalDocID=7134741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon