Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching

•Sulfation–roasting–leaching process was used for selective recovery of rare earths from bauxite residue.•Most of the oxides were converted to sulfates during sulfation.•Unstable sulfates (mainly iron(III) sulfate) were decomposed to oxides during roasting.•About 60% Sc and more than 90% of the othe...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Minerals engineering Ročník 92; s. 151 - 159
Hlavní autori: Borra, Chenna Rao, Mermans, Jasper, Blanpain, Bart, Pontikes, Yiannis, Binnemans, Koen, Van Gerven, Tom
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.06.2016
Predmet:
ISSN:0892-6875, 1872-9444
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Sulfation–roasting–leaching process was used for selective recovery of rare earths from bauxite residue.•Most of the oxides were converted to sulfates during sulfation.•Unstable sulfates (mainly iron(III) sulfate) were decomposed to oxides during roasting.•About 60% Sc and more than 90% of the other rare earths can be recovered with low amount of Fe (<1%) in the solution.•Residue after leaching can be used in cementitious binders. Bauxite residue (red mud) that is generated from karst bauxite ores is rich in rare-earth elements (REEs). The REEs can be recovered from bauxite residue by direct acid leaching but the extraction yields are generally low. The extraction yields can be increased by increasing the acid concentration but this will increase the dissolution of iron as well. Large amounts of iron in the leach solution create problems in the further recovery processes. Therefore, a combined sulfation–roasting–leaching process was developed to selectively leach the REEs while leaving iron undissolved in the residue. In this process bauxite residue was mixed with water and concentrated H2SO4 followed by drying, roasting and then leaching of the roasted product with water. Most of the oxides were converted to their respective sulfates during the sulfation process. During subsequent roasting, unstable sulfates (mainly iron(III) sulfate) decompose to their respective oxides. Rare-earth sulfates, on the other hand, are stable during roasting and dissolve during water leaching, leaving the iron oxides in the residue. The effect of the roasting temperature, roasting time and amount of acid on leaching of the different elements was studied. Decreasing the roasting temperature increased the dissolution of the REEs, but also that of iron and aluminum. Increasing the amount of acid led to higher REEs extraction. Acid to bauxite residue mass ratio beyond 0.75 at 650°C increases the iron and aluminum dissolution due to increase in the iron(III) and aluminum sulfate amounts. The extraction of REEs slightly increased (<5%) with roasting time up to 2h at 675°C, but a further increase of the roasting time has a negative effect on the REEs extraction as the low amount of iron sulfate in the roasted mass increases the pH of the leach solution. About 60% of scandium and more than 90% of the other REEs can be dissolved at optimum conditions, while only a very small amount of iron (<1% of total iron) is solubilized. The residue after leaching was rich in Fe2O3, Al2O3, SiO2 and CaSO4·0.5H2O.
AbstractList •Sulfation–roasting–leaching process was used for selective recovery of rare earths from bauxite residue.•Most of the oxides were converted to sulfates during sulfation.•Unstable sulfates (mainly iron(III) sulfate) were decomposed to oxides during roasting.•About 60% Sc and more than 90% of the other rare earths can be recovered with low amount of Fe (<1%) in the solution.•Residue after leaching can be used in cementitious binders. Bauxite residue (red mud) that is generated from karst bauxite ores is rich in rare-earth elements (REEs). The REEs can be recovered from bauxite residue by direct acid leaching but the extraction yields are generally low. The extraction yields can be increased by increasing the acid concentration but this will increase the dissolution of iron as well. Large amounts of iron in the leach solution create problems in the further recovery processes. Therefore, a combined sulfation–roasting–leaching process was developed to selectively leach the REEs while leaving iron undissolved in the residue. In this process bauxite residue was mixed with water and concentrated H2SO4 followed by drying, roasting and then leaching of the roasted product with water. Most of the oxides were converted to their respective sulfates during the sulfation process. During subsequent roasting, unstable sulfates (mainly iron(III) sulfate) decompose to their respective oxides. Rare-earth sulfates, on the other hand, are stable during roasting and dissolve during water leaching, leaving the iron oxides in the residue. The effect of the roasting temperature, roasting time and amount of acid on leaching of the different elements was studied. Decreasing the roasting temperature increased the dissolution of the REEs, but also that of iron and aluminum. Increasing the amount of acid led to higher REEs extraction. Acid to bauxite residue mass ratio beyond 0.75 at 650°C increases the iron and aluminum dissolution due to increase in the iron(III) and aluminum sulfate amounts. The extraction of REEs slightly increased (<5%) with roasting time up to 2h at 675°C, but a further increase of the roasting time has a negative effect on the REEs extraction as the low amount of iron sulfate in the roasted mass increases the pH of the leach solution. About 60% of scandium and more than 90% of the other REEs can be dissolved at optimum conditions, while only a very small amount of iron (<1% of total iron) is solubilized. The residue after leaching was rich in Fe2O3, Al2O3, SiO2 and CaSO4·0.5H2O.
Author Binnemans, Koen
Blanpain, Bart
Borra, Chenna Rao
Van Gerven, Tom
Mermans, Jasper
Pontikes, Yiannis
Author_xml – sequence: 1
  givenname: Chenna Rao
  surname: Borra
  fullname: Borra, Chenna Rao
  organization: Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
– sequence: 2
  givenname: Jasper
  surname: Mermans
  fullname: Mermans, Jasper
  organization: Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
– sequence: 3
  givenname: Bart
  surname: Blanpain
  fullname: Blanpain, Bart
  organization: Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium
– sequence: 4
  givenname: Yiannis
  surname: Pontikes
  fullname: Pontikes, Yiannis
  organization: Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium
– sequence: 5
  givenname: Koen
  surname: Binnemans
  fullname: Binnemans, Koen
  organization: Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
– sequence: 6
  givenname: Tom
  orcidid: 0000-0002-7141-8872
  surname: Van Gerven
  fullname: Van Gerven, Tom
  email: tom.vangerven@cit.kuleuven.be
  organization: Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
BookMark eNqFkM1KAzEUhYMo2FbfwEUewBkzM5k240KQ4h8UXKjrcCe5aVOmiSRpsW_vTOvKha4uB-534Hxjcuq8Q0KuCpYXrJjerPONdeiWedmnnFU5Y-UJGRViVmYN5_yUjJhoymwqZvU5Gce4ZozVM9GMiH3DDlWyO6QBld9h2FNvaICAFCGkVaQm-A1tYftl0_AUrd4ibfdU-U1rHSTr3YDEbWcO4ZoGDzFZt6TgNO0Q1KoPF-TMQBfx8udOyMfjw_v8OVu8Pr3M7xeZ4qxJWVsWtQbNTQlVbWamFNAUjcZWGSMQuBYKeSmU0jVDU5sKgLe8abUAxqetqCaEH3tV8DEGNPIz2A2EvSyYHHTJtTzqkoMuySrZ6-qx21-YsumwJwWw3X_w3RHGftjOYpBRWXQKte2tJqm9_bvgGweqjso
CitedBy_id crossref_primary_10_3390_recycling6020038
crossref_primary_10_3390_met11060951
crossref_primary_10_1016_j_seppur_2021_119798
crossref_primary_10_1016_j_jclepro_2025_146147
crossref_primary_10_1016_j_cogsc_2018_02_008
crossref_primary_10_1007_s42461_022_00598_w
crossref_primary_10_1016_j_mineng_2021_107212
crossref_primary_10_1002_slct_202003172
crossref_primary_10_1007_s40831_023_00678_1
crossref_primary_10_1002_jctb_5687
crossref_primary_10_1134_S0036023622020176
crossref_primary_10_3390_su11123461
crossref_primary_10_1016_j_cej_2019_123210
crossref_primary_10_1016_j_jre_2023_08_010
crossref_primary_10_1016_j_ceramint_2017_03_048
crossref_primary_10_1007_s40831_024_00986_0
crossref_primary_10_1007_s40831_016_0103_3
crossref_primary_10_1007_s40831_025_01119_x
crossref_primary_10_3390_min10080649
crossref_primary_10_1016_j_jre_2023_12_010
crossref_primary_10_1016_j_mineng_2025_109197
crossref_primary_10_1016_j_mineng_2025_109357
crossref_primary_10_1016_j_scitotenv_2019_133723
crossref_primary_10_3390_pr8030365
crossref_primary_10_1016_j_resconrec_2018_11_006
crossref_primary_10_1016_j_wasman_2019_06_044
crossref_primary_10_1016_j_jece_2017_07_018
crossref_primary_10_1016_j_jssc_2017_07_037
crossref_primary_10_1016_j_susmat_2022_e00466
crossref_primary_10_1016_j_jre_2025_08_008
crossref_primary_10_1016_j_oregeorev_2017_06_017
crossref_primary_10_1016_j_envpol_2022_119596
crossref_primary_10_1016_j_jece_2020_104848
crossref_primary_10_1007_s40831_022_00551_7
crossref_primary_10_1134_S1062739119056185
crossref_primary_10_1016_j_hydromet_2025_106522
crossref_primary_10_3390_min8120562
crossref_primary_10_1111_jiec_13448
crossref_primary_10_1007_s11663_021_02178_7
crossref_primary_10_1016_j_mineng_2021_107084
crossref_primary_10_1007_s12666_024_03373_1
crossref_primary_10_1016_j_heliyon_2023_e14652
crossref_primary_10_1016_j_matpr_2019_06_213
crossref_primary_10_3390_surfaces7040072
crossref_primary_10_1007_s11663_018_1214_y
crossref_primary_10_1080_03067319_2021_1936513
crossref_primary_10_1080_10643389_2020_1727718
crossref_primary_10_1007_s11663_020_01967_w
crossref_primary_10_1016_j_mineng_2021_106815
crossref_primary_10_1016_j_hydromet_2019_01_005
crossref_primary_10_3846_jeelm_2019_9799
crossref_primary_10_1016_j_jclepro_2020_122048
crossref_primary_10_1016_j_seppur_2016_12_009
crossref_primary_10_1080_01496395_2020_1813177
crossref_primary_10_1016_j_hydromet_2019_01_007
crossref_primary_10_1016_j_mineng_2023_108115
crossref_primary_10_1007_s11356_022_24190_3
crossref_primary_10_3390_met12020228
crossref_primary_10_1080_09593330_2020_1739146
crossref_primary_10_1016_j_clay_2017_03_016
crossref_primary_10_1093_jambio_lxae279
crossref_primary_10_1007_s42461_020_00333_3
crossref_primary_10_3390_min14111151
crossref_primary_10_5802_crchim_347
crossref_primary_10_1134_S0040579522050086
crossref_primary_10_3390_min9060362
crossref_primary_10_1016_j_scitotenv_2024_174757
crossref_primary_10_3390_met12081268
crossref_primary_10_3390_min12070817
crossref_primary_10_1080_08827508_2025_2454694
crossref_primary_10_3390_suschem2040038
crossref_primary_10_52711_2321_581X_2025_00004
crossref_primary_10_1016_j_mineng_2020_106561
crossref_primary_10_1080_08827508_2019_1677647
crossref_primary_10_1007_s11837_025_07146_z
crossref_primary_10_1016_j_seppur_2025_131761
crossref_primary_10_1016_j_cej_2024_151860
crossref_primary_10_1002_jctb_6739
crossref_primary_10_1016_j_conbuildmat_2020_118772
crossref_primary_10_3390_met12020318
crossref_primary_10_1177_0734242X17720290
crossref_primary_10_1016_j_jes_2019_02_014
crossref_primary_10_1007_s40831_016_0068_2
crossref_primary_10_3390_met11081281
crossref_primary_10_1016_j_jenvman_2024_120751
crossref_primary_10_1016_S1002_0721_17_60992_X
crossref_primary_10_1007_s12613_022_2430_7
crossref_primary_10_3390_min11070670
crossref_primary_10_1002_slct_202302220
crossref_primary_10_1039_D0RA05797E
crossref_primary_10_1007_s10973_023_12350_7
crossref_primary_10_1007_s11837_016_2111_y
crossref_primary_10_1016_j_hydromet_2021_105704
crossref_primary_10_1007_s43939_024_00125_2
crossref_primary_10_3390_min10060532
crossref_primary_10_1016_j_jclepro_2019_04_304
crossref_primary_10_1016_j_jenvman_2019_01_079
crossref_primary_10_1016_j_scitotenv_2023_166686
crossref_primary_10_1016_j_chemosphere_2018_02_156
crossref_primary_10_1016_j_susmat_2021_e00246
crossref_primary_10_1007_s40831_019_00226_w
crossref_primary_10_1007_s11837_022_05615_3
crossref_primary_10_1177_0734242X221107987
crossref_primary_10_1016_j_matpr_2018_04_113
crossref_primary_10_3390_ma17246245
crossref_primary_10_1007_s11356_019_05851_2
crossref_primary_10_1016_j_seppur_2019_115714
crossref_primary_10_3390_met8110915
crossref_primary_10_1007_s11837_021_04665_3
crossref_primary_10_1016_j_jclepro_2021_129905
crossref_primary_10_4028_www_scientific_net_MSF_929_171
crossref_primary_10_1007_s40831_018_0206_0
crossref_primary_10_1016_j_resconrec_2025_108129
crossref_primary_10_1016_j_cej_2020_125914
crossref_primary_10_1016_j_conbuildmat_2022_127340
crossref_primary_10_1016_j_jclepro_2019_05_175
crossref_primary_10_1016_j_mineng_2018_01_038
crossref_primary_10_1134_S1062739123060133
crossref_primary_10_1007_s40831_018_0169_1
crossref_primary_10_3390_min14101044
crossref_primary_10_1016_j_jece_2022_108650
crossref_primary_10_3389_fmicb_2022_973568
crossref_primary_10_1016_j_jece_2019_103509
crossref_primary_10_3390_min9090522
crossref_primary_10_1007_s11837_019_03931_9
crossref_primary_10_3390_min13010051
crossref_primary_10_1016_j_oregeorev_2021_104501
crossref_primary_10_1007_s10973_024_13151_2
crossref_primary_10_1016_j_matpr_2018_10_378
crossref_primary_10_1016_j_mineng_2022_107601
crossref_primary_10_1080_15422119_2018_1430589
crossref_primary_10_1080_01496395_2024_2368229
crossref_primary_10_1007_s11663_021_02285_5
crossref_primary_10_1016_j_mineng_2018_01_023
crossref_primary_10_1016_j_seppur_2024_130634
crossref_primary_10_1080_02757540_2025_2533272
crossref_primary_10_1016_j_resconrec_2021_105645
crossref_primary_10_3390_min14020120
crossref_primary_10_3390_su14159682
Cites_doi 10.1016/j.hydromet.2009.07.012
10.1111/j.1551-2916.2005.00162.x
10.1016/0040-6031(84)87181-6
10.1007/s40831-015-0026-4
10.1016/S0892-6875(00)00147-3
10.1016/0003-2670(95)00486-6
10.1016/S0304-386X(96)00070-9
10.1007/s40831-015-0021-9
10.1016/j.cemconcomp.2013.08.002
10.1016/S0008-8846(97)00162-2
10.1016/j.jclepro.2015.02.089
10.1016/j.mineng.2015.01.005
10.1016/j.biortech.2013.03.070
10.1134/S0040579510040366
10.2343/geochemj.17.223
10.1016/j.hydromet.2011.02.007
10.1016/j.resconrec.2013.01.005
10.1016/S0304-386X(03)00027-6
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2016.03.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
EndPage 159
ExternalDocumentID 10_1016_j_mineng_2016_03_002
S0892687516300280
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c409t-b215dad4f2a35f7f28a919debcff8ea4d8ce428ccd50ef5f3aa4b49bd8a046b83
ISICitedReferencesCount 166
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000375811000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0892-6875
IngestDate Sat Nov 29 02:31:09 EST 2025
Tue Nov 18 21:21:39 EST 2025
Fri Feb 23 02:35:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Roasting
Bauxite residue
Red mud
Rare earths
Leaching
Sulfation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-b215dad4f2a35f7f28a919debcff8ea4d8ce428ccd50ef5f3aa4b49bd8a046b83
ORCID 0000-0002-7141-8872
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_mineng_2016_03_002
crossref_citationtrail_10_1016_j_mineng_2016_03_002
elsevier_sciencedirect_doi_10_1016_j_mineng_2016_03_002
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Önal, Borra, Guo, Blanpain, Van Gerven (b0105) 2015; 1
Borra, Blanpain, Pontikes, Binnemans, Van Gerven (b0015) 2016; 2
Swamy, Kar, Mohanty (b0145) 2003; 69
Ochsenkühn-Petropulu, Lyberopulu, Ochsenkühn, Parissakis (b0100) 1996; 319
Tagawa (b0150) 1984; 80
Gambogi, J., 2015. Rare Earths. In: USGS 2012 Minerals Yearbook.
(b0110) 2013
Brookins, Yoshida, Matsuo (b0025) 1983; 17
Qu, Lian (b0125) 2013; 136
Takeno (b0155) 2005; 285
Yatsenko, Pyagai (b0160) 2010; 44
Binnemans, Jones, Blanpain, Van Gerven, Pontikes (b0010) 2015; 99
Iacobescu, Pontikes, Koumpouri, Angelopoulos (b0055) 2013; 44
Sargic, Logomerac (b0130) 1974; 11
Smirnov, Molchanova (b0135) 1997; 45
Logomerac (b0085) 1979; 15
Nicolas, Z., Evans, D., Nicolaus, M.V., 1968. Promotion agents in the sulphation of oxidized nickel and cobalt bearing ores. US3367740.
Kaye and Laby Online, 2005. 3.2 Properties of inorganic compounds. Tables Phys. Chem. Constants, 16th ed., Version 1.0 (1995).
Bergmann (b0005) 1981
Borra, Pontikes, Binnemans, Van Gerven (b0020) 2015; 76
Kar, Swamy (b0060) 2000; 13
Myerson (b0090) 2002
Güler, Seyrankaya, Cöcen (b0045) 2008; 10
Li, Ikegami, Mori (b0075) 2005; 88
Klauber, Gräfe, Power (b0070) 2011; 108
Guo, Li, Park, Tian, Wu (b0050) 2009; 99
Lide (b0080) 2004
Evans (b0030) 2015
Stern (b0140) 2000
Pera, Boumaza, Ambroise (b0115) 1997; 27
Pontikes, Angelopoulos (b0120) 2013; 73
Fulford, G.D., Lever, G., Sato, T., 1991. Recovery of rare earth elements from Bayer process red mud. US5030424.
Brookins (10.1016/j.mineng.2016.03.002_b0025) 1983; 17
Logomerac (10.1016/j.mineng.2016.03.002_b0085) 1979; 15
10.1016/j.mineng.2016.03.002_b0035
Sargic (10.1016/j.mineng.2016.03.002_b0130) 1974; 11
Binnemans (10.1016/j.mineng.2016.03.002_b0010) 2015; 99
Smirnov (10.1016/j.mineng.2016.03.002_b0135) 1997; 45
Pontikes (10.1016/j.mineng.2016.03.002_b0120) 2013; 73
Lide (10.1016/j.mineng.2016.03.002_b0080) 2004
Myerson (10.1016/j.mineng.2016.03.002_b0090) 2002
10.1016/j.mineng.2016.03.002_b0095
Swamy (10.1016/j.mineng.2016.03.002_b0145) 2003; 69
Li (10.1016/j.mineng.2016.03.002_b0075) 2005; 88
Guo (10.1016/j.mineng.2016.03.002_b0050) 2009; 99
Yatsenko (10.1016/j.mineng.2016.03.002_b0160) 2010; 44
Borra (10.1016/j.mineng.2016.03.002_b0020) 2015; 76
Bergmann (10.1016/j.mineng.2016.03.002_b0005) 1981
10.1016/j.mineng.2016.03.002_b0065
(10.1016/j.mineng.2016.03.002_b0110) 2013
Önal (10.1016/j.mineng.2016.03.002_b0105) 2015; 1
Pera (10.1016/j.mineng.2016.03.002_b0115) 1997; 27
Tagawa (10.1016/j.mineng.2016.03.002_b0150) 1984; 80
Evans (10.1016/j.mineng.2016.03.002_b0030) 2015
Klauber (10.1016/j.mineng.2016.03.002_b0070) 2011; 108
Qu (10.1016/j.mineng.2016.03.002_b0125) 2013; 136
Stern (10.1016/j.mineng.2016.03.002_b0140) 2000
Iacobescu (10.1016/j.mineng.2016.03.002_b0055) 2013; 44
Kar (10.1016/j.mineng.2016.03.002_b0060) 2000; 13
Ochsenkühn-Petropulu (10.1016/j.mineng.2016.03.002_b0100) 1996; 319
10.1016/j.mineng.2016.03.002_b0040
Borra (10.1016/j.mineng.2016.03.002_b0015) 2016; 2
Güler (10.1016/j.mineng.2016.03.002_b0045) 2008; 10
Takeno (10.1016/j.mineng.2016.03.002_b0155) 2005; 285
References_xml – volume: 15
  start-page: 279
  year: 1979
  end-page: 285
  ident: b0085
  article-title: Complex utilisation of red mud by smelting and solvent extraction
  publication-title: Trav. Com. Int. Etude Bauxites Alum. Alum.
– volume: 11
  start-page: 71
  year: 1974
  end-page: 78
  ident: b0130
  article-title: Leaching and extraction in the complex processing of red mud
  publication-title: Trav. Com. Int. Etude Bauxites Alumine Alum
– volume: 108
  start-page: 11
  year: 2011
  end-page: 32
  ident: b0070
  article-title: Bauxite residue issues: II. Options for residue utilization
  publication-title: Hydrometallurgy
– volume: 13
  start-page: 1635
  year: 2000
  end-page: 1640
  ident: b0060
  article-title: Some aspects of nickel extraction from chromitiferous overburden by sulphatization roasting
  publication-title: Miner. Eng.
– year: 2013
  ident: b0110
  publication-title: Eco-Efficient Concrete
– reference: Gambogi, J., 2015. Rare Earths. In: USGS 2012 Minerals Yearbook.
– year: 2002
  ident: b0090
  article-title: Handbook of Industrial Crystallization
– volume: 73
  start-page: 53
  year: 2013
  end-page: 63
  ident: b0120
  article-title: Bauxite residue in cement and cementitious applications: current status and a possible way forward
  publication-title: Resour. Conserv. Recycl.
– volume: 45
  start-page: 249
  year: 1997
  end-page: 259
  ident: b0135
  article-title: The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production
  publication-title: Hydrometallurgy
– year: 2000
  ident: b0140
  article-title: High Temperature Properties and Thermal Decomposition of Inorganic Salts with Oxyanions
– reference: Fulford, G.D., Lever, G., Sato, T., 1991. Recovery of rare earth elements from Bayer process red mud. US5030424.
– volume: 99
  start-page: 144
  year: 2009
  end-page: 150
  ident: b0050
  article-title: Leaching behavior of metals from a limonitic nickel laterite using a sulfation–roasting–leaching process
  publication-title: Hydrometallurgy
– volume: 1
  start-page: 199
  year: 2015
  end-page: 215
  ident: b0105
  article-title: Recycling of NdFeB magnets using sulfation, selective roasting, and water leaching
  publication-title: J. Sustain. Metall.
– volume: 319
  start-page: 249
  year: 1996
  end-page: 254
  ident: b0100
  article-title: Recovery of lanthanides and yttrium from red mud by selective leaching
  publication-title: Anal. Chim. Acta
– volume: 27
  start-page: 1513
  year: 1997
  end-page: 1522
  ident: b0115
  article-title: Development of a pozzolanic pigment from red mud
  publication-title: Cem. Concr. Res.
– volume: 44
  start-page: 1
  year: 2013
  end-page: 8
  ident: b0055
  article-title: Synthesis, characterization and properties of calcium ferroaluminate belite cements produced with electric arc furnace steel slag as raw material
  publication-title: Cem. Concr. Compos.
– start-page: 62
  year: 1981
  end-page: 182
  ident: b0005
  article-title: Gmelin Handbuch der Anorganischen Chemie Seltenerdelemente
  publication-title: Teil C8: Sc, Y, La and Lanthanide
– volume: 17
  start-page: 223
  year: 1983
  end-page: 229
  ident: b0025
  article-title: Eh–pH diagrams for the rare earth elements at 25
  publication-title: Geochem. J.
– volume: 2
  start-page: 28
  year: 2016
  end-page: 37
  ident: b0015
  article-title: Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery
  publication-title: J. Sustain. Metall.
– volume: 136
  start-page: 16
  year: 2013
  end-page: 23
  ident: b0125
  article-title: Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10
  publication-title: Bioresour. Technol.
– volume: 99
  start-page: 17
  year: 2015
  end-page: 38
  ident: b0010
  article-title: Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review
  publication-title: J. Clean. Prod.
– volume: 10
  start-page: 1
  year: 2008
  end-page: 10
  ident: b0045
  article-title: Effect of sulfation roasting on metal extraction from cinkur zinc leach residue
  publication-title: J. Ore Dress
– reference: Kaye and Laby Online, 2005. 3.2 Properties of inorganic compounds. Tables Phys. Chem. Constants, 16th ed., Version 1.0 (1995).
– volume: 88
  start-page: 817
  year: 2005
  end-page: 821
  ident: b0075
  article-title: Fabrication of transparent, sintered Sc
  publication-title: J. Am. Ceram. Soc.
– start-page: 1
  year: 2004
  end-page: 158
  ident: b0080
  article-title: Properties of the elements and inorganic compounds
  publication-title: Handb. Chem. Phys.
– volume: 69
  start-page: 89
  year: 2003
  end-page: 98
  ident: b0145
  article-title: Physico-chemical characterization and sulphatization roasting of low-grade nickeliferous laterites
  publication-title: Hydrometallurgy
– volume: 76
  start-page: 20
  year: 2015
  end-page: 27
  ident: b0020
  article-title: Leaching of rare earths from bauxite residue (red mud)
  publication-title: Miner. Eng.
– volume: 44
  start-page: 563
  year: 2010
  end-page: 568
  ident: b0160
  article-title: Red mud pulp carbonization with scandium extraction during alumina production
  publication-title: Theor. Found. Chem. Eng.
– volume: 285
  year: 2005
  ident: b0155
  article-title: Atlas of Eh–pH diagrams intercomparison of thermodynamic databases
  publication-title: Natl. Inst. Adv. Ind. Sci. Technol. Tokyo
– reference: Nicolas, Z., Evans, D., Nicolaus, M.V., 1968. Promotion agents in the sulphation of oxidized nickel and cobalt bearing ores. US3367740.
– volume: 80
  start-page: 23
  year: 1984
  end-page: 33
  ident: b0150
  article-title: Thermal decomposition temperatures of metal sulfates
  publication-title: Thermochim. Acta
– start-page: 113
  year: 2015
  end-page: 127
  ident: b0030
  article-title: Successes and challenges in the management and use of bauxite residue
  publication-title: Bauxite Residue Valoris. Best Pract. Conf.
– start-page: 62
  year: 1981
  ident: 10.1016/j.mineng.2016.03.002_b0005
  article-title: Gmelin Handbuch der Anorganischen Chemie Seltenerdelemente
– volume: 99
  start-page: 144
  year: 2009
  ident: 10.1016/j.mineng.2016.03.002_b0050
  article-title: Leaching behavior of metals from a limonitic nickel laterite using a sulfation–roasting–leaching process
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2009.07.012
– volume: 88
  start-page: 817
  year: 2005
  ident: 10.1016/j.mineng.2016.03.002_b0075
  article-title: Fabrication of transparent, sintered Sc2O3 ceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2005.00162.x
– volume: 80
  start-page: 23
  year: 1984
  ident: 10.1016/j.mineng.2016.03.002_b0150
  article-title: Thermal decomposition temperatures of metal sulfates
  publication-title: Thermochim. Acta
  doi: 10.1016/0040-6031(84)87181-6
– volume: 2
  start-page: 28
  year: 2016
  ident: 10.1016/j.mineng.2016.03.002_b0015
  article-title: Smelting of bauxite residue (red mud) in view of iron and selective rare earths recovery
  publication-title: J. Sustain. Metall.
  doi: 10.1007/s40831-015-0026-4
– volume: 13
  start-page: 1635
  year: 2000
  ident: 10.1016/j.mineng.2016.03.002_b0060
  article-title: Some aspects of nickel extraction from chromitiferous overburden by sulphatization roasting
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(00)00147-3
– volume: 319
  start-page: 249
  year: 1996
  ident: 10.1016/j.mineng.2016.03.002_b0100
  article-title: Recovery of lanthanides and yttrium from red mud by selective leaching
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(95)00486-6
– ident: 10.1016/j.mineng.2016.03.002_b0035
– volume: 45
  start-page: 249
  year: 1997
  ident: 10.1016/j.mineng.2016.03.002_b0135
  article-title: The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(96)00070-9
– volume: 285
  year: 2005
  ident: 10.1016/j.mineng.2016.03.002_b0155
  article-title: Atlas of Eh–pH diagrams intercomparison of thermodynamic databases
  publication-title: Natl. Inst. Adv. Ind. Sci. Technol. Tokyo
– volume: 1
  start-page: 199
  year: 2015
  ident: 10.1016/j.mineng.2016.03.002_b0105
  article-title: Recycling of NdFeB magnets using sulfation, selective roasting, and water leaching
  publication-title: J. Sustain. Metall.
  doi: 10.1007/s40831-015-0021-9
– volume: 44
  start-page: 1
  year: 2013
  ident: 10.1016/j.mineng.2016.03.002_b0055
  article-title: Synthesis, characterization and properties of calcium ferroaluminate belite cements produced with electric arc furnace steel slag as raw material
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2013.08.002
– ident: 10.1016/j.mineng.2016.03.002_b0065
– ident: 10.1016/j.mineng.2016.03.002_b0040
– volume: 27
  start-page: 1513
  year: 1997
  ident: 10.1016/j.mineng.2016.03.002_b0115
  article-title: Development of a pozzolanic pigment from red mud
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(97)00162-2
– volume: 99
  start-page: 17
  year: 2015
  ident: 10.1016/j.mineng.2016.03.002_b0010
  article-title: Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.02.089
– start-page: 1
  year: 2004
  ident: 10.1016/j.mineng.2016.03.002_b0080
  article-title: Properties of the elements and inorganic compounds
– year: 2002
  ident: 10.1016/j.mineng.2016.03.002_b0090
– volume: 76
  start-page: 20
  year: 2015
  ident: 10.1016/j.mineng.2016.03.002_b0020
  article-title: Leaching of rare earths from bauxite residue (red mud)
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2015.01.005
– volume: 136
  start-page: 16
  year: 2013
  ident: 10.1016/j.mineng.2016.03.002_b0125
  article-title: Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.03.070
– start-page: 113
  year: 2015
  ident: 10.1016/j.mineng.2016.03.002_b0030
  article-title: Successes and challenges in the management and use of bauxite residue
  publication-title: Bauxite Residue Valoris. Best Pract. Conf.
– year: 2013
  ident: 10.1016/j.mineng.2016.03.002_b0110
– volume: 44
  start-page: 563
  year: 2010
  ident: 10.1016/j.mineng.2016.03.002_b0160
  article-title: Red mud pulp carbonization with scandium extraction during alumina production
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S0040579510040366
– volume: 17
  start-page: 223
  year: 1983
  ident: 10.1016/j.mineng.2016.03.002_b0025
  article-title: Eh–pH diagrams for the rare earth elements at 25°C and one bar pressure
  publication-title: Geochem. J.
  doi: 10.2343/geochemj.17.223
– volume: 11
  start-page: 71
  year: 1974
  ident: 10.1016/j.mineng.2016.03.002_b0130
  article-title: Leaching and extraction in the complex processing of red mud
  publication-title: Trav. Com. Int. Etude Bauxites Alumine Alum
– volume: 108
  start-page: 11
  year: 2011
  ident: 10.1016/j.mineng.2016.03.002_b0070
  article-title: Bauxite residue issues: II. Options for residue utilization
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.02.007
– volume: 73
  start-page: 53
  year: 2013
  ident: 10.1016/j.mineng.2016.03.002_b0120
  article-title: Bauxite residue in cement and cementitious applications: current status and a possible way forward
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2013.01.005
– volume: 69
  start-page: 89
  year: 2003
  ident: 10.1016/j.mineng.2016.03.002_b0145
  article-title: Physico-chemical characterization and sulphatization roasting of low-grade nickeliferous laterites
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(03)00027-6
– year: 2000
  ident: 10.1016/j.mineng.2016.03.002_b0140
– ident: 10.1016/j.mineng.2016.03.002_b0095
– volume: 10
  start-page: 1
  year: 2008
  ident: 10.1016/j.mineng.2016.03.002_b0045
  article-title: Effect of sulfation roasting on metal extraction from cinkur zinc leach residue
  publication-title: J. Ore Dress
– volume: 15
  start-page: 279
  year: 1979
  ident: 10.1016/j.mineng.2016.03.002_b0085
  article-title: Complex utilisation of red mud by smelting and solvent extraction
  publication-title: Trav. Com. Int. Etude Bauxites Alum. Alum.
SSID ssj0005789
Score 2.5238557
Snippet •Sulfation–roasting–leaching process was used for selective recovery of rare earths from bauxite residue.•Most of the oxides were converted to sulfates during...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 151
SubjectTerms Bauxite residue
Leaching
Rare earths
Red mud
Roasting
Sulfation
Title Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching
URI https://dx.doi.org/10.1016/j.mineng.2016.03.002
Volume 92
WOSCitedRecordID wos000375811000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9444
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005789
  issn: 0892-6875
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKB2-IqD2djH6uqCCpRIVqk5RQ5tkPThmSVZKvl9_BHGcd2soiKl8Ql2o3i3VnPl_Hn7Mw3CL0MmeCxShLCYqUJjRQleahSkkhYzagCxk_l0GwiPTlhyyV_P5t987UwV1Va12yz4av_6mo4B842pbN_4e7xQ-EEvAanwxHcDsc_cvzp0NnGJASZzS6YP_yH3poML_ip_XlnS0pysd4A3YSLwMS1NjQUrIF98sghu3VV2NwPcEPbiK73BY2VS8HcZrbvykG_upvrSeFw3Os37dDOaH54DnFdzD-IZnS0WRkslz8WRrV8HFOJeiVcN3mvxGRieFP35aUNbp9K03HphycX4WLKsLKP03xJzZS_NEQ9HpEFs-1U9rWNyiyNCKdWKNKHbdtCz8Xd0KnWaveOX7s62AcVF_tfYBrqzyavb2EVbqNpNRxzFE-NJcaQ0KiSRSy4gXajNOEQOncP3h4tj6dMonTotDha7is0hzTCn7_rega0xWrO7qI7bjuCDyyM7qGZru-j21silQ9QOQIKe0DhpsAGUNgCChtAYQco7ACF8694C1BmyAioV9jDCQOcsIfTQ_Tx9dHZ4RviGnQQSQPekxz4ohKKFpGIkyItIrjxQ650LouCaUEVkxq2t1KqJNBFUsRC0JzyXDER0EXO4kdop25q_RhhpYzMkBTAh2MqKBdxIDXjsFowzXUh9lDsJy2TTr3eNFGpMp-meJHZqc7MVGdBnMFU7yEyjlpZ9ZbfXJ96f2SOgVpmmQGEfjnyyT-PfIpuTTfHM7TTt2v9HN2UV33ZtS8c1r4DkBSyiA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+recovery+of+rare+earths+from+bauxite+residue+by+combination+of+sulfation%2C+roasting+and+leaching&rft.jtitle=Minerals+engineering&rft.au=Borra%2C+Chenna+Rao&rft.au=Mermans%2C+Jasper&rft.au=Blanpain%2C+Bart&rft.au=Pontikes%2C+Yiannis&rft.date=2016-06-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=92&rft.spage=151&rft.epage=159&rft_id=info:doi/10.1016%2Fj.mineng.2016.03.002&rft.externalDocID=S0892687516300280
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon