Constructing a Meta-Learner for Unsupervised Anomaly Detection

Unsupervised anomaly detection (AD) is critical for a wide range of practical applications, from network security to health and medical tools. Due to the diversity of problems, no single algorithm has been found to be superior for all AD tasks. Choosing an algorithm, otherwise known as the Algorithm...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; pp. 45815 - 45825
Main Authors: Gutowska, Malgorzata, Little, Suzanne, Mccarren, Andrew
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first