Constructing a Meta-Learner for Unsupervised Anomaly Detection

Unsupervised anomaly detection (AD) is critical for a wide range of practical applications, from network security to health and medical tools. Due to the diversity of problems, no single algorithm has been found to be superior for all AD tasks. Choosing an algorithm, otherwise known as the Algorithm...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; pp. 45815 - 45825
Main Authors: Gutowska, Malgorzata, Little, Suzanne, Mccarren, Andrew
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Unsupervised anomaly detection (AD) is critical for a wide range of practical applications, from network security to health and medical tools. Due to the diversity of problems, no single algorithm has been found to be superior for all AD tasks. Choosing an algorithm, otherwise known as the Algorithm Selection Problem (ASP), has been extensively examined in supervised classification problems, through the use of meta-learning and AutoML, however, it has received little attention in unsupervised AD tasks. This research proposes a new meta-learning approach that identifies an appropriate unsupervised AD algorithm given a set of meta-features generated from the unlabelled input dataset. The performance of the proposed meta-learner is superior to the current state of the art solution. In addition, a mixed model statistical analysis has been conducted to examine the impact of the meta-learner components: the meta-model, meta-features, and the base set of AD algorithms, on the overall performance of the meta-learner. The analysis was conducted using more than 10,000 datasets, which is significantly larger than previous studies. Results indicate that a relatively small number of meta-features can be used to identify an appropriate AD algorithm, but the choice of a meta-model in the meta-learner has a considerable impact.
AbstractList Unsupervised anomaly detection (AD) is critical for a wide range of practical applications, from network security to health and medical tools. Due to the diversity of problems, no single algorithm has been found to be superior for all AD tasks. Choosing an algorithm, otherwise known as the Algorithm Selection Problem (ASP), has been extensively examined in supervised classification problems, through the use of meta-learning and AutoML, however, it has received little attention in unsupervised AD tasks. This research proposes a new meta-learning approach that identifies an appropriate unsupervised AD algorithm given a set of meta-features generated from the unlabelled input dataset. The performance of the proposed meta-learner is superior to the current state of the art solution. In addition, a mixed model statistical analysis has been conducted to examine the impact of the meta-learner components: the meta-model, meta-features, and the base set of AD algorithms, on the overall performance of the meta-learner. The analysis was conducted using more than 10,000 datasets, which is significantly larger than previous studies. Results indicate that a relatively small number of meta-features can be used to identify an appropriate AD algorithm, but the choice of a meta-model in the meta-learner has a considerable impact.
Author Gutowska, Malgorzata
Mccarren, Andrew
Little, Suzanne
Author_xml – sequence: 1
  givenname: Malgorzata
  orcidid: 0000-0002-1724-4912
  surname: Gutowska
  fullname: Gutowska, Malgorzata
  email: malgorzata.gutowska2@mail.dcu.ie
  organization: School of Computing, Dublin City University, Dublin 9, Ireland
– sequence: 2
  givenname: Suzanne
  orcidid: 0000-0003-3281-3471
  surname: Little
  fullname: Little, Suzanne
  organization: School of Computing, Dublin City University, Dublin 9, Ireland
– sequence: 3
  givenname: Andrew
  orcidid: 0000-0002-7297-0984
  surname: Mccarren
  fullname: Mccarren, Andrew
  organization: School of Computing, Dublin City University, Dublin 9, Ireland
BookMark eNp9kFtLxDAQhYMoeP0F-lDwuWsuzbZ5EZZ6hRUf1OcwbSbSZU3WJCvsvzdrFcQHA0PCMN_JmXNIdp13SMgpoxPGqLqYte3109OEUy4mgtcVY2KHHHA2VaWQYrr7671PTmJc0Hya3JL1AblsvYsprPs0uNcCigdMUM4RgsNQWB-KFxfXKwwfQ0RTzJx_g-WmuMKEmfDumOxZWEY8-b6PyMvN9XN7V84fb-_b2bzsK6pS2eXfKBhoJE6FNRZBMeQNUx2lsgFQ3JjaMmZrSSW3FXIA2jfQG7otI47I_ahrPCz0KgxvEDbaw6C_Gj68aghp6JeouaW0RuyaDqEyVd9ZZQ0qqRrFp4zJrHU-aq2Cf19jTHrh18Fl-zpbqqTkteB5So1TffAxBrS6HxJsd04BhqVmVG_T12P6epu-_k4_s-IP--P4f-pspAZE_EUwzipWi08kspK_
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JSEN_2024_3383416
crossref_primary_10_1109_ACCESS_2024_3420090
crossref_primary_10_1016_j_jmsy_2025_06_023
Cites_doi 10.1007/s10462-013-9406-y
10.1016/j.neucom.2016.04.027
10.1109/IJCNN.2015.7280644
10.3390/electronics10182236
10.1109/ACCESS.2020.2964726
10.1145/342009.335437
10.1109/ICDM.2008.17
10.25080/Majora-14bd3278-006
10.1109/TKDE.2019.2905606
10.1007/978-3-030-05318-5
10.1109/ICDM.2017.137
10.1007/s10618-019-00661-z
10.1016/S0065-2458(08)60520-3
10.1016/j.artint.2016.04.003
10.1371/journal.pone.0152173
10.4324/9780203771587
10.1016/j.patrec.2022.07.019
10.1109/ACCESS.2021.3090936
10.1109/ICDM50108.2020.00135
10.1007/978-3-030-05318-5_4
10.1109/ACCESS.2019.2932769
10.1145/1456650.1456656
10.1145/342009.335388
10.1007/s10994-015-5521-0
10.1109/ACCESS.2018.2883681
10.1016/j.eswa.2016.11.034
10.1007/s10618-012-0300-z
10.1145/1401890.1401946
10.1007/978-3-030-05318-5_9
10.1007/3-540-47887-6_53
10.1007/978-3-319-46128-1_13
10.1016/j.ins.2019.06.005
10.1109/JPROC.2021.3052449
10.1016/j.eswa.2018.10.036
10.1023/A:1019956318069
10.1145/1541880.1541882
10.1007/978-3-030-05318-5_7
10.1016/j.ins.2015.05.010
10.1609/aaai.v29i1.9354
10.1007/978-3-030-05318-5_2
10.1007/s10618-015-0444-8
10.1109/4235.585893
10.1016/j.procs.2018.08.250
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3274113
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 45825
ExternalDocumentID oai_doaj_org_article_2f007eeb8bea4d4cbf9fde9598926115
10_1109_ACCESS_2023_3274113
10121417
Genre orig-research
GrantInformation_xml – fundername: Science Foundation Ireland Centre for Research Training in Artificial Intelligence
  grantid: 18/CRT/6223
  funderid: 10.13039/501100001602
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-b1690ada85e63fdfea91e2819b0058aa92dd7f11f75052f4e2aa0c8acd0acd0d3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000991569600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:47:04 EDT 2025
Sun Jun 29 14:12:59 EDT 2025
Sat Nov 29 04:02:37 EST 2025
Tue Nov 18 22:52:11 EST 2025
Wed Aug 27 02:22:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-b1690ada85e63fdfea91e2819b0058aa92dd7f11f75052f4e2aa0c8acd0acd0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1724-4912
0000-0002-7297-0984
0000-0003-3281-3471
OpenAccessLink https://ieeexplore.ieee.org/document/10121417
PQID 2814552732
PQPubID 4845423
PageCount 11
ParticipantIDs ieee_primary_10121417
crossref_citationtrail_10_1109_ACCESS_2023_3274113
doaj_primary_oai_doaj_org_article_2f007eeb8bea4d4cbf9fde9598926115
crossref_primary_10_1109_ACCESS_2023_3274113
proquest_journals_2814552732
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref59
ref14
ref52
ref11
ref55
ref10
schölkopf (ref46) 2000
ref16
ref19
zhao (ref18) 2021; 34
biewald (ref58) 2020
le clei (ref21) 2022
ref51
chollet (ref57) 2015
ref45
ref48
goldstein (ref50) 2012; 9
ref47
ref42
demidenko (ref62) 2013
ref44
ref43
guyon (ref36) 2019
ref49
ref8
ref7
ref9
ref4
haibo (ref63) 2013; 1
ref6
ref5
feurer (ref39) 2022; 23
ref40
ref34
ref37
ref31
ref33
ref32
mu noz (ref35) 2015; 317
ref2
ref1
kingma (ref54) 2013
shyu (ref53) 2003
mcculloch (ref61) 2004
ref24
ref23
chalapathy (ref3) 2019
ref25
ref20
ref64
mantovani (ref30) 2020
ref22
stroup (ref60) 2012
zhao (ref56) 2019; 20
ref28
ref27
feurer (ref38) 2015; 28
horváth (ref26) 2016
ref29
kandanaarachchi (ref17) 2019
olson (ref41) 2016
References_xml – ident: ref13
  doi: 10.1007/s10462-013-9406-y
– ident: ref31
  doi: 10.1016/j.neucom.2016.04.027
– volume: 23
  start-page: 11936
  year: 2022
  ident: ref39
  article-title: Auto-sklearn 2.0: Hands-free AutoML via meta-learning
  publication-title: J Mach Learn Res
– ident: ref25
  doi: 10.1109/IJCNN.2015.7280644
– ident: ref20
  doi: 10.3390/electronics10182236
– year: 2004
  ident: ref61
  publication-title: Generalized Linear and Mixed Models
– ident: ref12
  doi: 10.1109/ACCESS.2020.2964726
– ident: ref45
  doi: 10.1145/342009.335437
– year: 2019
  ident: ref36
  article-title: Analysis of the AutoML challenge series
  publication-title: Automata Machine Learning
– year: 2012
  ident: ref60
  publication-title: Generalized Linear Mixed Models Modern Concepts Methods and Applications
– ident: ref49
  doi: 10.1109/ICDM.2008.17
– ident: ref23
  doi: 10.25080/Majora-14bd3278-006
– ident: ref55
  doi: 10.1109/TKDE.2019.2905606
– ident: ref14
  doi: 10.1007/978-3-030-05318-5
– ident: ref27
  doi: 10.1109/ICDM.2017.137
– ident: ref43
  doi: 10.1007/s10618-019-00661-z
– ident: ref16
  doi: 10.1016/S0065-2458(08)60520-3
– ident: ref11
  doi: 10.1016/j.artint.2016.04.003
– start-page: 66
  year: 2016
  ident: ref41
  article-title: TPOT: A tree-based pipeline optimization tool for automating machine learning
  publication-title: Proc Workshop Autom Mach Learn
– year: 2013
  ident: ref54
  article-title: Auto-encoding variational Bayes
  publication-title: arXiv 1312 6114
– ident: ref5
  doi: 10.1371/journal.pone.0152173
– ident: ref59
  doi: 10.4324/9780203771587
– ident: ref64
  doi: 10.1016/j.patrec.2022.07.019
– ident: ref19
  doi: 10.1109/ACCESS.2021.3090936
– ident: ref52
  doi: 10.1109/ICDM50108.2020.00135
– ident: ref37
  doi: 10.1007/978-3-030-05318-5_4
– ident: ref2
  doi: 10.1109/ACCESS.2019.2932769
– ident: ref15
  doi: 10.1145/1456650.1456656
– volume: 20
  start-page: 1
  year: 2019
  ident: ref56
  article-title: PyOD: A Python toolbox for scalable outlier detection
  publication-title: J Mach Learn Res
– year: 2020
  ident: ref30
  article-title: Rethinking default values: A low cost and efficient strategy to define hyperparameters
  publication-title: arXiv 2008 00025
– ident: ref44
  doi: 10.1145/342009.335388
– ident: ref51
  doi: 10.1007/s10994-015-5521-0
– ident: ref8
  doi: 10.1109/ACCESS.2018.2883681
– ident: ref10
  doi: 10.1016/j.eswa.2016.11.034
– ident: ref7
  doi: 10.1007/s10618-012-0300-z
– start-page: 32
  year: 2019
  ident: ref17
  article-title: Instance space analysis for unsupervised outlier detection
  publication-title: Proc EDML SDM
– year: 2020
  ident: ref58
  publication-title: Experiment Tracking With Weights and Biases
– year: 2022
  ident: ref21
  article-title: N-1 experts: Unsupervised anomaly detection model selection
  publication-title: Proc 1st Conf Automated Mach Learn (Late-Breaking Workshop)
– ident: ref48
  doi: 10.1145/1401890.1401946
– year: 2019
  ident: ref3
  article-title: Deep learning for anomaly detection: A survey
  publication-title: arXiv 1901 03407
– year: 2015
  ident: ref57
  publication-title: Keras
– volume: 1
  start-page: 27
  year: 2013
  ident: ref63
  publication-title: Imbalanced Learning Foundations Algorithms and Applications
– ident: ref42
  doi: 10.1007/978-3-030-05318-5_9
– start-page: 172
  year: 2003
  ident: ref53
  article-title: A novel anomaly detection scheme based on principal component classifier
  publication-title: Proc IEEE Found New Directions Data Mining Workshop Conjunct 3rd IEEE Int Conf Data Mining (ICDM03)
– start-page: 268
  year: 2016
  ident: ref26
  article-title: Effects of random sampling on SVM hyper-parameter tuning
  publication-title: Proc Int Conf Intell Syst Design Appl
– ident: ref47
  doi: 10.1007/3-540-47887-6_53
– ident: ref28
  doi: 10.1007/978-3-319-46128-1_13
– ident: ref29
  doi: 10.1016/j.ins.2019.06.005
– year: 2013
  ident: ref62
  publication-title: Mixed Models Theory and Applications With R
– ident: ref4
  doi: 10.1109/JPROC.2021.3052449
– ident: ref33
  doi: 10.1016/j.eswa.2018.10.036
– volume: 9
  start-page: 65
  year: 2012
  ident: ref50
  article-title: Histogram-based outlier score (HBOS): A fast unsupervised anomaly detection algorithm
  publication-title: Proc KI Poster Demo Track
– ident: ref34
  doi: 10.1023/A:1019956318069
– volume: 28
  start-page: 2962
  year: 2015
  ident: ref38
  article-title: Efficient and robust automated machine learning
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 34
  start-page: 4489
  year: 2021
  ident: ref18
  article-title: Automatic unsupervised outlier model selection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref6
  doi: 10.1145/1541880.1541882
– ident: ref40
  doi: 10.1007/978-3-030-05318-5_7
– volume: 317
  start-page: 224
  year: 2015
  ident: ref35
  article-title: Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.05.010
– ident: ref24
  doi: 10.1609/aaai.v29i1.9354
– ident: ref22
  doi: 10.1007/978-3-030-05318-5_2
– ident: ref1
  doi: 10.1007/s10618-015-0444-8
– ident: ref9
  doi: 10.1109/4235.585893
– start-page: 582
  year: 2000
  ident: ref46
  article-title: Support vector method for novelty detection
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref32
  doi: 10.1016/j.procs.2018.08.250
SSID ssj0000816957
Score 2.2785294
Snippet Unsupervised anomaly detection (AD) is critical for a wide range of practical applications, from network security to health and medical tools. Due to the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45815
SubjectTerms algorithm selection problem
Algorithms
Anomalies
Anomaly detection
Benchmark testing
Classification algorithms
Datasets
Machine learning algorithms
Measurement
meta-features
Meta-learning
model selection
Statistical analysis
unsupervised anomaly detection
Unsupervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB_Jg4ndKDR7s1_UpyEeZ0eHF4cLBbyKcIs461Cv735qXdqAh68dBLSUnze30v7yXp74fQpc0jJXIVh1JkKkwxVaG0RIaGWSMkwzSSqRebINMpnc_ZY0vqC86E1fTANXDD2LpZzBhJpRGpTpW0zGrDMkaZS_797-VxRFirmPIxmOKcZaShGcIRG47GYzeiAaiFDxLgbMHJt6nIM_Y3Eis_4rKfbCb7aK_JEoNR_XYHaMsUh2i3xR14hK5BarMmfy2eAxE8mEqEni3VrAKXiQazonxfQiQojQ5clf8qFp_Bran82auii2aTu6fxfdiIIYTKlWBVKGE_S2hBM5MnVjskGTawCwZ-RIVgsdbEYmwJSNPZ1MRCRIoKpSO4dHKMOsVbYU5Q4GoIDSrjSiYy1QQyEk2Ea4-l816ieyhe48JVwxQOghUL7iuGiPEaTA5g8gbMHrraPLSsiTJ-b34DgG-aAsu1v-Fszxvb879s30NdMFerPxzjFJMe6q_txxuXLLnDKvV0c_Hpf_R9hnZgPPVqTB91nMHNOdpWH9VLubrwX-MXvu7iOA
  priority: 102
  providerName: Directory of Open Access Journals
Title Constructing a Meta-Learner for Unsupervised Anomaly Detection
URI https://ieeexplore.ieee.org/document/10121417
https://www.proquest.com/docview/2814552732
https://doaj.org/article/2f007eeb8bea4d4cbf9fde9598926115
Volume 11
WOSCitedRecordID wos000991569600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-6MGjXZs-Ns1FWFfFi-JBwVvIYyKCdhd3Fbz4282kcVFEwUNLKQlNv-mkM3l8H8CB62VG9UyealWZtGS1SbXjOkXhUGnB6kyXQWyCX13Vd3fiOm5WD3thEDEsPsMuXYa5fDs0LzRUdkRcVKxkfBZmOe-1m7WmAyqkICEqHpmFWCaO-oOBf4kuCYR3C6JpYcW3v08g6Y-qKj-64vB_OV_-Z8tWYCkGkkm_tfwqzGCzBotf6AXX4ZjUOFt-2OY-UcklTlQaCFXxOfHBanLbjF9G1FmM0Sb9ZvikHt-SU5yE5VnNBtyen90MLtKol5Aan6VNUk1TXsqqusJe4awHWzCkiTJytVopkVvLHWOOk3qdKzFXKjO1MjajwxabMNcMG9yCxKcZloTIjS50aTkFLZYrX55p7-DcdiD_xFGaSCZOmhaPMiQVmZAt-JLAlxH8DhxOK41aLo2_i5-QgaZFiQg73PDIy-hXMnc-yEHUtUZV2tJoJ5xFUYla-NyQVR3YIGt9eV5rqA7sftpbRq8dS49VGRjp8u1fqu3AAjWxHYPZhTlvQ9yDefM6eRg_74eE3p8v38_2w8f5Acmr4OI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7aJND0kPSRkE22rQ891hvLllfWJbDdNiQkWXpIIDehx6gUNt4luyn031cja5eU0EIPBmMkLH_jkWb0-D6Aj35YWD20ZW50bXPOGpsbL0yO0qM2kjWF4VFsQkwmze2t_JYOq8ezMIgYN5_hgG7jWr6b2QeaKjsmLirGmXgOmzXnZdEd11pPqZCGhKxF4hZihTwejcfhMwYkET6oiKiFVX-MP5GmP-mqPOmM4whzuvufbXsFOymUzEad7V_DM2zfwMtHBINv4YT0ODuG2PZ7prMrXOo8UqrifRbC1eymXTzMqbtYoMtG7exOT39lX3AZN2i1e3Bz-vV6fJYnxYTchjxtmRta9NJONzUOK-8C3JIhLZWRszVay9I54RnzgvTrPMdS68I22rqCLlftw0Y7a_EAspBoOJIit6Yy3AkKW5zQoTwzwcWF60G5wlHZRCdOqhZTFdOKQqoOfEXgqwR-Dz6tK807No1_F_9MBloXJSrs-CAgr5JnqdKHMAfRNAY1d9waL71DWctGhuyQ1T3YI2s9el9nqB70V_ZWyW8XKmDFIyddefiXah_gxdn11aW6PJ9cHME2NbebkenDRrAnvoMt-3P5Y3H_Pv6cvwEJFeID
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+a+Meta-Learner+for+Unsupervised+Anomaly+Detection&rft.jtitle=IEEE+access&rft.au=Gutowska%2C+Malgorzata&rft.au=Little%2C+Suzanne&rft.au=Mccarren%2C+Andrew&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=45815&rft.epage=45825&rft_id=info:doi/10.1109%2FACCESS.2023.3274113&rft.externalDocID=10121417
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon