Machine Learning-Based Adaline Neural PQ Strategy For A Photovoltaic Integrated Shunt Active Power Filter
This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy possi...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 1 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy possible. Thereby, a new hybrid Support Vector Machine Regression Perturb and Observe (SVM regression-P&O) algorithm is proposed. The SVM bloc improves the tracking speed by predicting an initial duty cycle, whereas a small fixed-step P&O algorithm ensures a high MPPT accuracy. The second purpose is to upgrade harmonics detection by exploiting the characteristics of intelligent learning of Adaline combined with ML algorithm. Therefore, a novel SVM regression-Adaline PQ strategy is designed. The SVM bloc generates the predicted initial weights of Adaline, thus ensuring fast identification of the DC active power component. In addition, the ability of this design to work with a small learning rate parameter allows an accurate harmonics extraction in contrast with the Adaptive Adaline technique where the performances are highly dependent on the chosen learning rate parameter. A comparative analysis of various ML models are carried out in order to get the best output prediction for each SVM regression bloc. Simulations have been performed to confirm the supremacy of the new strategies over intelligent and classical techniques. Finding exhibits a significant decrease of PV energy losses (up to 99%), a minor overshoot with an impressively decrease of the harmonics extraction's response time (up to 98.8%), and a PVSAPF power quality enhancement under online intermittent weather conditions and variable nonlinear load. |
|---|---|
| AbstractList | This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy possible. Thereby, a new hybrid Support Vector Machine Regression Perturb and Observe (SVM regression-P&O) algorithm is proposed. The SVM bloc improves the tracking speed by predicting an initial duty cycle, whereas a small fixed-step P&O algorithm ensures a high MPPT accuracy. The second purpose is to upgrade harmonics detection by exploiting the characteristics of intelligent learning of Adaline combined with ML algorithm. Therefore, a novel SVM regression-Adaline PQ strategy is designed. The SVM bloc generates the predicted initial weights of Adaline, thus ensuring fast identification of the DC active power component. In addition, the ability of this design to work with a small learning rate parameter allows an accurate harmonics extraction in contrast with the Adaptive Adaline technique where the performances are highly dependent on the chosen learning rate parameter. A comparative analysis of various ML models are carried out in order to get the best output prediction for each SVM regression bloc. Simulations have been performed to confirm the supremacy of the new strategies over intelligent and classical techniques. Finding exhibits a significant decrease of PV energy losses (up to 99%), a minor overshoot with an impressively decrease of the harmonics extraction's response time (up to 98.8%), and a PVSAPF power quality enhancement under online intermittent weather conditions and variable nonlinear load. This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy possible. Thereby, a new hybrid Support Vector Machine Regression Perturb and Observe (SVM regression-P&O) algorithm is proposed. The SVM block improves the tracking speed by predicting an initial duty cycle, whereas a small fixed-step P&O algorithm ensures a high MPPT accuracy. The second purpose is to upgrade harmonics detection by exploiting the characteristics of intelligent learning of Adaline combined with ML algorithm. Therefore, a novel SVM regression-Adaline PQ strategy is designed. The SVM block generates the predicted initial weights of Adaline, thus ensuring fast identification of the DC active power component. In addition, the ability of this design to work with a small learning rate parameter allows an accurate harmonics extraction in contrast with the Adaptive Adaline technique where the performances are highly dependent on the chosen learning rate parameter. A comparative analysis of various ML models are carried out in order to get the best output prediction for each SVM regression block. Simulations have been performed to confirm the supremacy of the new strategies over intelligent and classical techniques. Finding exhibits a significant decrease of PV energy losses (up to 99%), a minor overshoot with an impressively decrease of the harmonics extraction's response time (up to 98.8%), and a PVSAPF power quality enhancement under online intermittent weather conditions and variable nonlinear load. |
| Author | Jai, Asmae Azzam Ouassaid, Mohammed |
| Author_xml | – sequence: 1 givenname: Asmae Azzam orcidid: 0009-0005-2181-0197 surname: Jai fullname: Jai, Asmae Azzam organization: Engineering for Smart and Sustainable Systems Research Center, Mohammadia School of Engineers Mohammed V University in Rabat, Morocco – sequence: 2 givenname: Mohammed orcidid: 0000-0002-1603-450X surname: Ouassaid fullname: Ouassaid, Mohammed organization: Engineering for Smart and Sustainable Systems Research Center, Mohammadia School of Engineers Mohammed V University in Rabat, Morocco |
| BookMark | eNp9UU2P0zAQjdAisSz7C-BgiXO6_oid-BiqLVQqUFQ4WxN70roK8eK4i_bf424WacUBX8Z6b96b0bzXxcUYRiyKt4wuGKP6pl0ub3e7BadcLARvWNU0L4pLzpQuhRTq4tn_VXE9TUeaX5MhWV8W_jPYgx-RbBDi6Md9-QEmdKR1MJzhL3iKMJDtN7JLERLuH8gqRNKS7SGkcB-GBN6S9ZiZM-3I7nAaE2lt8vdItuE3RrLyQ8L4pnjZwzDh9VO9Kn6sbr8vP5Wbrx_Xy3ZT2orqVILrrOprx7quUS5DFIVWAqRjElUvasBKCVp3mbQaVFOjxo4KjRV1spfiqljPvi7A0dxF_xPigwngzSMQ4t5ATN4OaFwvOdMSgdW0YopBbYHRJg_RztWiy17vZ6-7GH6dcErmGE5xzOsb3nCpKK8akbv03GVjmKaIvbE-QfJhzCfzg2HUnIMyc1DmHJR5CiprxT_avxv_X_VuVnlEfKZgFZOaiz91XKBe |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2024_111248 crossref_primary_10_3390_en17122867 crossref_primary_10_1109_TIE_2023_3319723 crossref_primary_10_1109_ACCESS_2024_3361309 crossref_primary_10_1016_j_solener_2025_113550 crossref_primary_10_1109_ACCESS_2025_3533702 |
| Cites_doi | 10.1109/ICDS47004.2019.8942282 10.1016/j.rser.2020.109988 10.1016/j.epsr.2017.06.018 10.1016/j.matcom.2020.08.010 10.3390/en14154589 10.1016/j.jastp.2017.02.002 10.1088/1757-899X/623/1/012007 10.3390/su14127245 10.1109/IECON.2013.6699126 10.1109/ACCESS.2020.2988011 10.1002/er.4847 10.1109/ACCESS.2020.3028580 10.1016/j.rser.2019.109594 10.1109/ACCESS.2020.3022738 10.1002/er.5075 10.1109/ACCESS.2021.3091502 10.1080/19475705.2016.1176604 10.1016/j.rser.2018.06.053 10.1016/j.jcomm.2019.100108 10.3390/en15031175 10.3390/en15228776 10.1016/j.meegid.2020.104626 10.1016/j.mset.2019.07.002 10.2172/1829460 10.1109/ITNEC48623.2020.9084832 10.1016/j.rser.2017.08.048 10.55730/1300-0632.3941 10.1016/j.apenergy.2018.04.106 10.1109/ACCESS.2020.3007710 10.1177/0734242X20906877 10.1109/TIE.2021.3094463 10.3390/mi12101260 10.1016/j.arcontrol.2020.04.011 10.3390/en14144351 10.3390/electronics10111309 10.1109/TLA.2019.8891934 10.1016/j.cageo.2010.03.022 10.1016/j.suscom.2020.100417 10.3390/electronics9040637 10.1109/ACCESS.2022.3174555 10.1109/ACCESS.2021.3058052 10.1016/j.jclepro.2019.118983 10.1109/TPWRS.2015.2439811 10.1016/j.pnucene.2020.103425 10.3390/electronics8121480 10.1109/TPEL.2014.2302539 10.1016/j.rser.2021.111467 10.3390/en11051152 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3281488 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_df52195ea1704161a7ca108f379dd73b 10_1109_ACCESS_2023_3281488 10141592 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-adbc6f7d1bb86d4090e3963a5d15e6f37ae46307b6d4c9a687e9eb039e40d5f53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001010618700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:50:40 EDT 2025 Mon Jun 30 04:29:14 EDT 2025 Tue Nov 18 21:07:26 EST 2025 Sat Nov 29 04:02:42 EST 2025 Wed Aug 27 02:56:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-adbc6f7d1bb86d4090e3963a5d15e6f37ae46307b6d4c9a687e9eb039e40d5f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1603-450X 0009-0005-2181-0197 |
| OpenAccessLink | https://doaj.org/article/df52195ea1704161a7ca108f379dd73b |
| PQID | 2825602483 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3281488 doaj_primary_oai_doaj_org_article_df52195ea1704161a7ca108f379dd73b proquest_journals_2825602483 ieee_primary_10141592 crossref_primary_10_1109_ACCESS_2023_3281488 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref15 gong (ref17) 2021; 199 ref14 ref58 ref52 ref55 ref10 ref54 ref16 ref19 chaurasiya (ref18) 2021; 12 ref51 ref50 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ek?z (ref45) 2017 ref40 yadav (ref57) 2022; 21 putatunda (ref47) 2020 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 (ref11) 2021 ref39 ref38 karaca (ref46) 2019; 4 (ref12) 2022 cantarero (ref2) 2020; 70 younas (ref53) 2023 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 bu?a (ref20) 2022; 15 |
| References_xml | – ident: ref58 doi: 10.1109/ICDS47004.2019.8942282 – start-page: 1 year: 2020 ident: ref47 article-title: A modified Bayesian optimization based hyper-parameter tuning approach for extreme gradient boosting publication-title: Proc ICINPRO – ident: ref6 doi: 10.1016/j.rser.2020.109988 – ident: ref50 doi: 10.1016/j.epsr.2017.06.018 – ident: ref40 doi: 10.1016/j.matcom.2020.08.010 – ident: ref33 doi: 10.3390/en14154589 – ident: ref44 doi: 10.1016/j.jastp.2017.02.002 – ident: ref19 doi: 10.1088/1757-899X/623/1/012007 – ident: ref48 doi: 10.3390/su14127245 – ident: ref51 doi: 10.1109/IECON.2013.6699126 – volume: 4 start-page: 5 year: 2019 ident: ref46 article-title: Model estimation with SVM kernel types for cognitive diagnostics publication-title: Adv Math Models Appl – ident: ref4 doi: 10.1109/ACCESS.2020.2988011 – ident: ref16 doi: 10.1002/er.4847 – ident: ref22 doi: 10.1109/ACCESS.2020.3028580 – ident: ref8 doi: 10.1016/j.rser.2019.109594 – ident: ref1 doi: 10.1109/ACCESS.2020.3022738 – ident: ref39 doi: 10.1002/er.5075 – year: 2021 ident: ref11 publication-title: Renewable Capacity Statistics 2021 – ident: ref27 doi: 10.1109/ACCESS.2021.3091502 – ident: ref43 doi: 10.1080/19475705.2016.1176604 – ident: ref13 doi: 10.1016/j.rser.2018.06.053 – ident: ref3 doi: 10.1016/j.jcomm.2019.100108 – volume: 15 start-page: 1175 year: 2022 ident: ref20 article-title: A review on optimization of active power filter placement and sizing methods publication-title: Energies doi: 10.3390/en15031175 – ident: ref54 doi: 10.3390/en15228776 – ident: ref5 doi: 10.1016/j.meegid.2020.104626 – ident: ref10 doi: 10.1016/j.mset.2019.07.002 – volume: 12 start-page: 1 year: 2021 ident: ref18 article-title: Simulation of adaptive hybrid shunt active power filter under non-linear load to improve power quality publication-title: Int J Electron Commun Comput Eng – ident: ref9 doi: 10.2172/1829460 – ident: ref34 doi: 10.1109/ITNEC48623.2020.9084832 – ident: ref29 doi: 10.1016/j.rser.2017.08.048 – ident: ref56 doi: 10.55730/1300-0632.3941 – ident: ref14 doi: 10.1016/j.apenergy.2018.04.106 – ident: ref23 doi: 10.1109/ACCESS.2020.3007710 – ident: ref42 doi: 10.1177/0734242X20906877 – year: 2023 ident: ref53 article-title: Deep learning LSTM-based MPPT control of 100 kW dual stage grid tied solar PV system publication-title: SquareTrade Research – ident: ref55 doi: 10.1109/TIE.2021.3094463 – ident: ref30 doi: 10.3390/mi12101260 – ident: ref21 doi: 10.1016/j.arcontrol.2020.04.011 – ident: ref38 doi: 10.3390/en14144351 – ident: ref32 doi: 10.3390/electronics10111309 – ident: ref31 doi: 10.1109/TLA.2019.8891934 – volume: 21 start-page: 2781 year: 2022 ident: ref57 article-title: Deep Q reinforcement learning to improve the MPPT in solar cell publication-title: Advances in Math Sci Applic – ident: ref41 doi: 10.1016/j.cageo.2010.03.022 – ident: ref36 doi: 10.1016/j.suscom.2020.100417 – ident: ref35 doi: 10.3390/electronics9040637 – volume: 70 year: 2020 ident: ref2 article-title: Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries publication-title: Energy Res Social Sci – start-page: 1 year: 2017 ident: ref45 article-title: Comparative study of heart disease classification publication-title: Proc EBBT – ident: ref15 doi: 10.1109/ACCESS.2022.3174555 – year: 2022 ident: ref12 publication-title: Renewable Capacity Statistics 2022 – ident: ref28 doi: 10.1109/ACCESS.2021.3058052 – ident: ref24 doi: 10.1016/j.jclepro.2019.118983 – ident: ref49 doi: 10.1109/TPWRS.2015.2439811 – volume: 199 year: 2021 ident: ref17 article-title: A comprehensive review of improving power quality using active power filters publication-title: Electr Power Syst Res – ident: ref7 doi: 10.1016/j.pnucene.2020.103425 – ident: ref25 doi: 10.3390/electronics8121480 – ident: ref52 doi: 10.1109/TPEL.2014.2302539 – ident: ref26 doi: 10.1016/j.rser.2021.111467 – ident: ref37 doi: 10.3390/en11051152 |
| SSID | ssj0000816957 |
| Score | 2.3338568 |
| Snippet | This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Active filters Algorithms Harmonic analysis Harmonics harmonics identification Machine learning Maximum power point trackers maximum power point tracking Maximum power tracking Parameters Photovoltaic cells photovoltaic integrated shunt active power filter Photovoltaic systems Power harmonic filters Regression support vector machine regression Support vector machines Voltage control Weather |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFBdr2WE97KstS5cNHXacU9my9XF0wsJ2WMloC70JWXpuAyUuqTPYf189WQkdo4XdjCzZkn9-0tPH-_0I-aJQW5orlmlZ6awsnc-ssCKrRGnBqsLlYKPYhDw7U1dXepGC1WMsDADEw2cwwcu4l-87t8GlslPUlQ3Db-hx96QUQ7DWbkEFFSR0JROzUM70aT2bhUZMUCB8wgsVHH_11-gTSfqTqso_XXEcX-Zv_rNmb8nr5EjSekD-HXkBq_fk4BG94CFZ_ownJYEmEtXrbBrGLE9rb9G5pEjMER6x-EUTR-0fOu_WtKaLm67vQr_V26WjP7aEEp6e32xWPa1jF0kXqK9G50vcbj8il_NvF7PvWZJWyFyY0PWZ9Y0TrfR50yjhQxIDHkzRVj6vQLRcWihFMP8m3HTaCiVBQ8O4hpL5qq34MdlfdSv4QGjBRMOZd4VvbVlKGUAvdeFAOSetcsWIFNtPblziHUf5i1sT5x9MmwEngziZhNOIfN0VuhtoN57PPkUsd1mRMzsmBJBMMkHj2-Cq6ApsLhlO66x0NmcqNFZ7L3kzIkcI7KP3DZiOyHj7a5hk4PcGQ34F8sHxkyeKfSSvsIrDcs2Y7PfrDXwiL93vfnm__hz_3QemFutX priority: 102 providerName: IEEE |
| Title | Machine Learning-Based Adaline Neural PQ Strategy For A Photovoltaic Integrated Shunt Active Power Filter |
| URI | https://ieeexplore.ieee.org/document/10141592 https://www.proquest.com/docview/2825602483 https://doaj.org/article/df52195ea1704161a7ca108f379dd73b |
| Volume | 11 |
| WOSCitedRecordID | wos001010618700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1AMcqraAui1FPvRIwIkTP47LihU9gBa1lbhZE9uBlardCgISF347M44XbYVEL73k4DgPz4znkdjfx9g3Q9zS0ojC6sYWde1DAQpU0agaIpjKlxES2YQ-PzeXl3a2RvVFa8IGeOBBcEehwwBjmwilFpSMg_ZQCtNJbUPQsiXvK7RdK6aSDzalso3OMEOlsEfjyQRHdEhs4YeyMlgFmL9CUULszxQrL_xyCjbT9-xdzhL5eHi7D-xNXHxkW2vYgdtsfpaWQUaeEVKvimMMSIGPA1DmyAl1A28xu-AZgPaBY37Kgc-ul_0SnVIPc8-_r9AiAv9xfbfo-Tj5Pz4j8jQ-ndO_9B32a3ryc3JaZN6EwmO11hcQWq86Hcq2NSpgk4gS5xk0oWyiQslBrBXO7RZPegvK6GhjK6SNtQhN18hdtrFYLuInxiuhWimCr0IHda01arS2lY_Gew3GVyNWrUTofAYVJ26L3y4VF8K6Qe6O5O6y3Efs4PmiPwOmxuvdj0k3z10JEDs1oJm4bCbuX2YyYjuk2bXnlZi6WBzA3krVLs_eW0f7eRWBvcnP_-PZX9gmjWf4cLPHNvqbu_iVvfX3_fz2Zj8ZLh7PHk_20_bDJ9pa7-k |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQQII9MC5DFAb4gUfSORffHrNq1Sa2qogh7c1y7JOtEmpQl07i3-PjuNUmBNLeIsdO7Hzx8fHlfB8hnxVqS5eKZVpynVWV85kVVmRcVBasKlwONopNyNlMXV7qeQpWj7EwABAPn8EYL-Nevu_cGpfKDlFXNgy_weI-5shrN4RrbZdUUENCc5m4hXKmD-vJJDRjjBLh47JQwfVX98afSNOfdFX-MsZxhJnuPbBuL8jz5ErSesD-JXkEy1dk9w7B4GuyOI9nJYEmGtWr7CiMWp7W3qJ7SZGaIzxi_o0mltrfdNqtaE3n113fBcvV24WjpxtKCU-_X6-XPa2jkaRzVFij0wVuuO-TH9Pji8lJlsQVMhemdH1mfeNEK33eNEr4kMSgDJ3Rcp9zEG0pLVQiGIAm3HTaCiVBQ8NKDRXzvOXlG7Kz7JbwltCCiaZk3hW-tVUlZYC90oUD5Zy0yhUjUmw-uXGJeRwFMH6aOANh2gw4GcTJJJxG5Mu20K-BeOP_2Y8Qy21WZM2OCQEkkzqh8W1wVjQHm0uGEzsrnc2ZCo3V3suyGZF9BPbO-wZMR-Rg82uY1MVvDAb9CmSEK9_9o9gn8vTk4vzMnJ3Ovr4nz7C6w-LNAdnpV2v4QJ64235xs_oY_-M_DOPuoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Adaline+Neural+PQ+Strategy+for+a+Photovoltaic+Integrated+Shunt+Active+Power+Filter&rft.jtitle=IEEE+access&rft.au=Asmae+Azzam+Jai&rft.au=Ouassaid%2C+Mohammed&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=56593&rft_id=info:doi/10.1109%2FACCESS.2023.3281488&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |