Machine Learning-Based Adaline Neural PQ Strategy For A Photovoltaic Integrated Shunt Active Power Filter

This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy possi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 1
Hlavní autoři: Jai, Asmae Azzam, Ouassaid, Mohammed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy possible. Thereby, a new hybrid Support Vector Machine Regression Perturb and Observe (SVM regression-P&O) algorithm is proposed. The SVM bloc improves the tracking speed by predicting an initial duty cycle, whereas a small fixed-step P&O algorithm ensures a high MPPT accuracy. The second purpose is to upgrade harmonics detection by exploiting the characteristics of intelligent learning of Adaline combined with ML algorithm. Therefore, a novel SVM regression-Adaline PQ strategy is designed. The SVM bloc generates the predicted initial weights of Adaline, thus ensuring fast identification of the DC active power component. In addition, the ability of this design to work with a small learning rate parameter allows an accurate harmonics extraction in contrast with the Adaptive Adaline technique where the performances are highly dependent on the chosen learning rate parameter. A comparative analysis of various ML models are carried out in order to get the best output prediction for each SVM regression bloc. Simulations have been performed to confirm the supremacy of the new strategies over intelligent and classical techniques. Finding exhibits a significant decrease of PV energy losses (up to 99%), a minor overshoot with an impressively decrease of the harmonics extraction's response time (up to 98.8%), and a PVSAPF power quality enhancement under online intermittent weather conditions and variable nonlinear load.
AbstractList This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy possible. Thereby, a new hybrid Support Vector Machine Regression Perturb and Observe (SVM regression-P&O) algorithm is proposed. The SVM bloc improves the tracking speed by predicting an initial duty cycle, whereas a small fixed-step P&O algorithm ensures a high MPPT accuracy. The second purpose is to upgrade harmonics detection by exploiting the characteristics of intelligent learning of Adaline combined with ML algorithm. Therefore, a novel SVM regression-Adaline PQ strategy is designed. The SVM bloc generates the predicted initial weights of Adaline, thus ensuring fast identification of the DC active power component. In addition, the ability of this design to work with a small learning rate parameter allows an accurate harmonics extraction in contrast with the Adaptive Adaline technique where the performances are highly dependent on the chosen learning rate parameter. A comparative analysis of various ML models are carried out in order to get the best output prediction for each SVM regression bloc. Simulations have been performed to confirm the supremacy of the new strategies over intelligent and classical techniques. Finding exhibits a significant decrease of PV energy losses (up to 99%), a minor overshoot with an impressively decrease of the harmonics extraction's response time (up to 98.8%), and a PVSAPF power quality enhancement under online intermittent weather conditions and variable nonlinear load.
This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance improvement. The first goal is to design an efficient maximum power point tracking MPPT strategy in order to harness the largest amount of energy possible. Thereby, a new hybrid Support Vector Machine Regression Perturb and Observe (SVM regression-P&O) algorithm is proposed. The SVM block improves the tracking speed by predicting an initial duty cycle, whereas a small fixed-step P&O algorithm ensures a high MPPT accuracy. The second purpose is to upgrade harmonics detection by exploiting the characteristics of intelligent learning of Adaline combined with ML algorithm. Therefore, a novel SVM regression-Adaline PQ strategy is designed. The SVM block generates the predicted initial weights of Adaline, thus ensuring fast identification of the DC active power component. In addition, the ability of this design to work with a small learning rate parameter allows an accurate harmonics extraction in contrast with the Adaptive Adaline technique where the performances are highly dependent on the chosen learning rate parameter. A comparative analysis of various ML models are carried out in order to get the best output prediction for each SVM regression block. Simulations have been performed to confirm the supremacy of the new strategies over intelligent and classical techniques. Finding exhibits a significant decrease of PV energy losses (up to 99%), a minor overshoot with an impressively decrease of the harmonics extraction's response time (up to 98.8%), and a PVSAPF power quality enhancement under online intermittent weather conditions and variable nonlinear load.
Author Jai, Asmae Azzam
Ouassaid, Mohammed
Author_xml – sequence: 1
  givenname: Asmae Azzam
  orcidid: 0009-0005-2181-0197
  surname: Jai
  fullname: Jai, Asmae Azzam
  organization: Engineering for Smart and Sustainable Systems Research Center, Mohammadia School of Engineers Mohammed V University in Rabat, Morocco
– sequence: 2
  givenname: Mohammed
  orcidid: 0000-0002-1603-450X
  surname: Ouassaid
  fullname: Ouassaid, Mohammed
  organization: Engineering for Smart and Sustainable Systems Research Center, Mohammadia School of Engineers Mohammed V University in Rabat, Morocco
BookMark eNp9UU2P0zAQjdAisSz7C-BgiXO6_oid-BiqLVQqUFQ4WxN70roK8eK4i_bf424WacUBX8Z6b96b0bzXxcUYRiyKt4wuGKP6pl0ub3e7BadcLARvWNU0L4pLzpQuhRTq4tn_VXE9TUeaX5MhWV8W_jPYgx-RbBDi6Md9-QEmdKR1MJzhL3iKMJDtN7JLERLuH8gqRNKS7SGkcB-GBN6S9ZiZM-3I7nAaE2lt8vdItuE3RrLyQ8L4pnjZwzDh9VO9Kn6sbr8vP5Wbrx_Xy3ZT2orqVILrrOprx7quUS5DFIVWAqRjElUvasBKCVp3mbQaVFOjxo4KjRV1spfiqljPvi7A0dxF_xPigwngzSMQ4t5ATN4OaFwvOdMSgdW0YopBbYHRJg_RztWiy17vZ6-7GH6dcErmGE5xzOsb3nCpKK8akbv03GVjmKaIvbE-QfJhzCfzg2HUnIMyc1DmHJR5CiprxT_avxv_X_VuVnlEfKZgFZOaiz91XKBe
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_epsr_2024_111248
crossref_primary_10_3390_en17122867
crossref_primary_10_1109_TIE_2023_3319723
crossref_primary_10_1109_ACCESS_2024_3361309
crossref_primary_10_1016_j_solener_2025_113550
crossref_primary_10_1109_ACCESS_2025_3533702
Cites_doi 10.1109/ICDS47004.2019.8942282
10.1016/j.rser.2020.109988
10.1016/j.epsr.2017.06.018
10.1016/j.matcom.2020.08.010
10.3390/en14154589
10.1016/j.jastp.2017.02.002
10.1088/1757-899X/623/1/012007
10.3390/su14127245
10.1109/IECON.2013.6699126
10.1109/ACCESS.2020.2988011
10.1002/er.4847
10.1109/ACCESS.2020.3028580
10.1016/j.rser.2019.109594
10.1109/ACCESS.2020.3022738
10.1002/er.5075
10.1109/ACCESS.2021.3091502
10.1080/19475705.2016.1176604
10.1016/j.rser.2018.06.053
10.1016/j.jcomm.2019.100108
10.3390/en15031175
10.3390/en15228776
10.1016/j.meegid.2020.104626
10.1016/j.mset.2019.07.002
10.2172/1829460
10.1109/ITNEC48623.2020.9084832
10.1016/j.rser.2017.08.048
10.55730/1300-0632.3941
10.1016/j.apenergy.2018.04.106
10.1109/ACCESS.2020.3007710
10.1177/0734242X20906877
10.1109/TIE.2021.3094463
10.3390/mi12101260
10.1016/j.arcontrol.2020.04.011
10.3390/en14144351
10.3390/electronics10111309
10.1109/TLA.2019.8891934
10.1016/j.cageo.2010.03.022
10.1016/j.suscom.2020.100417
10.3390/electronics9040637
10.1109/ACCESS.2022.3174555
10.1109/ACCESS.2021.3058052
10.1016/j.jclepro.2019.118983
10.1109/TPWRS.2015.2439811
10.1016/j.pnucene.2020.103425
10.3390/electronics8121480
10.1109/TPEL.2014.2302539
10.1016/j.rser.2021.111467
10.3390/en11051152
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3281488
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_df52195ea1704161a7ca108f379dd73b
10_1109_ACCESS_2023_3281488
10141592
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-adbc6f7d1bb86d4090e3963a5d15e6f37ae46307b6d4c9a687e9eb039e40d5f53
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001010618700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:40 EDT 2025
Mon Jun 30 04:29:14 EDT 2025
Tue Nov 18 21:07:26 EST 2025
Sat Nov 29 04:02:42 EST 2025
Wed Aug 27 02:56:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-adbc6f7d1bb86d4090e3963a5d15e6f37ae46307b6d4c9a687e9eb039e40d5f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1603-450X
0009-0005-2181-0197
OpenAccessLink https://doaj.org/article/df52195ea1704161a7ca108f379dd73b
PQID 2825602483
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3281488
doaj_primary_oai_doaj_org_article_df52195ea1704161a7ca108f379dd73b
proquest_journals_2825602483
ieee_primary_10141592
crossref_primary_10_1109_ACCESS_2023_3281488
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref15
gong (ref17) 2021; 199
ref14
ref58
ref52
ref55
ref10
ref54
ref16
ref19
chaurasiya (ref18) 2021; 12
ref51
ref50
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ek?z (ref45) 2017
ref40
yadav (ref57) 2022; 21
putatunda (ref47) 2020
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
(ref11) 2021
ref39
ref38
karaca (ref46) 2019; 4
(ref12) 2022
cantarero (ref2) 2020; 70
younas (ref53) 2023
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
bu?a (ref20) 2022; 15
References_xml – ident: ref58
  doi: 10.1109/ICDS47004.2019.8942282
– start-page: 1
  year: 2020
  ident: ref47
  article-title: A modified Bayesian optimization based hyper-parameter tuning approach for extreme gradient boosting
  publication-title: Proc ICINPRO
– ident: ref6
  doi: 10.1016/j.rser.2020.109988
– ident: ref50
  doi: 10.1016/j.epsr.2017.06.018
– ident: ref40
  doi: 10.1016/j.matcom.2020.08.010
– ident: ref33
  doi: 10.3390/en14154589
– ident: ref44
  doi: 10.1016/j.jastp.2017.02.002
– ident: ref19
  doi: 10.1088/1757-899X/623/1/012007
– ident: ref48
  doi: 10.3390/su14127245
– ident: ref51
  doi: 10.1109/IECON.2013.6699126
– volume: 4
  start-page: 5
  year: 2019
  ident: ref46
  article-title: Model estimation with SVM kernel types for cognitive diagnostics
  publication-title: Adv Math Models Appl
– ident: ref4
  doi: 10.1109/ACCESS.2020.2988011
– ident: ref16
  doi: 10.1002/er.4847
– ident: ref22
  doi: 10.1109/ACCESS.2020.3028580
– ident: ref8
  doi: 10.1016/j.rser.2019.109594
– ident: ref1
  doi: 10.1109/ACCESS.2020.3022738
– ident: ref39
  doi: 10.1002/er.5075
– year: 2021
  ident: ref11
  publication-title: Renewable Capacity Statistics 2021
– ident: ref27
  doi: 10.1109/ACCESS.2021.3091502
– ident: ref43
  doi: 10.1080/19475705.2016.1176604
– ident: ref13
  doi: 10.1016/j.rser.2018.06.053
– ident: ref3
  doi: 10.1016/j.jcomm.2019.100108
– volume: 15
  start-page: 1175
  year: 2022
  ident: ref20
  article-title: A review on optimization of active power filter placement and sizing methods
  publication-title: Energies
  doi: 10.3390/en15031175
– ident: ref54
  doi: 10.3390/en15228776
– ident: ref5
  doi: 10.1016/j.meegid.2020.104626
– ident: ref10
  doi: 10.1016/j.mset.2019.07.002
– volume: 12
  start-page: 1
  year: 2021
  ident: ref18
  article-title: Simulation of adaptive hybrid shunt active power filter under non-linear load to improve power quality
  publication-title: Int J Electron Commun Comput Eng
– ident: ref9
  doi: 10.2172/1829460
– ident: ref34
  doi: 10.1109/ITNEC48623.2020.9084832
– ident: ref29
  doi: 10.1016/j.rser.2017.08.048
– ident: ref56
  doi: 10.55730/1300-0632.3941
– ident: ref14
  doi: 10.1016/j.apenergy.2018.04.106
– ident: ref23
  doi: 10.1109/ACCESS.2020.3007710
– ident: ref42
  doi: 10.1177/0734242X20906877
– year: 2023
  ident: ref53
  article-title: Deep learning LSTM-based MPPT control of 100 kW dual stage grid tied solar PV system
  publication-title: SquareTrade Research
– ident: ref55
  doi: 10.1109/TIE.2021.3094463
– ident: ref30
  doi: 10.3390/mi12101260
– ident: ref21
  doi: 10.1016/j.arcontrol.2020.04.011
– ident: ref38
  doi: 10.3390/en14144351
– ident: ref32
  doi: 10.3390/electronics10111309
– ident: ref31
  doi: 10.1109/TLA.2019.8891934
– volume: 21
  start-page: 2781
  year: 2022
  ident: ref57
  article-title: Deep Q reinforcement learning to improve the MPPT in solar cell
  publication-title: Advances in Math Sci Applic
– ident: ref41
  doi: 10.1016/j.cageo.2010.03.022
– ident: ref36
  doi: 10.1016/j.suscom.2020.100417
– ident: ref35
  doi: 10.3390/electronics9040637
– volume: 70
  year: 2020
  ident: ref2
  article-title: Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries
  publication-title: Energy Res Social Sci
– start-page: 1
  year: 2017
  ident: ref45
  article-title: Comparative study of heart disease classification
  publication-title: Proc EBBT
– ident: ref15
  doi: 10.1109/ACCESS.2022.3174555
– year: 2022
  ident: ref12
  publication-title: Renewable Capacity Statistics 2022
– ident: ref28
  doi: 10.1109/ACCESS.2021.3058052
– ident: ref24
  doi: 10.1016/j.jclepro.2019.118983
– ident: ref49
  doi: 10.1109/TPWRS.2015.2439811
– volume: 199
  year: 2021
  ident: ref17
  article-title: A comprehensive review of improving power quality using active power filters
  publication-title: Electr Power Syst Res
– ident: ref7
  doi: 10.1016/j.pnucene.2020.103425
– ident: ref25
  doi: 10.3390/electronics8121480
– ident: ref52
  doi: 10.1109/TPEL.2014.2302539
– ident: ref26
  doi: 10.1016/j.rser.2021.111467
– ident: ref37
  doi: 10.3390/en11051152
SSID ssj0000816957
Score 2.3338568
Snippet This paper introduces novel techniques based on Machine Learning (ML) algorithms for a Photovoltaic integrated Shunt Active Power Filter performance...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Active filters
Algorithms
Harmonic analysis
Harmonics
harmonics identification
Machine learning
Maximum power point trackers
maximum power point tracking
Maximum power tracking
Parameters
Photovoltaic cells
photovoltaic integrated shunt active power filter
Photovoltaic systems
Power harmonic filters
Regression
support vector machine regression
Support vector machines
Voltage control
Weather
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFBdr2WE97KstS5cNHXacU9my9XF0wsJ2WMloC70JWXpuAyUuqTPYf189WQkdo4XdjCzZkn9-0tPH-_0I-aJQW5orlmlZ6awsnc-ssCKrRGnBqsLlYKPYhDw7U1dXepGC1WMsDADEw2cwwcu4l-87t8GlslPUlQ3Db-hx96QUQ7DWbkEFFSR0JROzUM70aT2bhUZMUCB8wgsVHH_11-gTSfqTqso_XXEcX-Zv_rNmb8nr5EjSekD-HXkBq_fk4BG94CFZ_ownJYEmEtXrbBrGLE9rb9G5pEjMER6x-EUTR-0fOu_WtKaLm67vQr_V26WjP7aEEp6e32xWPa1jF0kXqK9G50vcbj8il_NvF7PvWZJWyFyY0PWZ9Y0TrfR50yjhQxIDHkzRVj6vQLRcWihFMP8m3HTaCiVBQ8O4hpL5qq34MdlfdSv4QGjBRMOZd4VvbVlKGUAvdeFAOSetcsWIFNtPblziHUf5i1sT5x9MmwEngziZhNOIfN0VuhtoN57PPkUsd1mRMzsmBJBMMkHj2-Cq6ApsLhlO66x0NmcqNFZ7L3kzIkcI7KP3DZiOyHj7a5hk4PcGQ34F8sHxkyeKfSSvsIrDcs2Y7PfrDXwiL93vfnm__hz_3QemFutX
  priority: 102
  providerName: IEEE
Title Machine Learning-Based Adaline Neural PQ Strategy For A Photovoltaic Integrated Shunt Active Power Filter
URI https://ieeexplore.ieee.org/document/10141592
https://www.proquest.com/docview/2825602483
https://doaj.org/article/df52195ea1704161a7ca108f379dd73b
Volume 11
WOSCitedRecordID wos001010618700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYq1AMcqraAui1FPvRIwIkTP47LihU9gBa1lbhZE9uBlardCgISF347M44XbYVEL73k4DgPz4znkdjfx9g3Q9zS0ojC6sYWde1DAQpU0agaIpjKlxES2YQ-PzeXl3a2RvVFa8IGeOBBcEehwwBjmwilFpSMg_ZQCtNJbUPQsiXvK7RdK6aSDzalso3OMEOlsEfjyQRHdEhs4YeyMlgFmL9CUULszxQrL_xyCjbT9-xdzhL5eHi7D-xNXHxkW2vYgdtsfpaWQUaeEVKvimMMSIGPA1DmyAl1A28xu-AZgPaBY37Kgc-ul_0SnVIPc8-_r9AiAv9xfbfo-Tj5Pz4j8jQ-ndO_9B32a3ryc3JaZN6EwmO11hcQWq86Hcq2NSpgk4gS5xk0oWyiQslBrBXO7RZPegvK6GhjK6SNtQhN18hdtrFYLuInxiuhWimCr0IHda01arS2lY_Gew3GVyNWrUTofAYVJ26L3y4VF8K6Qe6O5O6y3Efs4PmiPwOmxuvdj0k3z10JEDs1oJm4bCbuX2YyYjuk2bXnlZi6WBzA3krVLs_eW0f7eRWBvcnP_-PZX9gmjWf4cLPHNvqbu_iVvfX3_fz2Zj8ZLh7PHk_20_bDJ9pa7-k
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbQQII9MC5DFAb4gUfSORffHrNq1Sa2qogh7c1y7JOtEmpQl07i3-PjuNUmBNLeIsdO7Hzx8fHlfB8hnxVqS5eKZVpynVWV85kVVmRcVBasKlwONopNyNlMXV7qeQpWj7EwABAPn8EYL-Nevu_cGpfKDlFXNgy_weI-5shrN4RrbZdUUENCc5m4hXKmD-vJJDRjjBLh47JQwfVX98afSNOfdFX-MsZxhJnuPbBuL8jz5ErSesD-JXkEy1dk9w7B4GuyOI9nJYEmGtWr7CiMWp7W3qJ7SZGaIzxi_o0mltrfdNqtaE3n113fBcvV24WjpxtKCU-_X6-XPa2jkaRzVFij0wVuuO-TH9Pji8lJlsQVMhemdH1mfeNEK33eNEr4kMSgDJ3Rcp9zEG0pLVQiGIAm3HTaCiVBQ8NKDRXzvOXlG7Kz7JbwltCCiaZk3hW-tVUlZYC90oUD5Zy0yhUjUmw-uXGJeRwFMH6aOANh2gw4GcTJJJxG5Mu20K-BeOP_2Y8Qy21WZM2OCQEkkzqh8W1wVjQHm0uGEzsrnc2ZCo3V3suyGZF9BPbO-wZMR-Rg82uY1MVvDAb9CmSEK9_9o9gn8vTk4vzMnJ3Ovr4nz7C6w-LNAdnpV2v4QJ64235xs_oY_-M_DOPuoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Adaline+Neural+PQ+Strategy+for+a+Photovoltaic+Integrated+Shunt+Active+Power+Filter&rft.jtitle=IEEE+access&rft.au=Asmae+Azzam+Jai&rft.au=Ouassaid%2C+Mohammed&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=56593&rft_id=info:doi/10.1109%2FACCESS.2023.3281488&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon