MILP Modeling and Optimization of Multi-Objective Three-Stage Flexible Job Shop Scheduling Problem With Assembly and AGV Transportation

In the real manufacturing environment, the machining stage of the jobs and the assembly stage of the products are often completed in different workshops. In addition, automatic guided vehicle (AGV) plays an indispensable role in the transportation of jobs from machining workshop to assembly workshop...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 13; pp. 25369 - 25386
Main Authors: Yang, Shiming, Meng, Leilei, Ullah, Saif, Zhang, Biao, Sang, Hongyan, Duan, Peng
Format: Journal Article
Language:English
Published: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the real manufacturing environment, the machining stage of the jobs and the assembly stage of the products are often completed in different workshops. In addition, automatic guided vehicle (AGV) plays an indispensable role in the transportation of jobs from machining workshop to assembly workshop. This paper studies multi-objective three-stage flexible job shop scheduling problem (FJSP-T-A) with minimizing both the makespan and the total energy consumption. In FJSP-T-A, jobs are first machined in flexible job shop, then are transported to assembly workshop by AGVs, and finally are assembled in assembly workshop. To solve this problem, a mixed-integer linear programming model (MILP) is developed and the optimal Pareto front for small-scale instances are solved by using the <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-method. FJSP-T-A is NP-hard, and an efficient multi-population co-evolutionary algorithm (MPCEA) is proposed to efficiently solve large-scale instances. In the MPCEA, we design a strategy to select relatively high-quality individuals to enhance the algorithm's convergence speed, and design a multi-objective variable-neighborhood search (MOVNS) method to improve the local search ability. Experiments are conducted to prove the effectiveness of the MILP model and the MPCEA.
AbstractList In the real manufacturing environment, the machining stage of the jobs and the assembly stage of the products are often completed in different workshops. In addition, automatic guided vehicle (AGV) plays an indispensable role in the transportation of jobs from machining workshop to assembly workshop. This paper studies multi-objective three-stage flexible job shop scheduling problem (FJSP-T-A) with minimizing both the makespan and the total energy consumption. In FJSP-T-A, jobs are first machined in flexible job shop, then are transported to assembly workshop by AGVs, and finally are assembled in assembly workshop. To solve this problem, a mixed-integer linear programming model (MILP) is developed and the optimal Pareto front for small-scale instances are solved by using the <inline-formula> <tex-math notation="LaTeX">\varepsilon </tex-math></inline-formula>-method. FJSP-T-A is NP-hard, and an efficient multi-population co-evolutionary algorithm (MPCEA) is proposed to efficiently solve large-scale instances. In the MPCEA, we design a strategy to select relatively high-quality individuals to enhance the algorithm's convergence speed, and design a multi-objective variable-neighborhood search (MOVNS) method to improve the local search ability. Experiments are conducted to prove the effectiveness of the MILP model and the MPCEA.
In the real manufacturing environment, the machining stage of the jobs and the assembly stage of the products are often completed in different workshops. In addition, automatic guided vehicle (AGV) plays an indispensable role in the transportation of jobs from machining workshop to assembly workshop. This paper studies multi-objective three-stage flexible job shop scheduling problem (FJSP-T-A) with minimizing both the makespan and the total energy consumption. In FJSP-T-A, jobs are first machined in flexible job shop, then are transported to assembly workshop by AGVs, and finally are assembled in assembly workshop. To solve this problem, a mixed-integer linear programming model (MILP) is developed and the optimal Pareto front for small-scale instances are solved by using the [Formula Omitted]-method. FJSP-T-A is NP-hard, and an efficient multi-population co-evolutionary algorithm (MPCEA) is proposed to efficiently solve large-scale instances. In the MPCEA, we design a strategy to select relatively high-quality individuals to enhance the algorithm’s convergence speed, and design a multi-objective variable-neighborhood search (MOVNS) method to improve the local search ability. Experiments are conducted to prove the effectiveness of the MILP model and the MPCEA.
In the real manufacturing environment, the machining stage of the jobs and the assembly stage of the products are often completed in different workshops. In addition, automatic guided vehicle (AGV) plays an indispensable role in the transportation of jobs from machining workshop to assembly workshop. This paper studies multi-objective three-stage flexible job shop scheduling problem (FJSP-T-A) with minimizing both the makespan and the total energy consumption. In FJSP-T-A, jobs are first machined in flexible job shop, then are transported to assembly workshop by AGVs, and finally are assembled in assembly workshop. To solve this problem, a mixed-integer linear programming model (MILP) is developed and the optimal Pareto front for small-scale instances are solved by using the <tex-math notation="LaTeX">$\varepsilon $ </tex-math>-method. FJSP-T-A is NP-hard, and an efficient multi-population co-evolutionary algorithm (MPCEA) is proposed to efficiently solve large-scale instances. In the MPCEA, we design a strategy to select relatively high-quality individuals to enhance the algorithm's convergence speed, and design a multi-objective variable-neighborhood search (MOVNS) method to improve the local search ability. Experiments are conducted to prove the effectiveness of the MILP model and the MPCEA.
Author Zhang, Biao
Ullah, Saif
Meng, Leilei
Yang, Shiming
Sang, Hongyan
Duan, Peng
Author_xml – sequence: 1
  givenname: Shiming
  surname: Yang
  fullname: Yang, Shiming
  organization: School of Computer Science, Liaocheng University, Liaocheng, China
– sequence: 2
  givenname: Leilei
  orcidid: 0000-0003-1439-4832
  surname: Meng
  fullname: Meng, Leilei
  email: mengleilei@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng, China
– sequence: 3
  givenname: Saif
  orcidid: 0000-0003-4772-7760
  surname: Ullah
  fullname: Ullah, Saif
  organization: Department of Industrial Engineering, University of Engineering and Technology, Taxila, Pakistan
– sequence: 4
  givenname: Biao
  orcidid: 0000-0003-4148-8172
  surname: Zhang
  fullname: Zhang, Biao
  organization: School of Computer Science, Liaocheng University, Liaocheng, China
– sequence: 5
  givenname: Hongyan
  orcidid: 0000-0001-7476-5039
  surname: Sang
  fullname: Sang, Hongyan
  organization: School of Computer Science, Liaocheng University, Liaocheng, China
– sequence: 6
  givenname: Peng
  orcidid: 0000-0002-7396-7592
  surname: Duan
  fullname: Duan, Peng
  email: duanpeng@lcu-cs.com
  organization: School of Computer Science, Liaocheng University, Liaocheng, China
BookMark eNp9kdFu0zAUhiM0JMbYE8CFJa5T7DhO6suq2kZRq05KgUvr2D5uXaVxcdyJ8QK8NlkzpIkLfGP79_n-c6z_bXbRhQ6z7D2jE8ao_DSbz2-aZlLQQky44GJaiFfZZcEqmQ_X6uLF-U123fd7OqzpIIn6Mvu9WizvySpYbH23JdBZsj4mf_C_IPnQkeDI6tQmn6_1Hk3yD0g2u4iYNwm2SG5b_Ol1i-RL0KTZhSNpzA7t6Wx2H8PwdCDffdqRWd_jQbeP5xazu29kE6HrjyGmc6N32WsHbY_Xz_tV9vX2ZjP_nC_Xd4v5bJmbksqUg6mBQVXVpeYaqK21QQlTkBwlB15RzSVzhdNOU26Eqx21CAxpNWimLPhVthh9bYC9OkZ_gPioAnh1FkLcKojJmxaV1s6iLGhpayyZ1FIwCiVH6oQFrO3g9XH0Osbw44R9Uvtwit0wvuKsErKknJdDlRyrTAx9H9Ep48c_pwi-VYyqpxjVGKN6ilE9xziw_B_278T_pz6MlEfEF8RUVIyV_A-aNa0E
CODEN IAECCG
CitedBy_id crossref_primary_10_1186_s10033_025_01281_z
crossref_primary_10_1109_ACCESS_2025_3589064
Cites_doi 10.1108/AA-11-2018-0178
10.1016/j.rcim.2019.04.006
10.3390/s23083815
10.1109/TASE.2020.3027532
10.1016/j.cie.2020.106863
10.1109/TEVC.2022.3219238
10.1109/ACCESS.2019.2930281
10.1007/s10845-007-0026-8
10.1016/j.eswa.2023.122594
10.1016/j.asoc.2024.112148
10.1109/LRA.2022.3184795
10.1016/j.ejor.2019.11.016
10.1109/ACCESS.2018.2866133
10.1109/tase.2024.3356255
10.1080/00207543.2020.1836421
10.1016/j.swevo.2024.101544
10.3233/jifs-191370
10.1016/j.jclepro.2017.10.342
10.3389/fbioe.2022.909548
10.1016/j.swevo.2024.101549
10.1016/j.eswa.2023.121149
10.1109/TEVC.2021.3113923
10.3390/machines10100847
10.1016/j.cie.2024.109917
10.1016/j.compchemeng.2017.05.004
10.1016/j.cie.2020.106347
10.1016/j.eswa.2022.117182
10.1016/j.suscom.2023.100901
10.1016/j.swevo.2024.101538
10.1016/j.swevo.2024.101658
10.1016/j.cor.2024.106744
10.1007/3-540-58484-6_269
10.1016/j.swevo.2023.101374
10.1109/TEM.2017.2785774
10.1016/j.jclepro.2018.11.021
10.1080/0305215X.2021.1887168
10.1109/TASE.2023.3301656
10.1109/ICSMD60522.2023.10490770
10.1177/00202940231173750
10.1016/j.engappai.2024.108634
10.1007/BF02023073
10.1016/j.cie.2023.109718
10.1016/j.jclepro.2018.03.254
10.3390/math11020324
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3535825
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 25386
ExternalDocumentID oai_doaj_org_article_bbfde9204d7e419b9510a43e0f5dae7d
10_1109_ACCESS_2025_3535825
10856114
Genre orig-research
GrantInformation_xml – fundername: Guangyue Youth Scholar Innovation Talent Program funded Liaocheng University
  grantid: LCUGYTD2022-03
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021QE195; ZR2021QF036
  funderid: 10.13039/501100007129
– fundername: Youth Innovation Team Program of Shandong Higher Education Institution
  grantid: 2023KJ206
– fundername: Funds for the National Natural Science Foundation of China
  grantid: 52205529; 62303204
  funderid: 10.13039/501100001809
– fundername: Foundation of Young Talent of Lifting Engineering for Science and Technology in Shandong, China
  grantid: SDAST2024QTA074
  funderid: 10.13039/100007224
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-ac7a1a6674b3ba0d7bce9a8a93e93a360b391f2fbfb03c5f7f0dea1e062fbc423
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420293500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:00 EDT 2025
Mon Jun 30 12:39:25 EDT 2025
Tue Nov 18 22:32:58 EST 2025
Sat Nov 29 08:16:55 EST 2025
Wed Aug 27 01:50:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-ac7a1a6674b3ba0d7bce9a8a93e93a360b391f2fbfb03c5f7f0dea1e062fbc423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7476-5039
0000-0003-4148-8172
0000-0002-7396-7592
0000-0003-1439-4832
0000-0003-4772-7760
OpenAccessLink https://ieeexplore.ieee.org/document/10856114
PQID 3165940334
PQPubID 4845423
PageCount 18
ParticipantIDs proquest_journals_3165940334
ieee_primary_10856114
crossref_citationtrail_10_1109_ACCESS_2025_3535825
doaj_primary_oai_doaj_org_article_bbfde9204d7e419b9510a43e0f5dae7d
crossref_primary_10_1109_ACCESS_2025_3535825
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref33
  doi: 10.1108/AA-11-2018-0178
– ident: ref30
  doi: 10.1016/j.rcim.2019.04.006
– ident: ref25
  doi: 10.3390/s23083815
– ident: ref1
  doi: 10.1109/TASE.2020.3027532
– ident: ref13
  doi: 10.1016/j.cie.2020.106863
– ident: ref26
  doi: 10.1109/TEVC.2022.3219238
– ident: ref17
  doi: 10.1109/ACCESS.2019.2930281
– ident: ref42
  doi: 10.1007/s10845-007-0026-8
– ident: ref9
  doi: 10.1016/j.eswa.2023.122594
– ident: ref12
  doi: 10.1016/j.asoc.2024.112148
– ident: ref34
  doi: 10.1109/LRA.2022.3184795
– ident: ref36
  doi: 10.1016/j.ejor.2019.11.016
– ident: ref15
  doi: 10.1109/ACCESS.2018.2866133
– ident: ref20
  doi: 10.1109/tase.2024.3356255
– ident: ref37
  doi: 10.1080/00207543.2020.1836421
– ident: ref29
  doi: 10.1016/j.swevo.2024.101544
– ident: ref6
  doi: 10.3233/jifs-191370
– ident: ref4
  doi: 10.1016/j.jclepro.2017.10.342
– ident: ref10
  doi: 10.3389/fbioe.2022.909548
– ident: ref11
  doi: 10.1016/j.swevo.2024.101549
– ident: ref18
  doi: 10.1016/j.eswa.2023.121149
– ident: ref2
  doi: 10.1109/TEVC.2021.3113923
– ident: ref7
  doi: 10.3390/machines10100847
– ident: ref28
  doi: 10.1016/j.cie.2024.109917
– ident: ref14
  doi: 10.1016/j.compchemeng.2017.05.004
– ident: ref44
  doi: 10.1016/j.cie.2020.106347
– ident: ref41
  doi: 10.1016/j.eswa.2022.117182
– ident: ref16
  doi: 10.1016/j.suscom.2023.100901
– ident: ref21
  doi: 10.1016/j.swevo.2024.101538
– ident: ref31
  doi: 10.1016/j.swevo.2024.101658
– ident: ref39
  doi: 10.1016/j.cor.2024.106744
– ident: ref40
  doi: 10.1007/3-540-58484-6_269
– ident: ref19
  doi: 10.1016/j.swevo.2023.101374
– ident: ref32
  doi: 10.1109/TEM.2017.2785774
– ident: ref5
  doi: 10.1016/j.jclepro.2018.11.021
– ident: ref35
  doi: 10.1080/0305215X.2021.1887168
– ident: ref22
  doi: 10.1109/TASE.2023.3301656
– ident: ref23
  doi: 10.1109/ICSMD60522.2023.10490770
– ident: ref27
  doi: 10.1177/00202940231173750
– ident: ref38
  doi: 10.1016/j.engappai.2024.108634
– ident: ref43
  doi: 10.1007/BF02023073
– ident: ref24
  doi: 10.1016/j.cie.2023.109718
– ident: ref3
  doi: 10.1016/j.jclepro.2018.03.254
– ident: ref8
  doi: 10.3390/math11020324
SSID ssj0000816957
Score 2.3834293
Snippet In the real manufacturing environment, the machining stage of the jobs and the assembly stage of the products are often completed in different workshops. In...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25369
SubjectTerms Assembly
Automated guided vehicles
co-evolutionary algorithm
Conferences
Energy consumption
Evolutionary algorithms
Genetic algorithms
Integer programming
Job shop scheduling
Job shops
Linear programming
Machining
Mixed integer
mixed-integer linear programming
Multiple objective analysis
Optimization
Sequential analysis
Systematic literature review
Three-stage flexible job shop scheduling problem
Transportation
variable-neighborhood search
Workshops
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxQEOiEcRCwX5wJFQO47t-LhdsTwE7Uot0Js1tse0aLtbtVuk_gL-NrbjrhYhwYWr5WRiz8MzSeb7CHmJUQCkvKJB0KHpwCWfUwwb5zjGCLFlMRayCb2_3x8fm9kG1Vf-J2yABx42bte5GNC0rAsaO25czgigE8iiDIA65OjLtNkopkoM7rkyUleYIc7M7ngySStKBWErXwuZ-0Plb0dRQeyvFCt_xOVy2Ezvk3s1S6Tj4ekekFu4eEjubmAHPiI_P73_OKOZyiw3lFNYBHqQ3P-s9lXSZaSlubY5cN-HoEaPkt6wSenlN6TTDITp5kg_LB09PFme08OkvnBVbjYbWGbo19PVCc2fhc_c_LqIGL_9Qtd46EXQNvk8fXM0eddUVoXGp1pu1YDXwEEp3TnhgAXtPBrowQg0AoRiThge2-iiY8LLqCMLCByZSmM-ZV-PydZiucAnhCqfzjfVmqByl4kAI4PqJO9NAOM8hxFpbzbY-go5npkv5raUHszYQSs2a8VWrYzIq_VF5wPixt-n72XNradmuOwykIzIViOy_zKiEdnOet-Q16e8kncjsnNjCLb69qUVXEnTMSG6p_9D9jNyJ69neK2zQ7ZWF1f4nNz2P1anlxcviln_Anu1_Ls
  priority: 102
  providerName: Directory of Open Access Journals
Title MILP Modeling and Optimization of Multi-Objective Three-Stage Flexible Job Shop Scheduling Problem With Assembly and AGV Transportation
URI https://ieeexplore.ieee.org/document/10856114
https://www.proquest.com/docview/3165940334
https://doaj.org/article/bbfde9204d7e419b9510a43e0f5dae7d
Volume 13
WOSCitedRecordID wos001420293500036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbxQhFCfaeNCDnzWurQ0Hj04LwwDLcd10_YhtN2nV3iYPeLQ1252m3W3ixav_tsDQTY3RxMtkQmBg8uPj8eD3e4S8xiAAol1RIWhfNWDjmFMMK2s5hgChZiHkYBN6f394fGymhayeuTCImC-f4XZ6zWf5vnPL5CrbSTflFU9hq-9qrXqy1sqhkiJIGKmLshBnZmc0HsefiHvAWm4LmSih8rfVJ4v0l6gqf0zFeX2ZPPrPlj0mD4shSUc98k_IHZw_JQ9uyQs-Iz_3Pnya0hTtLHHOKcw9PYgzxHmhXtIu0My_rQ7st37eo0cRWqyiBXqCdJK0Mu0M6cfO0sPT7oIeRoT9Mn9s2geioV_PFqc0nRyf29n3XMXo3Re6kkzPFa2Tz5Pdo_H7qgReqFzc7i0qcBo4KKUbKywwr61DA0MwAo0AoZgVhoc62GCZcDLowDwCR6ZimosG2nOyNu_m-IJQ5eISqGrjVSKiCDDSq0byofFgrOMwIPUNIK0rquQpOMaszbsTZtoexTah2BYUB-TNqtBFL8rx7-xvE9KrrElROydECNsyQFtrg0dTs8ZrbLixyfKERiAL0gNqPyDrCfZb9fWID8jmTcdpy_C_agVX0jRMiOblX4ptkPupib0zZ5OsLS6X-Ircc9eLs6vLrewZiM-9H7tbuZf_Ar24-0Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JbxMxGLVQQQIOrEWkFPCBI9Pa42XiY4gILaRppAbozfLymbZKM1WbIPEL-NvYHjcqQiBxG1njsUfPy-flvYfQGwjMmBhXVGAaX3FjY5-TBCprKYRgQk1CyGYTzWTSPz5W00JWz1wYAMiXz2AnPeazfN-6Vdoq20035SVNttW3Bec16eha6y2V5CGhRFO0hShRu4PhMP5GXAXWYoeJRAoVv80_Waa_-Kr8MRjnGWb08D_r9gg9KKEkHnTYP0a3YPEE3b8hMPgU_TzYH09x8jtLrHNsFh4fxjHivJAvcRtwZuBWh_asG_nwLIILVYxBvwEeJbVMOwf8sbX46KS9wEcRY7_KH5t2VjT46-nyBKez43M7_5GLGHz4gtei6bmgTfR59H423KuK9ULl4oJvWRnXGGqkbLhl1hDfWAfK9I1ioJhhklimaKiDDZYwJ0ITiAdDgciY5mKI9gxtLNoFPEdYujgJylp5magozCjhJRe0r7xR1lHTQ_U1INoVXfJkjzHXeX1ClO5Q1AlFXVDsobfrTBedLMe_X3-XkF6_mjS1c0KEUJcuqq0NHlRNuG-AU2VT7Gk4AxKEN9D4HtpMsN8or0O8h7avG44uA8CVZlQKxQljfOsv2V6ju3uzg7Ee708-vUD3UnW7rZ1ttLG8XMFLdMd9X55eXb7KrfwXGGn8Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MILP+Modeling+and+Optimization+of+Multi-Objective+Three-Stage+Flexible+Job+Shop+Scheduling+Problem+With+Assembly+and+AGV+Transportation&rft.jtitle=IEEE+access&rft.au=Yang%2C+Shiming&rft.au=Meng%2C+Leilei&rft.au=Ullah%2C+Saif&rft.au=Zhang%2C+Biao&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=25369&rft.epage=25386&rft_id=info:doi/10.1109%2FACCESS.2025.3535825&rft.externalDocID=10856114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon