Synthetic Data Generation and Evaluation Techniques for Classifiers in Data Starved Medical Applications
With their ability to find solutions among complex relationships of variables, machine learning (ML) techniques are becoming more applicable to various fields, including health risk prediction. However, prediction models are sensitive to the size and distribution of the data they are trained on. ML...
Uloženo v:
| Vydáno v: | IEEE access Ročník 13; s. 16584 - 16602 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With their ability to find solutions among complex relationships of variables, machine learning (ML) techniques are becoming more applicable to various fields, including health risk prediction. However, prediction models are sensitive to the size and distribution of the data they are trained on. ML algorithms rely heavily on vast quantities of training data to make accurate predictions. Ideally, the dataset should have an equal number of samples for each label to encourage the model to make predictions based on the input data rather than the distribution of the training data. In medical applications, class imbalance is a common issue because the occurrence of a disease or risk episode is often rare. This leads to a training dataset where healthy cases outnumber unhealthy ones, resulting in biased prediction models that struggle to detect the minority, unhealthy cases effectively. This paper addresses the problem of class imbalance, given the scarcity of training datasets by improving the quality of generated data. We propose an incremental synthetic data generation system that improves data quality over iterations by gradually adjusting to the data distribution and thus avoids overfitting in classifiers. Through extensive experimental assessments on real asthma patients' datasets, we demonstrate the efficiency and applicability of our proposed system for individual-based health risk prediction models. Incremental SMOTE methods were compared to the original SMOTE variants as well as various architectures of autoencoders. Our incremental data generation system enhances selected state-of-the-art SMOTE methods, resulting in sensitivity improvements for deep transfer learning (TL) classifiers ranging from 4.01% to 7.79%. Compared with the performance of TL without oversampling, the improvement achieved by the incremental SMOTE methods ranged from 27.18% to 40.97%. These results highlight the effectiveness of our technique in predicting asthma risk and their applicability to imbalanced, data-starved medical contexts. |
|---|---|
| AbstractList | With their ability to find solutions among complex relationships of variables, machine learning (ML) techniques are becoming more applicable to various fields, including health risk prediction. However, prediction models are sensitive to the size and distribution of the data they are trained on. ML algorithms rely heavily on vast quantities of training data to make accurate predictions. Ideally, the dataset should have an equal number of samples for each label to encourage the model to make predictions based on the input data rather than the distribution of the training data. In medical applications, class imbalance is a common issue because the occurrence of a disease or risk episode is often rare. This leads to a training dataset where healthy cases outnumber unhealthy ones, resulting in biased prediction models that struggle to detect the minority, unhealthy cases effectively. This paper addresses the problem of class imbalance, given the scarcity of training datasets by improving the quality of generated data. We propose an incremental synthetic data generation system that improves data quality over iterations by gradually adjusting to the data distribution and thus avoids overfitting in classifiers. Through extensive experimental assessments on real asthma patients' datasets, we demonstrate the efficiency and applicability of our proposed system for individual-based health risk prediction models. Incremental SMOTE methods were compared to the original SMOTE variants as well as various architectures of autoencoders. Our incremental data generation system enhances selected state-of-the-art SMOTE methods, resulting in sensitivity improvements for deep transfer learning (TL) classifiers ranging from 4.01% to 7.79%. Compared with the performance of TL without oversampling, the improvement achieved by the incremental SMOTE methods ranged from 27.18% to 40.97%. These results highlight the effectiveness of our technique in predicting asthma risk and their applicability to imbalanced, data-starved medical contexts. |
| Author | Horak, Matthew Alkobaisi, Shayma Bae, Wan D. Park, Choon-Sik Bankar, Siddheshwari Bhuvaji, Sartaj Kim, Sungroul |
| Author_xml | – sequence: 1 givenname: Wan D. orcidid: 0000-0002-4611-5546 surname: Bae fullname: Bae, Wan D. organization: Department of Computer Science, Seattle University, Seattle, WA, USA – sequence: 2 givenname: Shayma orcidid: 0000-0003-4237-7976 surname: Alkobaisi fullname: Alkobaisi, Shayma email: shayma.alkobaisi@uaeu.ac.ae organization: College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates – sequence: 3 givenname: Matthew orcidid: 0009-0008-3968-3626 surname: Horak fullname: Horak, Matthew organization: Amazon AWS Lambda, Seattle, WA, USA – sequence: 4 givenname: Siddheshwari orcidid: 0009-0004-1613-3569 surname: Bankar fullname: Bankar, Siddheshwari organization: Department of Computer Science, Seattle University, Seattle, WA, USA – sequence: 5 givenname: Sartaj orcidid: 0009-0006-4594-7857 surname: Bhuvaji fullname: Bhuvaji, Sartaj organization: Department of Computer Science, Seattle University, Seattle, WA, USA – sequence: 6 givenname: Sungroul orcidid: 0000-0001-8726-9288 surname: Kim fullname: Kim, Sungroul organization: Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan, South Korea – sequence: 7 givenname: Choon-Sik orcidid: 0000-0001-7955-2526 surname: Park fullname: Park, Choon-Sik organization: Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea |
| BookMark | eNqFkU1v2zAMho2hA9p1_QXdwcDOyfRlWzoGXtYW6LBDurNAS9SiwLMySSnQfz-5Lopil_EikuBDinw_VGdTmLCqrilZU0rUl03fb3e7NSOsWfOGs2LvqgtGW7UqYXv2xj-vrlI6kGKypJruotrvnqa8x-xN_RUy1Dc4YYTsw1TDZOvtI4ynJXxAs5_8nxOm2oVY9yOk5J3HmGo_LfAuQ3xEW39H6w2M9eZ4HIsz4-lj9d7BmPDq5b2sfn7bPvS3q_sfN3f95n5lBFF5BYaKxkqnumFAaoWVTcsc7xzpuGIEOgRw0JpWNnLgUjArOLHSurYDJqThl9Xd0tcGOOhj9L8hPukAXj8nQvylIZZ1R9RqaIWThrRKcjFIpjqkyLhhRAqKZu71eel1jGFePOtDOMWpfF9z2lLeUclpqeJLlYkhpYjudSolelZILwrpWSH9olCh1D-U8fn5VDmCH__DflpYj4hvpknRlbPwv_YzoLA |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3578826 |
| Cites_doi | 10.1097/MCP.0b013e32834db288 10.5391/ijfis.2017.17.4.229 10.1542/peds.105.5.1029 10.1613/jair.953 10.1016/j.knosys.2020.106368 10.1016/j.ins.2019.11.004 10.1145/3523089.3523096 10.3390/en13174291 10.1093/bib/bbab277 10.1186/2047-2501-2-3 10.1109/BigData55660.2022.10020487 10.1145/3511808.3557699 10.1371/journal.pone.0244233 10.1109/INDIN51400.2023.10218063 10.3390/app10010159 10.1016/j.eswa.2022.117023 10.1155/2018/6275435 10.1109/ISBI.2017.7950523 10.1002/9781118646106.ch3 10.1016/j.procs.2018.10.517 10.1145/3422622 10.1038/s41598-021-93543-8 10.1016/j.ins.2013.07.007 10.1109/DSAA.2018.00025 10.1007/978-3-540-39804-2_12 10.1613/jair.1.11192 10.1016/j.aap.2020.105950 10.1186/s13638-020-01689-2 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3532222 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 16602 |
| ExternalDocumentID | oai_doaj_org_article_9b64f8c069834b8297e1e23c20841ecc 10_1109_ACCESS_2025_3532222 10847858 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: United Arab Emirates University, United Arab Emirates, under UAEU-NFRP grantid: G00004281 funderid: 10.13039/501100006013 – fundername: Ministry of Science and ICT, South Korea, under the National Research Foundation of Korea grantid: NRF-2022R1A2C1010172 – fundername: Seattle University, USA, under the Thomas Bannan Chair Engineering Award grantid: 11-0-1-480530 – fundername: Soonchunhyang University, South Korea funderid: 10.13039/501100002560 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-ac145d8f97bbe1d4d8562f37f073920a7eaafa6c6858b3842d430d8df67a248c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410337900032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Mon Jun 30 13:02:29 EDT 2025 Tue Nov 18 22:32:16 EST 2025 Sat Nov 29 04:27:20 EST 2025 Wed Aug 27 01:53:11 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-ac145d8f97bbe1d4d8562f37f073920a7eaafa6c6858b3842d430d8df67a248c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-3968-3626 0000-0002-4611-5546 0009-0004-1613-3569 0000-0001-8726-9288 0000-0001-7955-2526 0009-0006-4594-7857 0000-0003-4237-7976 |
| OpenAccessLink | https://doaj.org/article/9b64f8c069834b8297e1e23c20841ecc |
| PQID | 3161371831 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3161371831 ieee_primary_10847858 crossref_primary_10_1109_ACCESS_2025_3532222 doaj_primary_oai_doaj_org_article_9b64f8c069834b8297e1e23c20841ecc crossref_citationtrail_10_1109_ACCESS_2025_3532222 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 (ref6) 2023 ref2 (ref31) 2023 ref1 ref17 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Xu (ref16); 32 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 |
| References_xml | – volume: 32 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref16 article-title: Modeling tabular data using conditional GAN – ident: ref3 doi: 10.1097/MCP.0b013e32834db288 – ident: ref12 doi: 10.5391/ijfis.2017.17.4.229 – ident: ref1 doi: 10.1542/peds.105.5.1029 – volume-title: Gretel year: 2023 ident: ref31 – ident: ref5 doi: 10.1613/jair.953 – ident: ref11 doi: 10.1016/j.knosys.2020.106368 – ident: ref4 doi: 10.1016/j.ins.2019.11.004 – ident: ref13 doi: 10.1145/3523089.3523096 – ident: ref17 doi: 10.3390/en13174291 – ident: ref21 doi: 10.1093/bib/bbab277 – ident: ref2 doi: 10.1186/2047-2501-2-3 – ident: ref19 doi: 10.1109/BigData55660.2022.10020487 – ident: ref22 doi: 10.1145/3511808.3557699 – ident: ref7 doi: 10.1371/journal.pone.0244233 – ident: ref23 doi: 10.1109/INDIN51400.2023.10218063 – ident: ref29 doi: 10.3390/app10010159 – ident: ref28 doi: 10.1016/j.eswa.2022.117023 – ident: ref9 doi: 10.1155/2018/6275435 – ident: ref30 doi: 10.1109/ISBI.2017.7950523 – ident: ref10 doi: 10.1002/9781118646106.ch3 – ident: ref26 doi: 10.1016/j.procs.2018.10.517 – volume-title: The Synthetic Data Vault year: 2023 ident: ref6 – ident: ref15 doi: 10.1145/3422622 – ident: ref18 doi: 10.1038/s41598-021-93543-8 – ident: ref8 doi: 10.1016/j.ins.2013.07.007 – ident: ref25 doi: 10.1109/DSAA.2018.00025 – ident: ref24 doi: 10.1007/978-3-540-39804-2_12 – ident: ref14 doi: 10.1613/jair.1.11192 – ident: ref20 doi: 10.1016/j.aap.2020.105950 – ident: ref27 doi: 10.1186/s13638-020-01689-2 |
| SSID | ssj0000816957 |
| Score | 2.340757 |
| Snippet | With their ability to find solutions among complex relationships of variables, machine learning (ML) techniques are becoming more applicable to various fields,... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16584 |
| SubjectTerms | Algorithms Asthma Autoencoders Boosting class imbalance problem Classification algorithms Complex variables control coefficient Data models data starved contexts Datasets Generative adversarial networks Health risk assessment Machine learning Medical services Prediction models Predictive models rare event prediction Synthetic data synthetic minority oversampling technique Training data transfer learning |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SkENz6DOhm6ZFhx7rVLJkSzpuNwk9lFBoCrkJPelCccruJtB_n5GsXbaUBHIzRsKyP43m5fkG4KMIwqdepQa1G22EFrJxFuVRhhQjY55RV3hmv8nLS3V9rb_XYvVSCxNjLD-fxdN8WXL54cbf5lAZSjiepapTu7ArZT8Wa20CKrmDhO5kZRZiVH-ezmb4EugDtt0p73JKof1H-xSS_tpV5b-juOiXixdPXNlLeF4NSTIdkX8FO3F4DQdb9IJv4NePvwPadziAnNmVJSPFdEaC2CGQ8w3RN7laM7kuCRqxpHTKnKfcJZvMh3EyWqWLuxhIzeyQ6Vbm-xB-Xpxfzb42tbNC49GfWzXWM9EFlbR0LrIggkIzKHGZct6upVZGa5PtfSand1yJNghOgwqpl7YVyvMj2BtuhvgWiA1WUd_H3mbPhDInvOtosiEFp520E2jXX9z4Sjueu1_8NsX9oNqMMJkMk6kwTeDTZtKfkXXj8eFfMpSboZkyu9xAjEyVQKNdL5LytNeKC5criiOLLfctQsdwI0_gMOO69bwR0gmcrHeGqfK9NBwNZY5qnbPjB6a9g2d5iWO05gT2Vovb-B72_d1qvlx8KFv3HtAj7So priority: 102 providerName: IEEE |
| Title | Synthetic Data Generation and Evaluation Techniques for Classifiers in Data Starved Medical Applications |
| URI | https://ieeexplore.ieee.org/document/10847858 https://www.proquest.com/docview/3161371831 https://doaj.org/article/9b64f8c069834b8297e1e23c20841ecc |
| Volume | 13 |
| WOSCitedRecordID | wos001410337900032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA9FPNRDUau49YMcPHZqMslMkuO6rnhQEWrBW8gnLpRp2V0FL_7tvmSyyxShvfQyh-GFzPtI3nt5k99D6JR77mIrYwXejVRccVFZA-tR-BgCpY4Sm3Fmr8XtrXx4UHeDVl_pn7AeHrgX3JmyLY_SkVZJxm26CBpoqJmrieQU5k-7LxFqkEzlPVjSVjWiwAxRos7GkwlwBAlh3XxjTaov1H-4oozYX1qsvNuXs7O53EafSpSIx_3X7aAPodtFWwPswM_o8ftLB8EbEOALszS4x49OYsam83i6RvHG9yuY1gWGCBXnNpizmFpg41nXD4aQc_4cPC5lGzwelLX30I_L6f3kqiptEyoHydqyMo7yxsuohLWBeu4lxDiRiZiKcjUxIhgTTesS8rxlkteeM-Klj60wNZeO7aON7lcXDhA23kji2tCalHYQarmzDYnGR2-VFWaE6pUEtSuY4qm1xU-dcwuidC92ncSui9hH6Ot60O8eUuPv5OdJNWvShIedX4CV6GIl-l9WMkJ7SbGD-cArA_8jdLTStC6Ld6EZRMEMfDajX_7H3IfoY-KnP7c5QhvL-VM4RpvueTlbzE-y3cLz5nV6km8fvgEffvEI |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UKqgPXiuutpoHH52a20ySx3Xb0uK6CK7Qt5ArXZCp7G4L_nuTTHZZEQXfhiFhMvPl5NzmfAfgHffcxU7GJmk33HDFRWNNkkfhYwiEOIJt4ZmditlMXl6qL7VYvdTChBDKz2fhOF-WXL6_djc5VJYkPJ2lspV34G7LOcVDudY2pJJ7SKhWVG4hgtWH8WSSXiN5gbQ9Zm1OKtDf9E-h6a99Vf44jIuGOXv8n2t7Ao-qKYnGA_ZPYS_0z-DhDsHgc7j6-rNPFl4agE7M2qCBZDpjgUzv0emW6hvNN1yuK5TMWFR6ZS5i7pONFv0wOdmly9vgUc3toPFO7vsAvp2dzifnTe2t0Ljk0a0b4whvvYxKWBuI514mQygyEXPmjmIjgjHRdC7T01smOfWcYS997IShXDr2Avb76z68BGS8kdh1oTPZN8HEcmdbHI2P3iorzAjo5otrV4nHc_-L77o4IFjpASadYdIVphG83076MfBu_Hv4xwzldmgmzS43Eka6yqBWtuNROtwpybjNNcWBBMocTdCRtJVHcJBx3XneAOkIDjc7Q1cJX2mWTGWWFDsjr_4y7S3cP59_nurpxezTa3iQlzvEbg5hf728CUdwz92uF6vlm7KNfwFHs_Bx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+Data+Generation+and+Evaluation+Techniques+for+Classifiers+in+Data+Starved+Medical+Applications&rft.jtitle=IEEE+access&rft.au=Bae%2C+Wan+D.&rft.au=Alkobaisi%2C+Shayma&rft.au=Horak%2C+Matthew&rft.au=Bankar%2C+Siddheshwari&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=16584&rft.epage=16602&rft_id=info:doi/10.1109%2FACCESS.2025.3532222&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3532222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |