Static Seeding and Clustering of LSTM Embeddings to Learn From Loosely Time-Decoupled Events
Humans learn from the occurrence of events at different places and times to predict similar trajectories of events. We define loosely decoupled time (LDT) phenomena as two or more events that could occur in different places and across different timelines but share similarities in the nature of the e...
Saved in:
| Published in: | IEEE access Vol. 11; pp. 64219 - 64227 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Humans learn from the occurrence of events at different places and times to predict similar trajectories of events. We define loosely decoupled time (LDT) phenomena as two or more events that could occur in different places and across different timelines but share similarities in the nature of the event and the properties of the location. In this work, we improve the use of recurrent neural networks (RNN), particularly long short-term memory (LSTM) networks, to enable AI solutions that generate better time series predictions for LDT. We used similarity measures between the time series based on the time series properties detected by the LSTM and introduced embeddings representing these properties. The embeddings represent the properties of the event, which, coupled with the LSTM structure, can be clustered to identify similar temporally unaligned events. In this study, we explore methods of seeding a multivariate LSTM from time-invariant data related to the geophysical and demographic phenomena modeled by the LSTM. We applied these methods to time-series data derived from COVID-19 detected infection and death cases. We use publicly available socioeconomic data to seed the LSTM models, creating embeddings, to determine whether such seeding improves case predictions. The embeddings produced by these LSTMs are clustered to identify the best-matching candidates for forecasting evolving time series. Applying this method, we showed an improvement in the 10-day moving average predictions of disease propagation at the US County level. |
|---|---|
| AbstractList | Humans learn from the occurrence of events at different places and times to predict similar trajectories of events. We define loosely decoupled time (LDT) phenomena as two or more events that could occur in different places and across different timelines but share similarities in the nature of the event and the properties of the location. In this work, we improve the use of recurrent neural networks (RNN), particularly long short-term memory (LSTM) networks, to enable AI solutions that generate better time series predictions for LDT. We used similarity measures between the time series based on the time series properties detected by the LSTM and introduced embeddings representing these properties. The embeddings represent the properties of the event, which, coupled with the LSTM structure, can be clustered to identify similar temporally unaligned events. In this study, we explore methods of seeding a multivariate LSTM from time-invariant data related to the geophysical and demographic phenomena modeled by the LSTM. We applied these methods to time-series data derived from COVID-19 detected infection and death cases. We use publicly available socioeconomic data to seed the LSTM models, creating embeddings, to determine whether such seeding improves case predictions. The embeddings produced by these LSTMs are clustered to identify the best-matching candidates for forecasting evolving time series. Applying this method, we showed an improvement in the 10-day moving average predictions of disease propagation at the US County level. |
| Author | Veliche, Razvan Manasseh, Christian G. Clouse, Hamilton Scott Bennett, Jared |
| Author_xml | – sequence: 1 givenname: Christian G. orcidid: 0000-0002-2283-946X surname: Manasseh fullname: Manasseh, Christian G. email: cman@alum.mit.edu organization: Mobius Logic Inc., Tysons, VA, USA – sequence: 2 givenname: Razvan surname: Veliche fullname: Veliche, Razvan organization: Mobius Logic Inc., Tysons, VA, USA – sequence: 3 givenname: Jared orcidid: 0000-0003-4718-257X surname: Bennett fullname: Bennett, Jared organization: Mobius Logic Inc., Tysons, VA, USA – sequence: 4 givenname: Hamilton Scott surname: Clouse fullname: Clouse, Hamilton Scott organization: Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA |
| BookMark | eNp9Uc1u3CAYRFUqNU3zBO0BqWdv-VkwHCN300Zy1YO3t0oIzEfklddswVspbx9cp1KUQ7jAN8yMBuY9upjiBAh9pGRDKdFfbppm13UbRhjfcKbUVtVv0CWjUldccHnx7PwOXed8IGWpAon6Ev3uZjsPPe4A_DDdYzt53IznPENaxhhw2-1_4N3RgV8IGc8Rt2DThG9TPOI2xgzjA94PR6i-Qh_PpxE83v2Fac4f0NtgxwzXT_sV-nW72zffq_bnt7vmpq36LdFzZV2QAFshhNTAZS2FcOVGWKdLUk8ClcQFWzviFdF9qGVPRGCM9NRyyym_Qnerr4_2YE5pONr0YKIdzD8gpntjU3nlCMZZR4MHJZQIW8qC1kHQAKKuqfMFLF6fV69Tin_OkGdziOc0lfiGKU4F00qrwtIrq08x5wTB9MPykXGakx1GQ4lZujFrN2bpxjx1U7T8hfZ_4tdVn1bVAADPFFRoLiR_BNGqm5g |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3521422 |
| Cites_doi | 10.1609/aaai.v33i01.33019607 10.1016/S1473-3099(20)30120-1 10.1609/aaai.v35i6.16616 10.1109/5.18626 10.24171/j.phrp.2021.0100 10.1109/TKDE.2015.2416723 10.1098/rspa.1927.0118 10.1609/aaai.v35i3.16284 10.1016/S0166-4115(97)80111-2 10.1145/3318464.3389760 10.1609/aaai.v35i6.16622 10.1007/s10618-016-0483-9 10.1109/RBME.2021.3069213 10.1109/ICME.2000.869621 10.1007/3-540-45014-9_1 10.1109/FG.2019.8756618 10.1016/s1473-3099(20)30120-1 10.1109/DSAA.2016.10 10.1109/ICASSP.1982.1171695 10.1162/neco.1997.9.8.1735 10.1109/TPAMI.2006.211 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3288487 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 64227 |
| ExternalDocumentID | oai_doaj_org_article_bab1fde8585f412f99f51fe5771bd585 10_1109_ACCESS_2023_3288487 10159356 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Air Force Research Laboratory (AFRL) Autonomy Capability Team 3 (ACT3) grantid: FA8649-20-C-0130 funderid: 10.13039/100006602 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-abf6ee455569e367655bc405ab9000d0f160bfa7b0d809cf76c05f220c1a3a313 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001021931800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:48 EDT 2025 Sun Jun 29 16:29:13 EDT 2025 Sat Nov 29 04:02:46 EST 2025 Tue Nov 18 21:03:49 EST 2025 Wed Aug 27 02:25:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-abf6ee455569e367655bc405ab9000d0f160bfa7b0d809cf76c05f220c1a3a313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2283-946X 0000-0003-4718-257X |
| OpenAccessLink | https://doaj.org/article/bab1fde8585f412f99f51fe5771bd585 |
| PQID | 2831529898 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bab1fde8585f412f99f51fe5771bd585 ieee_primary_10159356 crossref_citationtrail_10_1109_ACCESS_2023_3288487 crossref_primary_10_1109_ACCESS_2023_3288487 proquest_journals_2831529898 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref18 (ref12) 2021 (ref27) 2023 (ref23) 2010 Jordan (ref19); 9 ref25 ref20 ref22 (ref24) 2021 ref21 ref8 ref7 ref9 ref4 ref3 ref6 (ref26) 2023 ref5 |
| References_xml | – ident: ref17 doi: 10.1609/aaai.v33i01.33019607 – ident: ref25 doi: 10.1016/S1473-3099(20)30120-1 – ident: ref15 doi: 10.1609/aaai.v35i6.16616 – ident: ref3 doi: 10.1109/5.18626 – ident: ref20 doi: 10.24171/j.phrp.2021.0100 – ident: ref9 doi: 10.1109/TKDE.2015.2416723 – ident: ref22 doi: 10.1098/rspa.1927.0118 – ident: ref14 doi: 10.1609/aaai.v35i3.16284 – ident: ref1 doi: 10.1016/S0166-4115(97)80111-2 – ident: ref10 doi: 10.1145/3318464.3389760 – volume-title: Ray Tune: Scalable Hyperparameter Tuning year: 2023 ident: ref27 – ident: ref16 doi: 10.1609/aaai.v35i6.16622 – ident: ref6 doi: 10.1007/s10618-016-0483-9 – ident: ref21 doi: 10.1109/RBME.2021.3069213 – ident: ref18 doi: 10.1109/ICME.2000.869621 – ident: ref5 doi: 10.1007/3-540-45014-9_1 – volume: 9 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref19 article-title: Hidden Markov decision trees – ident: ref11 doi: 10.1109/FG.2019.8756618 – volume-title: Machine Learning Crash Course year: 2021 ident: ref12 – ident: ref13 doi: 10.1016/s1473-3099(20)30120-1 – volume-title: PyTorch Machine Learning Framework year: 2023 ident: ref26 – ident: ref4 doi: 10.1109/DSAA.2016.10 – ident: ref7 doi: 10.1109/ICASSP.1982.1171695 – volume-title: USDA Economic Research Service year: 2021 ident: ref24 – ident: ref2 doi: 10.1162/neco.1997.9.8.1735 – volume-title: US Census Datasets year: 2010 ident: ref23 – ident: ref8 doi: 10.1109/TPAMI.2006.211 |
| SSID | ssj0000816957 |
| Score | 2.2714655 |
| Snippet | Humans learn from the occurrence of events at different places and times to predict similar trajectories of events. We define loosely decoupled time (LDT)... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 64219 |
| SubjectTerms | Algorithm design and analysis artificial intelligence Clustering COVID-19 Data models Diseases Hidden Markov models Multivariate analysis numerical algorithms and problems Predictive models Recurrent neural networks statistical methods Time series Time series analysis Training |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VVQ9waCkFsbCtfOBIljix4-RIt7viQFElQOJQKYpfEtLuBu2jEv-eGcesVqpA6i1xbMXJ58eM7fk-gLMUTWT0MjL0TXKRCK1NUuqqwcEQXZaq8taKTmxC3dyUDw_V7xisHmJhnHPh8Jkb0mXYy7etWdNSGfZwnHxzWezAjlKqC9baLKiQgkQlVWQW4ml1cTka4UcMSSB8mGdlKejc3NbsE0j6o6rKP0NxmF8mn_-zZvvwKRqS7LJD_gt8cPMD2NuiF_wKf8iSfDTstpuhWDO3bDRdEzUC3baeXd_e_WLjmXY2bEGxVcsC4SqbLNoZu27bpZs-MwoTSX6in7p-mjrLxnREcnkI95Px3egqiWoKiUEfbpU02hfOCSllUTniaZNS4xPZaNINtannRap9o3RqESjjVWFS6bMsNbzJm5znR9Cbt3N3DCxvypw8K6LeEVJbbRwXXppMaFsWouhD9vqXaxOpxknxYloHlyOt6g6amqCpIzR9ON8UeuqYNt7P_oPg22QlmuyQgLjUsdehJaC5t472Pr3gmcfGJ7l3UimuLSb24ZCw3HpfB2MfBq-toY59elmjIYbGDultnrxR7BR2qYrdCs0AeqvF2n2Dj-bv6nG5-B6a6ws5nuXj priority: 102 providerName: IEEE |
| Title | Static Seeding and Clustering of LSTM Embeddings to Learn From Loosely Time-Decoupled Events |
| URI | https://ieeexplore.ieee.org/document/10159356 https://www.proquest.com/docview/2831529898 https://doaj.org/article/bab1fde8585f412f99f51fe5771bd585 |
| Volume | 11 |
| WOSCitedRecordID | wos001021931800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9LDl4tNq0SR9HXXfx4C7CKngQQp4grFvZh-DF3-5MWqUg6MVLoWlCmpnpZL4m-YaQ0xhCZEAZCWCTlEdcaxMVulTgDAGylKW3ltfJJvLRqHh8LO9aqb5wT1hND1wL7kIrzbx1uHzlOUs8tBfMO5HnTFsoRO8LUU8LTAUfXLCsFHlDM8Ti8uKy14MRnWO28PM0KQqOm-haU1Fg7G9SrPzwy2GyGWyRzSZKpJf1222TFTfdIRst7sBd8oRh4rOh43r6oWpqaW-yRN4DvK08vR3fD2n_RTsb1pfooqKBTZUOZtULva2quZu8UzwDEl0DCF2-Tpylfdz_ON8jD4P-fe8malIlRAYA2iJS2mfOcSFEVjokYRNCwxOhNCYFtbFnWay9ynVsQQvG55mJhU-S2DCVqpSl-2R1Wk3dAaGpKlKETcirw4W22jjGvTAJ17bIeNYhyZfUpGl4xDGdxUQGPBGXsha1RFHLRtQdcvbd6LWm0fi9-hWq47sqcmCHArAM2ViG_MsyOmQPldnqD0K3VMAAjr-0K5sPdi4hyoJIBpNpHv5H30dkHcdT_6s5JquL2dKdkDXztniez7rBVuE6_Oh3w4nDT7sq6w0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD5oLWgf1GqLW6vmoY_OOplJ5vLYrrtU3C6FrtAHIUxuUNjulL0U-u97TiZdFkTBt7kkJDNfLuckOd8HcJKiiYxeRoa-SS4SobVJKl03OBiiy1LX3lrRiU2Uk0l1fV1fxmD1EAvjnAuHz1yfLsNevm3NmpbKsIfj5JvL4jm8wAIy3oVrbZZUSEOilmXkFuJp_e10MMDP6JNEeD_PqkrQybmt-SfQ9EddlT8G4zDDjN78Z93ewutoSrLTDvt9eObm72Bvi2DwPfwmW_LGsKtujmLN3LLBbE3kCHTbeja-ml6w4a12NmxCsVXLAuUqGy3aWzZu26WbPTAKFEm-o6e6vps5y4Z0SHJ5AL9Gw-ngPIl6ColBL26VNNoXzgkpZVE7YmqTUuMb2WhSDrWp50WqfVPq1CJUxpeFSaXPstTwJm9ynh_Czryduw_A8qbKybci8h0htdXGceGlyYS2VSGKHmRPf1mZSDZOmhczFZyOtFYdNIqgURGaHnzdZLrruDb-nfyM4NskJaLs8ABxUbHfoS2gubeOdj-94JnH5ie5d7Isubb4sAcHhOVWeR2MPTh-ag0q9uqlQlMMzR1S3Dz6S7Yv8PJ8ejFW4x-Tnx_hFVW3W685hp3VYu0-wa65X90sF59D030EU-npKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+Seeding+and+Clustering+of+LSTM+Embeddings+to+Learn+From+Loosely+Time-Decoupled+Events&rft.jtitle=IEEE+access&rft.au=Manasseh%2C+Christian+G.&rft.au=Veliche%2C+Razvan&rft.au=Bennett%2C+Jared&rft.au=Clouse%2C+Hamilton+Scott&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=64219&rft.epage=64227&rft_id=info:doi/10.1109%2FACCESS.2023.3288487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3288487 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |