Static Seeding and Clustering of LSTM Embeddings to Learn From Loosely Time-Decoupled Events

Humans learn from the occurrence of events at different places and times to predict similar trajectories of events. We define loosely decoupled time (LDT) phenomena as two or more events that could occur in different places and across different timelines but share similarities in the nature of the e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 64219 - 64227
Hlavní autoři: Manasseh, Christian G., Veliche, Razvan, Bennett, Jared, Clouse, Hamilton Scott
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Humans learn from the occurrence of events at different places and times to predict similar trajectories of events. We define loosely decoupled time (LDT) phenomena as two or more events that could occur in different places and across different timelines but share similarities in the nature of the event and the properties of the location. In this work, we improve the use of recurrent neural networks (RNN), particularly long short-term memory (LSTM) networks, to enable AI solutions that generate better time series predictions for LDT. We used similarity measures between the time series based on the time series properties detected by the LSTM and introduced embeddings representing these properties. The embeddings represent the properties of the event, which, coupled with the LSTM structure, can be clustered to identify similar temporally unaligned events. In this study, we explore methods of seeding a multivariate LSTM from time-invariant data related to the geophysical and demographic phenomena modeled by the LSTM. We applied these methods to time-series data derived from COVID-19 detected infection and death cases. We use publicly available socioeconomic data to seed the LSTM models, creating embeddings, to determine whether such seeding improves case predictions. The embeddings produced by these LSTMs are clustered to identify the best-matching candidates for forecasting evolving time series. Applying this method, we showed an improvement in the 10-day moving average predictions of disease propagation at the US County level.
AbstractList Humans learn from the occurrence of events at different places and times to predict similar trajectories of events. We define loosely decoupled time (LDT) phenomena as two or more events that could occur in different places and across different timelines but share similarities in the nature of the event and the properties of the location. In this work, we improve the use of recurrent neural networks (RNN), particularly long short-term memory (LSTM) networks, to enable AI solutions that generate better time series predictions for LDT. We used similarity measures between the time series based on the time series properties detected by the LSTM and introduced embeddings representing these properties. The embeddings represent the properties of the event, which, coupled with the LSTM structure, can be clustered to identify similar temporally unaligned events. In this study, we explore methods of seeding a multivariate LSTM from time-invariant data related to the geophysical and demographic phenomena modeled by the LSTM. We applied these methods to time-series data derived from COVID-19 detected infection and death cases. We use publicly available socioeconomic data to seed the LSTM models, creating embeddings, to determine whether such seeding improves case predictions. The embeddings produced by these LSTMs are clustered to identify the best-matching candidates for forecasting evolving time series. Applying this method, we showed an improvement in the 10-day moving average predictions of disease propagation at the US County level.
Author Veliche, Razvan
Manasseh, Christian G.
Clouse, Hamilton Scott
Bennett, Jared
Author_xml – sequence: 1
  givenname: Christian G.
  orcidid: 0000-0002-2283-946X
  surname: Manasseh
  fullname: Manasseh, Christian G.
  email: cman@alum.mit.edu
  organization: Mobius Logic Inc., Tysons, VA, USA
– sequence: 2
  givenname: Razvan
  surname: Veliche
  fullname: Veliche, Razvan
  organization: Mobius Logic Inc., Tysons, VA, USA
– sequence: 3
  givenname: Jared
  orcidid: 0000-0003-4718-257X
  surname: Bennett
  fullname: Bennett, Jared
  organization: Mobius Logic Inc., Tysons, VA, USA
– sequence: 4
  givenname: Hamilton Scott
  surname: Clouse
  fullname: Clouse, Hamilton Scott
  organization: Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA
BookMark eNp9Uc1u3CAYRFUqNU3zBO0BqWdv-VkwHCN300Zy1YO3t0oIzEfklddswVspbx9cp1KUQ7jAN8yMBuY9upjiBAh9pGRDKdFfbppm13UbRhjfcKbUVtVv0CWjUldccHnx7PwOXed8IGWpAon6Ev3uZjsPPe4A_DDdYzt53IznPENaxhhw2-1_4N3RgV8IGc8Rt2DThG9TPOI2xgzjA94PR6i-Qh_PpxE83v2Fac4f0NtgxwzXT_sV-nW72zffq_bnt7vmpq36LdFzZV2QAFshhNTAZS2FcOVGWKdLUk8ClcQFWzviFdF9qGVPRGCM9NRyyym_Qnerr4_2YE5pONr0YKIdzD8gpntjU3nlCMZZR4MHJZQIW8qC1kHQAKKuqfMFLF6fV69Tin_OkGdziOc0lfiGKU4F00qrwtIrq08x5wTB9MPykXGakx1GQ4lZujFrN2bpxjx1U7T8hfZ_4tdVn1bVAADPFFRoLiR_BNGqm5g
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JSEN_2024_3521422
Cites_doi 10.1609/aaai.v33i01.33019607
10.1016/S1473-3099(20)30120-1
10.1609/aaai.v35i6.16616
10.1109/5.18626
10.24171/j.phrp.2021.0100
10.1109/TKDE.2015.2416723
10.1098/rspa.1927.0118
10.1609/aaai.v35i3.16284
10.1016/S0166-4115(97)80111-2
10.1145/3318464.3389760
10.1609/aaai.v35i6.16622
10.1007/s10618-016-0483-9
10.1109/RBME.2021.3069213
10.1109/ICME.2000.869621
10.1007/3-540-45014-9_1
10.1109/FG.2019.8756618
10.1016/s1473-3099(20)30120-1
10.1109/DSAA.2016.10
10.1109/ICASSP.1982.1171695
10.1162/neco.1997.9.8.1735
10.1109/TPAMI.2006.211
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3288487
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 64227
ExternalDocumentID oai_doaj_org_article_bab1fde8585f412f99f51fe5771bd585
10_1109_ACCESS_2023_3288487
10159356
Genre orig-research
GrantInformation_xml – fundername: Air Force Research Laboratory (AFRL) Autonomy Capability Team 3 (ACT3)
  grantid: FA8649-20-C-0130
  funderid: 10.13039/100006602
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-abf6ee455569e367655bc405ab9000d0f160bfa7b0d809cf76c05f220c1a3a313
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001021931800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:48 EDT 2025
Sun Jun 29 16:29:13 EDT 2025
Sat Nov 29 04:02:46 EST 2025
Tue Nov 18 21:03:49 EST 2025
Wed Aug 27 02:25:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-abf6ee455569e367655bc405ab9000d0f160bfa7b0d809cf76c05f220c1a3a313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2283-946X
0000-0003-4718-257X
OpenAccessLink https://doaj.org/article/bab1fde8585f412f99f51fe5771bd585
PQID 2831529898
PQPubID 4845423
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_bab1fde8585f412f99f51fe5771bd585
ieee_primary_10159356
crossref_citationtrail_10_1109_ACCESS_2023_3288487
crossref_primary_10_1109_ACCESS_2023_3288487
proquest_journals_2831529898
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref18
(ref12) 2021
(ref27) 2023
(ref23) 2010
Jordan (ref19); 9
ref25
ref20
ref22
(ref24) 2021
ref21
ref8
ref7
ref9
ref4
ref3
ref6
(ref26) 2023
ref5
References_xml – ident: ref17
  doi: 10.1609/aaai.v33i01.33019607
– ident: ref25
  doi: 10.1016/S1473-3099(20)30120-1
– ident: ref15
  doi: 10.1609/aaai.v35i6.16616
– ident: ref3
  doi: 10.1109/5.18626
– ident: ref20
  doi: 10.24171/j.phrp.2021.0100
– ident: ref9
  doi: 10.1109/TKDE.2015.2416723
– ident: ref22
  doi: 10.1098/rspa.1927.0118
– ident: ref14
  doi: 10.1609/aaai.v35i3.16284
– ident: ref1
  doi: 10.1016/S0166-4115(97)80111-2
– ident: ref10
  doi: 10.1145/3318464.3389760
– volume-title: Ray Tune: Scalable Hyperparameter Tuning
  year: 2023
  ident: ref27
– ident: ref16
  doi: 10.1609/aaai.v35i6.16622
– ident: ref6
  doi: 10.1007/s10618-016-0483-9
– ident: ref21
  doi: 10.1109/RBME.2021.3069213
– ident: ref18
  doi: 10.1109/ICME.2000.869621
– ident: ref5
  doi: 10.1007/3-540-45014-9_1
– volume: 9
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Hidden Markov decision trees
– ident: ref11
  doi: 10.1109/FG.2019.8756618
– volume-title: Machine Learning Crash Course
  year: 2021
  ident: ref12
– ident: ref13
  doi: 10.1016/s1473-3099(20)30120-1
– volume-title: PyTorch Machine Learning Framework
  year: 2023
  ident: ref26
– ident: ref4
  doi: 10.1109/DSAA.2016.10
– ident: ref7
  doi: 10.1109/ICASSP.1982.1171695
– volume-title: USDA Economic Research Service
  year: 2021
  ident: ref24
– ident: ref2
  doi: 10.1162/neco.1997.9.8.1735
– volume-title: US Census Datasets
  year: 2010
  ident: ref23
– ident: ref8
  doi: 10.1109/TPAMI.2006.211
SSID ssj0000816957
Score 2.2713678
Snippet Humans learn from the occurrence of events at different places and times to predict similar trajectories of events. We define loosely decoupled time (LDT)...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 64219
SubjectTerms Algorithm design and analysis
artificial intelligence
Clustering
COVID-19
Data models
Diseases
Hidden Markov models
Multivariate analysis
numerical algorithms and problems
Predictive models
Recurrent neural networks
statistical methods
Time series
Time series analysis
Training
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxQxFA-2eNCDVq102yo5eHTWJJNMkmNdd-mhFqEVehCGZPIChe1O2Q-h_33zMumyIAre5iNhMvPLm_fy8X4_Qj7F6CwTFioDvK6kYcmkXIQquYraNSxIFVgWm9CXl-bmxv4oyeo5FwYA8uYzGONhXssPfbfBqbJk4cn51qrZI3taN0Oy1nZCBRUkrNKFWYgz--VsMkkvMUaB8HEtjJG4b27H-2SS_qKq8sevOPuX2ev_bNkBeVUCSXo2IP-GPIPFW_Jyh17wHfmFkeRtR68GD0XdItDJfIPUCHjaR3pxdf2dTu88hLwERdc9zYSrdLbs7-hF369g_kAxTaT6lsapm_s5BDrFLZKrQ_JzNr2enFdFTaHq0hhuXTkfGwCplGosIE-bUj7dUc6jbmhgkTfMR6c9C4bZLuqmYyoKwTrualfz-j3ZX_QLOCLUdGC1hVALL2TjgonShBg9l9xH4eSIiKev3HaFahwVL-ZtHnIw2w7QtAhNW6AZkc_bSvcD08a_i39F-LZFkSY7X0i4tMXqUiTgeQyAa59RchGtjYpHUFpzH9LFETlELHeeN8A4IqdPvaEtNr1qUyCWejDqbR7_pdoJeYFNHGZoTsn-ermBD-R593t9u1p-zN31EQ8X52Y
  priority: 102
  providerName: IEEE
Title Static Seeding and Clustering of LSTM Embeddings to Learn From Loosely Time-Decoupled Events
URI https://ieeexplore.ieee.org/document/10159356
https://www.proquest.com/docview/2831529898
https://doaj.org/article/bab1fde8585f412f99f51fe5771bd585
Volume 11
WOSCitedRecordID wos001021931800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA5FeqgHUav4rEoOHruaZJPd5Ghf36MHlYIWPAgh2WRAeL6V90Poxb-9mewqC4V66WVhs1mymUwyM5vJ9xFyCuAMEyYWOvKykJqlKeUgFslUlK5iQarAMtlEfX2t7-7MzwHVF-aEdfDAneDOvfMcQsTtK5BcgDGgOERV19yHVIirL6vNIJjKa7DmlVF1DzPEmTm_GI9Tj86QLfysFFpLTKIbmKKM2N9TrPy1LmdjM90mW72XSC-6r9shH-J8l2wOsAM_k3t0Ex8aetOZH-rmgY5na8Q9wNsW6OXN7RWdPPoY8v4SXbU0o6nS6aJ9pJdtu4yz3xTPgBTfUxC6fprFQCeY_7jcI7-mk9vxj6KnSiiaFKCtCuehilEqpSoTEYRNKZ-eKOeRFDQw4BXz4GrPgmamgbpqmAIhWMNd6Upe7pONeTuPB4TqJpraxFAKL2TlggapA4DnknsQTo6IeJWabXoccaSzmNkcTzBjO1FbFLXtRT0iX99eeupgNP5d_RsOx1tVxMDOBUkzbK8Z9j3NGJE9HMxBe8l1K1U1Ikevo2v7Cbu0yctK6olkmof_o-0v5BP2p_tXc0Q2Vot1PCYfm-fVw3JxknU1Xa9eJif5xOEf7PnsmQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA5aBfXBa4urVfPgo7MmmWQmeazrLhW3i9AV-iAMuZxAYbtT9lLovzcnM10WRMG3uSRMZr6cOSeX832EfIzRGiYMFBp4WUjNkknZCEVyFaWtWJAqsCw2Uc9m-uLC_OiT1XMuDADkzWcwxMO8lh9av8WpsmThyfmWqrpPHigpBevStXZTKqghYVTdcwtxZj6fjEbpNYYoET4shdYSd87t-Z9M09_rqvzxM84eZvLsP9v2nDztQ0l60mH_gtyD5UvyZI9g8BX5hbHkpafnnY-idhnoaLFFcgQ8bSOdns_P6PjKQciLUHTT0ky5Sier9opO23YNi1uKiSLF1zRS3V4vINAxbpJcH5Kfk_F8dFr0egqFT6O4TWFdrACkUqoygExtSrl0R1mHyqGBRV4xF23tWNDM-FhXnqkoBPPclrbk5RE5WLZLeE2o9mBqA6EUTsjKBh2lDjE6LrmLwsoBEXdfufE92ThqXiyaPOhgpumgaRCapodmQD7tKl13XBv_Lv4F4dsVRaLsfCHh0vR2l2IBx2MAXP2MkotoTFQ8gqpr7kK6OCCHiOXe8zoYB-T4rjc0vVWvmxSKpT6Miptv_lLtA3l0Oj-bNtNvs-9vyWNsbjdfc0wONqstvCMP_c3mcr16n7vubzyY6q0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Static+Seeding+and+Clustering+of+LSTM+Embeddings+to+Learn+From+Loosely+Time-Decoupled+Events&rft.jtitle=IEEE+access&rft.au=Manasseh%2C+Christian+G.&rft.au=Veliche%2C+Razvan&rft.au=Bennett%2C+Jared&rft.au=Clouse%2C+Hamilton+Scott&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=64219&rft.epage=64227&rft_id=info:doi/10.1109%2FACCESS.2023.3288487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3288487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon