A Multi-Objective Optimization Approach Based on an Enhanced Particle Swarm Optimization Algorithm With Evolutionary Game Theory

Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO issues. Attempt to handle this challenge and obtain high-performance Pareto fronts, this paper proposes a novel MO optimizer via leveraging part...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; pp. 77566 - 77584
Main Authors: Yin, Kaiyang, Tang, Biwei, Li, Ming, Zhao, Huanli
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO issues. Attempt to handle this challenge and obtain high-performance Pareto fronts, this paper proposes a novel MO optimizer via leveraging particle swarm optimization (PSO) with evolutionary game theory (EGT). Firstly, a modified self-adaptive PSO (MSAPSO) adopting a novel self-adaptive parameter adaption rule determined by the evolutionary strategy of EGT to tune the three key parameters of each particle is proposed in order to well balance the exploration and exploitation abilities of MSAPSO. Then, a parameter selection principle is provided to sufficiently guarantee convergence of MSAPSO followed after the analytical convergence investigation of this optimizer so as to assure convergence of the searched Pareto front toward the true Pareto front as far as possible. Subsequently, a MSAPSO-based MO optimizer is developed, in which an external archive is applied to preserve the searched non-dominated solutions and a circular sorting method is amalgamated with the elitist-saving method to update the external archive. Lastly, the performance of the proposed method is examined by 16 benchmark test functions against 4 well-known MOO methods. The simulation results reveal that the proposed method dominates its peers regarding the quality of the Pareto fronts for most of the studied benchmarks. Furthermore, the results of the non-parametric analysis confirm that the proposed method significantly outperforms its contenders at the confidential level of 95% over the 16 benchmarks.
AbstractList Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO issues. Attempt to handle this challenge and obtain high-performance Pareto fronts, this paper proposes a novel MO optimizer via leveraging particle swarm optimization (PSO) with evolutionary game theory (EGT). Firstly, a modified self-adaptive PSO (MSAPSO) adopting a novel self-adaptive parameter adaption rule determined by the evolutionary strategy of EGT to tune the three key parameters of each particle is proposed in order to well balance the exploration and exploitation abilities of MSAPSO. Then, a parameter selection principle is provided to sufficiently guarantee convergence of MSAPSO followed after the analytical convergence investigation of this optimizer so as to assure convergence of the searched Pareto front toward the true Pareto front as far as possible. Subsequently, a MSAPSO-based MO optimizer is developed, in which an external archive is applied to preserve the searched non-dominated solutions and a circular sorting method is amalgamated with the elitist-saving method to update the external archive. Lastly, the performance of the proposed method is examined by 16 benchmark test functions against 4 well-known MOO methods. The simulation results reveal that the proposed method dominates its peers regarding the quality of the Pareto fronts for most of the studied benchmarks. Furthermore, the results of the non-parametric analysis confirm that the proposed method significantly outperforms its contenders at the confidential level of 95% over the 16 benchmarks.
Author Yin, Kaiyang
Li, Ming
Tang, Biwei
Zhao, Huanli
Author_xml – sequence: 1
  givenname: Kaiyang
  orcidid: 0000-0003-1718-9551
  surname: Yin
  fullname: Yin, Kaiyang
  organization: School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan, China
– sequence: 2
  givenname: Biwei
  orcidid: 0000-0002-8387-0794
  surname: Tang
  fullname: Tang, Biwei
  organization: School of Automation, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Ming
  orcidid: 0000-0003-4527-4542
  surname: Li
  fullname: Li, Ming
  email: limingwhut@163.com
  organization: School of Economics and Management, Anhui Polytechnic University, Wuhu, China
– sequence: 4
  givenname: Huanli
  orcidid: 0000-0002-8128-0483
  surname: Zhao
  fullname: Zhao, Huanli
  organization: School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan, China
BookMark eNp9UU1vEzEUXKEiUUp_ARwscd5ge73r9TFEaalUFKQUcbSe7ZfG0e46eJ2icuKn43SDVPWAD_6Y9-ZpPPO2OBvCgEXxntEZY1R9mi8Wy_V6ximvZhVXLa3bV8U5Z40qq7pqzp7d3xSX47ijebUZquV58WdOvh665MuV2aFN_gHJap98739D8mEg8_0-BrBb8hlGdCQjMJDlsIXB5uc3iMnbDsn6F8T-BbO7D9GnbU9-5J0sH0J3OBYgPpJr6JHcbTHEx3fF6w10I16ezovi-9XybvGlvF1d3yzmt6UVVKUSwBrRAgOspRRoFTO0kU3rnEBEbjfCGAaV48oapE0jpZXgQDFkFAUT1UVxM811AXZ6H32fhegAXj8BId7r02e0sI10qhbQ1kwojkZyU0vmZAaMcibP-jjNyt78POCY9C4c4pDla94K0SrJ6ip3qanLxjCOETfa-vTkTYrgO82oPuanp_z0MT99yi9zqxfcf4r_z_owsXz25BmDKVrn8l89-aqx
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_apenergy_2025_125538
crossref_primary_10_1016_j_swevo_2025_101938
crossref_primary_10_23919_CHAIN_2025_000012
crossref_primary_10_3390_su17167400
crossref_primary_10_1109_ACCESS_2024_3383856
crossref_primary_10_3390_biomimetics10090609
crossref_primary_10_1109_ACCESS_2024_3426104
Cites_doi 10.1016/j.asoc.2015.03.040
10.1016/j.asoc.2018.10.028
10.1155/2016/1898527
10.1016/j.ins.2007.06.018
10.1016/j.petrol.2020.107694
10.1016/j.asoc.2016.06.022
10.1109/4235.996017
10.5370/JEET.2013.8.1.080
10.1088/1755-1315/612/1/012025
10.1080/00207721.2018.1552765
10.1016/j.asoc.2020.106661
10.1109/TIA.2017.2781639
10.1109/MHS.1995.494215
10.1016/j.cie.2014.04.011
10.1109/TEVC.2004.826071
10.1016/j.ins.2017.10.037
10.1016/j.ins.2016.01.011
10.1016/j.ins.2017.08.076
10.1016/j.cam.2010.11.021
10.1109/CEC.2015.7257282
10.1155/2021/1626457
10.1109/ACCESS.2019.2909290
10.1109/CEC.2014.6900540
10.1016/j.optlastec.2022.107861
10.1109/TEVC.2004.826067
10.1007/s00521-016-2821-7
10.1016/j.procs.2020.04.219
10.1080/21693277.2022.2070559
10.1080/00207721.2019.1645914
10.1109/ACCESS.2018.2812701
10.1155/2019/6090742
10.1016/j.neucom.2012.09.019
10.1007/s00521-018-3848-8
10.1016/j.apenergy.2021.118130
10.1007/s00500-019-04175-0
10.1109/TCYB.2019.2922287
10.1016/j.ress.2012.10.009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3298058
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 77584
ExternalDocumentID oai_doaj_org_article_4c67d954a851492eb72b571d7a85b9db
10_1109_ACCESS_2023_3298058
10190558
Genre orig-research
GrantInformation_xml – fundername: High-Level Talent Start-Up fund of Pingdingshan University
  grantid: PXY-BSQD-2021019
  funderid: 10.13039/501100013312
– fundername: Project of the Science and Technology Department of Henan Province
  grantid: 222102220116
  funderid: 10.13039/501100011447
– fundername: Research Project of Higher Education in Henan Province
  grantid: 23A413008
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-aacb48a1ae5774ec91b06768dd4eee2cf4bb1a3d29cbe06677c7ada91e10e4143
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001041935600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:40:56 EDT 2025
Mon Jun 30 04:49:20 EDT 2025
Tue Nov 18 22:35:08 EST 2025
Sat Nov 29 04:02:52 EST 2025
Wed Aug 27 02:21:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-aacb48a1ae5774ec91b06768dd4eee2cf4bb1a3d29cbe06677c7ada91e10e4143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1718-9551
0000-0003-4527-4542
0000-0002-8128-0483
0000-0002-8387-0794
OpenAccessLink https://ieeexplore.ieee.org/document/10190558
PQID 2844897153
PQPubID 4845423
PageCount 19
ParticipantIDs proquest_journals_2844897153
ieee_primary_10190558
crossref_primary_10_1109_ACCESS_2023_3298058
doaj_primary_oai_doaj_org_article_4c67d954a851492eb72b571d7a85b9db
crossref_citationtrail_10_1109_ACCESS_2023_3298058
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref18
chen (ref11) 2017
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
li (ref19) 2021; 36
References_xml – ident: ref5
  doi: 10.1016/j.asoc.2015.03.040
– ident: ref12
  doi: 10.1016/j.asoc.2018.10.028
– ident: ref10
  doi: 10.1155/2016/1898527
– start-page: 797
  year: 2017
  ident: ref11
  article-title: A decomposition based multiobjective evolutionary algorithm with semi-supervised classification
  publication-title: Proc IEEE Congr Evol Comput (CEC)
– ident: ref37
  doi: 10.1016/j.ins.2007.06.018
– ident: ref26
  doi: 10.1016/j.petrol.2020.107694
– ident: ref38
  doi: 10.1016/j.asoc.2016.06.022
– ident: ref29
  doi: 10.1109/4235.996017
– ident: ref31
  doi: 10.5370/JEET.2013.8.1.080
– ident: ref27
  doi: 10.1088/1755-1315/612/1/012025
– ident: ref21
  doi: 10.1080/00207721.2018.1552765
– ident: ref14
  doi: 10.1016/j.asoc.2020.106661
– ident: ref1
  doi: 10.1109/TIA.2017.2781639
– ident: ref30
  doi: 10.1109/MHS.1995.494215
– ident: ref34
  doi: 10.1016/j.cie.2014.04.011
– ident: ref33
  doi: 10.1109/TEVC.2004.826071
– ident: ref13
  doi: 10.1016/j.ins.2017.10.037
– ident: ref28
  doi: 10.1016/j.ins.2016.01.011
– ident: ref25
  doi: 10.1016/j.ins.2017.08.076
– ident: ref32
  doi: 10.1016/j.cam.2010.11.021
– ident: ref16
  doi: 10.1109/CEC.2015.7257282
– ident: ref23
  doi: 10.1155/2021/1626457
– ident: ref18
  doi: 10.1109/ACCESS.2019.2909290
– ident: ref15
  doi: 10.1109/CEC.2014.6900540
– ident: ref6
  doi: 10.1016/j.optlastec.2022.107861
– volume: 36
  start-page: 2085
  year: 2021
  ident: ref19
  article-title: R2 indicator and objective space partition based many-objective particle swarm optimizer
  publication-title: Control Decis
– ident: ref24
  doi: 10.1109/TEVC.2004.826067
– ident: ref9
  doi: 10.1007/s00521-016-2821-7
– ident: ref4
  doi: 10.1016/j.procs.2020.04.219
– ident: ref3
  doi: 10.1080/21693277.2022.2070559
– ident: ref22
  doi: 10.1080/00207721.2019.1645914
– ident: ref17
  doi: 10.1109/ACCESS.2018.2812701
– ident: ref39
  doi: 10.1155/2019/6090742
– ident: ref35
  doi: 10.1016/j.neucom.2012.09.019
– ident: ref8
  doi: 10.1007/s00521-018-3848-8
– ident: ref2
  doi: 10.1016/j.apenergy.2021.118130
– ident: ref7
  doi: 10.1007/s00500-019-04175-0
– ident: ref20
  doi: 10.1109/TCYB.2019.2922287
– ident: ref36
  doi: 10.1016/j.ress.2012.10.009
SSID ssj0000816957
Score 2.2982252
Snippet Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77566
SubjectTerms Archives & records
Benchmark testing
Benchmarks
Convergence
convergence investigation
Evolutionary algorithms
Evolutionary computation
evolutionary game theory
Game theory
Mathematical analysis
Multi-objective optimization
Multiple objective analysis
Optimization
Parameter modification
Parametric analysis
Pareto analysis
pareto front
Pareto optimization
Particle swarm optimization
Sorting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYoAB8RTlJQ-MBGLXqe2xrVoYECABgs3yi5fagEIBsfHTOTsGRSDBwpLh5EfOd75HYn-H0I4zwrnC5lk4opiB9Wtn2hQs88ILYQX3HRerlhzx42NxdSVPG6W-wpmwGh64Xrh9ZjvcyYJpCA2YpN5wagpOHAeCkc4E65tz2Uimog0WpCMLnmCGSC73u_0-cLQXqoXvtakUeSjy3nBFEbE_lVj5YZejsxkuoPkUJeJu_XaLaMqXS2iugR24jN67OF6ezU7MfW208Als_3G6V4m7CSwc98BPOQwUXeJBeRv_-OPTxDg-e9XV-FvP0c1DdTe5HeNLeOLBS9JOXb3hAz32uL7Pv4IuhoPz_mGWyilkFpK4Saa1NUxoon0BMZ-3khhwVR2QFQOeqb1mxhDddlRa48PZV265dloST3LPIK5aRdPlQ-nXEDYEtnnIRui1BvlSyfI2czAypGOGUNpC9HNllU1Y46HkxUjFnCOXqhaHCuJQSRwttPvV6bGG2vi9eS-I7KtpwMmOBNAelRZR_aU9LbQSBN6YDwKkIgy--akBKm3qJwWenAnJwUes_8fcG2g28FN_z9lE05Pq2W-hGfsyuXuqtqM-fwBYlfdQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Multi-Objective Optimization Approach Based on an Enhanced Particle Swarm Optimization Algorithm With Evolutionary Game Theory
URI https://ieeexplore.ieee.org/document/10190558
https://www.proquest.com/docview/2844897153
https://doaj.org/article/4c67d954a851492eb72b571d7a85b9db
Volume 11
WOSCitedRecordID wos001041935600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigMcyquILaXygSNZYq-zto_b1RYO0FYCRG-WH1PaqptF6baIC-KnM3bc1QoEEpcosuzEzjee8UzmAfAyeh1jE-oquShWxP1GlfONrFCj1kErHMdcteSdOjzUJyfmuASr51gYRMzOZzhMt_lfflyE62Qqox1O4qtp9AZsKDXug7VWBpVUQcI0qmQW4rV5PZlOaRHDVCB8OBJG16mu-5r0yUn6S1WVP1hxli8HD_5zZg9hqxwk2aRH_hHcwfYx3F9LL_gEfk5Yjq-tjvxFz9fYEXGIeQm9ZJOST5ztkyiLjFpcy2btWXYKYMeFqNiHb66b_zby8suiO1-ezdlnurLZTSFg131nb9wcWR_yvw2fDmYfp2-rUnGhCqTnLSvngpfacYcNHQsxGO5Jmo0JTklLFuFUes_dKAoTPCb3WBWUi85w5DVKOno9hc120eIzYJ4TJ0gKizh1RALCyHokIz2ZNDbPhRiAuEXChpKOPFXFuLRZLamN7eGzCT5b4BvAq9Wgr302jn93308Qr7qmVNq5gbCz5SNaGcYqmkY6OntKI9Ar4RvFo6IGb6IfwHbCe-19PdQD2L2lGFv2_ZUlYS-1USRGdv4y7DncS1PsrTi7sLnsrvEF3A03y_Orbi-bBOj6_sdsL5P3L9Wd9z4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BQYIeeBYRKOADRzasHTu2j2mUUkRIK1FEb5ZfpUXNBm3TVtz46Yy9bhSBQOKyWln2rr3feB7eeQC8Dk6FIHxdJRfFCrnfoLJO8CqqqJRXMg5DrloylbOZOjrSByVYPcfCxBiz81nsp9v8Lz8s_EU6KsMdjuJLCHUTbgnOWd2Fa62OVFINCS1kyS1Ea_12NB7jMvqpRHh_wLSqU2X3NfmT0_SXuip_MOMsYXbv_-fcHsC9okqSUYf9Q7gRm0ewuZZg8DH8HJEcYVvtu28dZyP7yCPmJfiSjEpGcbKDwiwQbLENmTQn2S2AHBSyIp-ubDv_beTZ10V7ujyZky94JZPLQsK2_UHe2XkkXdD_FnzenRyO96pSc6HyaOktK2u948pSGwUqhtFr6lCeDRFQjktm_pg7R-0gMO1dTA6y0ksbrKaR1pGj8vUENppFE58CcRR5QTJZ2LFFImCa1wMe8MlosznKWA_YNRLGl4TkqS7GmcmGSa1NB59J8JkCXw_erAZ97_Jx_Lv7ToJ41TUl084NiJ0pH9FwP5RBC25R--SaRSeZE5IGiQ1OB9eDrYT32vs6qHuwfU0xpuz8c4PinistUZA8-8uwV3Bn7_Dj1Ezfzz48h7tput2ZzjZsLNuL-AJu-8vl6Xn7MpP3Lyth-F8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Objective+Optimization+Approach+Based+on+an+Enhanced+Particle+Swarm+Optimization+Algorithm+With+Evolutionary+Game+Theory&rft.jtitle=IEEE+access&rft.au=Yin%2C+Kaiyang&rft.au=Tang%2C+Biwei&rft.au=Li%2C+Ming&rft.au=Zhao%2C+Huanli&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=77566&rft.epage=77584&rft_id=info:doi/10.1109%2FACCESS.2023.3298058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3298058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon