A Multi-Objective Optimization Approach Based on an Enhanced Particle Swarm Optimization Algorithm With Evolutionary Game Theory
Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO issues. Attempt to handle this challenge and obtain high-performance Pareto fronts, this paper proposes a novel MO optimizer via leveraging part...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 77566 - 77584 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO issues. Attempt to handle this challenge and obtain high-performance Pareto fronts, this paper proposes a novel MO optimizer via leveraging particle swarm optimization (PSO) with evolutionary game theory (EGT). Firstly, a modified self-adaptive PSO (MSAPSO) adopting a novel self-adaptive parameter adaption rule determined by the evolutionary strategy of EGT to tune the three key parameters of each particle is proposed in order to well balance the exploration and exploitation abilities of MSAPSO. Then, a parameter selection principle is provided to sufficiently guarantee convergence of MSAPSO followed after the analytical convergence investigation of this optimizer so as to assure convergence of the searched Pareto front toward the true Pareto front as far as possible. Subsequently, a MSAPSO-based MO optimizer is developed, in which an external archive is applied to preserve the searched non-dominated solutions and a circular sorting method is amalgamated with the elitist-saving method to update the external archive. Lastly, the performance of the proposed method is examined by 16 benchmark test functions against 4 well-known MOO methods. The simulation results reveal that the proposed method dominates its peers regarding the quality of the Pareto fronts for most of the studied benchmarks. Furthermore, the results of the non-parametric analysis confirm that the proposed method significantly outperforms its contenders at the confidential level of 95% over the 16 benchmarks. |
|---|---|
| AbstractList | Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO issues. Attempt to handle this challenge and obtain high-performance Pareto fronts, this paper proposes a novel MO optimizer via leveraging particle swarm optimization (PSO) with evolutionary game theory (EGT). Firstly, a modified self-adaptive PSO (MSAPSO) adopting a novel self-adaptive parameter adaption rule determined by the evolutionary strategy of EGT to tune the three key parameters of each particle is proposed in order to well balance the exploration and exploitation abilities of MSAPSO. Then, a parameter selection principle is provided to sufficiently guarantee convergence of MSAPSO followed after the analytical convergence investigation of this optimizer so as to assure convergence of the searched Pareto front toward the true Pareto front as far as possible. Subsequently, a MSAPSO-based MO optimizer is developed, in which an external archive is applied to preserve the searched non-dominated solutions and a circular sorting method is amalgamated with the elitist-saving method to update the external archive. Lastly, the performance of the proposed method is examined by 16 benchmark test functions against 4 well-known MOO methods. The simulation results reveal that the proposed method dominates its peers regarding the quality of the Pareto fronts for most of the studied benchmarks. Furthermore, the results of the non-parametric analysis confirm that the proposed method significantly outperforms its contenders at the confidential level of 95% over the 16 benchmarks. |
| Author | Yin, Kaiyang Li, Ming Tang, Biwei Zhao, Huanli |
| Author_xml | – sequence: 1 givenname: Kaiyang orcidid: 0000-0003-1718-9551 surname: Yin fullname: Yin, Kaiyang organization: School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan, China – sequence: 2 givenname: Biwei orcidid: 0000-0002-8387-0794 surname: Tang fullname: Tang, Biwei organization: School of Automation, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Ming orcidid: 0000-0003-4527-4542 surname: Li fullname: Li, Ming email: limingwhut@163.com organization: School of Economics and Management, Anhui Polytechnic University, Wuhu, China – sequence: 4 givenname: Huanli orcidid: 0000-0002-8128-0483 surname: Zhao fullname: Zhao, Huanli organization: School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan, China |
| BookMark | eNp9UU1vEzEUXKEiUUp_ARwscd5ge73r9TFEaalUFKQUcbSe7ZfG0e46eJ2icuKn43SDVPWAD_6Y9-ZpPPO2OBvCgEXxntEZY1R9mi8Wy_V6ximvZhVXLa3bV8U5Z40qq7pqzp7d3xSX47ijebUZquV58WdOvh665MuV2aFN_gHJap98739D8mEg8_0-BrBb8hlGdCQjMJDlsIXB5uc3iMnbDsn6F8T-BbO7D9GnbU9-5J0sH0J3OBYgPpJr6JHcbTHEx3fF6w10I16ezovi-9XybvGlvF1d3yzmt6UVVKUSwBrRAgOspRRoFTO0kU3rnEBEbjfCGAaV48oapE0jpZXgQDFkFAUT1UVxM811AXZ6H32fhegAXj8BId7r02e0sI10qhbQ1kwojkZyU0vmZAaMcibP-jjNyt78POCY9C4c4pDla94K0SrJ6ip3qanLxjCOETfa-vTkTYrgO82oPuanp_z0MT99yi9zqxfcf4r_z_owsXz25BmDKVrn8l89-aqx |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2025_125538 crossref_primary_10_1016_j_swevo_2025_101938 crossref_primary_10_23919_CHAIN_2025_000012 crossref_primary_10_3390_su17167400 crossref_primary_10_1109_ACCESS_2024_3383856 crossref_primary_10_3390_biomimetics10090609 crossref_primary_10_1109_ACCESS_2024_3426104 |
| Cites_doi | 10.1016/j.asoc.2015.03.040 10.1016/j.asoc.2018.10.028 10.1155/2016/1898527 10.1016/j.ins.2007.06.018 10.1016/j.petrol.2020.107694 10.1016/j.asoc.2016.06.022 10.1109/4235.996017 10.5370/JEET.2013.8.1.080 10.1088/1755-1315/612/1/012025 10.1080/00207721.2018.1552765 10.1016/j.asoc.2020.106661 10.1109/TIA.2017.2781639 10.1109/MHS.1995.494215 10.1016/j.cie.2014.04.011 10.1109/TEVC.2004.826071 10.1016/j.ins.2017.10.037 10.1016/j.ins.2016.01.011 10.1016/j.ins.2017.08.076 10.1016/j.cam.2010.11.021 10.1109/CEC.2015.7257282 10.1155/2021/1626457 10.1109/ACCESS.2019.2909290 10.1109/CEC.2014.6900540 10.1016/j.optlastec.2022.107861 10.1109/TEVC.2004.826067 10.1007/s00521-016-2821-7 10.1016/j.procs.2020.04.219 10.1080/21693277.2022.2070559 10.1080/00207721.2019.1645914 10.1109/ACCESS.2018.2812701 10.1155/2019/6090742 10.1016/j.neucom.2012.09.019 10.1007/s00521-018-3848-8 10.1016/j.apenergy.2021.118130 10.1007/s00500-019-04175-0 10.1109/TCYB.2019.2922287 10.1016/j.ress.2012.10.009 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3298058 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 77584 |
| ExternalDocumentID | oai_doaj_org_article_4c67d954a851492eb72b571d7a85b9db 10_1109_ACCESS_2023_3298058 10190558 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: High-Level Talent Start-Up fund of Pingdingshan University grantid: PXY-BSQD-2021019 funderid: 10.13039/501100013312 – fundername: Project of the Science and Technology Department of Henan Province grantid: 222102220116 funderid: 10.13039/501100011447 – fundername: Research Project of Higher Education in Henan Province grantid: 23A413008 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-aacb48a1ae5774ec91b06768dd4eee2cf4bb1a3d29cbe06677c7ada91e10e4143 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001041935600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:40:56 EDT 2025 Mon Jun 30 04:49:20 EDT 2025 Tue Nov 18 22:35:08 EST 2025 Sat Nov 29 04:02:52 EST 2025 Wed Aug 27 02:21:58 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-aacb48a1ae5774ec91b06768dd4eee2cf4bb1a3d29cbe06677c7ada91e10e4143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1718-9551 0000-0003-4527-4542 0000-0002-8128-0483 0000-0002-8387-0794 |
| OpenAccessLink | https://doaj.org/article/4c67d954a851492eb72b571d7a85b9db |
| PQID | 2844897153 |
| PQPubID | 4845423 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2844897153 ieee_primary_10190558 crossref_primary_10_1109_ACCESS_2023_3298058 doaj_primary_oai_doaj_org_article_4c67d954a851492eb72b571d7a85b9db crossref_citationtrail_10_1109_ACCESS_2023_3298058 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref18 chen (ref11) 2017 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 li (ref19) 2021; 36 |
| References_xml | – ident: ref5 doi: 10.1016/j.asoc.2015.03.040 – ident: ref12 doi: 10.1016/j.asoc.2018.10.028 – ident: ref10 doi: 10.1155/2016/1898527 – start-page: 797 year: 2017 ident: ref11 article-title: A decomposition based multiobjective evolutionary algorithm with semi-supervised classification publication-title: Proc IEEE Congr Evol Comput (CEC) – ident: ref37 doi: 10.1016/j.ins.2007.06.018 – ident: ref26 doi: 10.1016/j.petrol.2020.107694 – ident: ref38 doi: 10.1016/j.asoc.2016.06.022 – ident: ref29 doi: 10.1109/4235.996017 – ident: ref31 doi: 10.5370/JEET.2013.8.1.080 – ident: ref27 doi: 10.1088/1755-1315/612/1/012025 – ident: ref21 doi: 10.1080/00207721.2018.1552765 – ident: ref14 doi: 10.1016/j.asoc.2020.106661 – ident: ref1 doi: 10.1109/TIA.2017.2781639 – ident: ref30 doi: 10.1109/MHS.1995.494215 – ident: ref34 doi: 10.1016/j.cie.2014.04.011 – ident: ref33 doi: 10.1109/TEVC.2004.826071 – ident: ref13 doi: 10.1016/j.ins.2017.10.037 – ident: ref28 doi: 10.1016/j.ins.2016.01.011 – ident: ref25 doi: 10.1016/j.ins.2017.08.076 – ident: ref32 doi: 10.1016/j.cam.2010.11.021 – ident: ref16 doi: 10.1109/CEC.2015.7257282 – ident: ref23 doi: 10.1155/2021/1626457 – ident: ref18 doi: 10.1109/ACCESS.2019.2909290 – ident: ref15 doi: 10.1109/CEC.2014.6900540 – ident: ref6 doi: 10.1016/j.optlastec.2022.107861 – volume: 36 start-page: 2085 year: 2021 ident: ref19 article-title: R2 indicator and objective space partition based many-objective particle swarm optimizer publication-title: Control Decis – ident: ref24 doi: 10.1109/TEVC.2004.826067 – ident: ref9 doi: 10.1007/s00521-016-2821-7 – ident: ref4 doi: 10.1016/j.procs.2020.04.219 – ident: ref3 doi: 10.1080/21693277.2022.2070559 – ident: ref22 doi: 10.1080/00207721.2019.1645914 – ident: ref17 doi: 10.1109/ACCESS.2018.2812701 – ident: ref39 doi: 10.1155/2019/6090742 – ident: ref35 doi: 10.1016/j.neucom.2012.09.019 – ident: ref8 doi: 10.1007/s00521-018-3848-8 – ident: ref2 doi: 10.1016/j.apenergy.2021.118130 – ident: ref7 doi: 10.1007/s00500-019-04175-0 – ident: ref20 doi: 10.1109/TCYB.2019.2922287 – ident: ref36 doi: 10.1016/j.ress.2012.10.009 |
| SSID | ssj0000816957 |
| Score | 2.298321 |
| Snippet | Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains challenging to gain high-quality Pareto fronts for different MO... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 77566 |
| SubjectTerms | Archives & records Benchmark testing Benchmarks Convergence convergence investigation Evolutionary algorithms Evolutionary computation evolutionary game theory Game theory Mathematical analysis Multi-objective optimization Multiple objective analysis Optimization Parameter modification Parametric analysis Pareto analysis pareto front Pareto optimization Particle swarm optimization Sorting |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxaEceJRWLBTkA8dmGzt2bB-3qy2c2kq0ojfLj4EWdbMo3RZx46czdtzVCkQlLlFkeRQ739jf-DEzhLz3HDkImqZibe0qIT1Unjtf1VFIJ4UKjMWcbEIdH-uLC3NanNWzLwwA5MtnME6v-Sw_LsJt2irDEY70JaXeIBtKtYOz1mpDJWWQMFKVyEKsNgeT6RQ7MU4JwscNN7pOed3X2CcH6S9ZVf6aijO_HD37z5Y9J0-LIUknA_IvyCPotsmTtfCCL8mvCc3-tdWJ_zbMa_QEZ4h5cb2kkxJPnB4ilUWKJa6js-4yXwqgp0Wp6Kcfrp__IXn9ddFfLS_n9DM-6eyuKLDrf9IPbg50cPnfIedHs7Ppx6pkXKgCrvOWlXPBC-2YA4lmIQTDPLJZq2MU2GUevgjvmWsiN8FDuh6rgnLRGQYIuEDTa5dsdosOXhEKgMLRi6h1K1wN3iSXuoYFrXjTej8i_B4JG0o48pQV49rmZUlt7ACfTfDZAt-I7K-Evg_ROB6ufpggXlVNobRzAWJny0-0IrQqGikc2p7CcPCKe6lYVFjgTcSG7iS81743QD0ie_caY8u4v7FI9kIbhTTy-h9ib8hWauKwi7NHNpf9Lbwlj8Pd8uqmf5dV-jfplvXv priority: 102 providerName: IEEE |
| Title | A Multi-Objective Optimization Approach Based on an Enhanced Particle Swarm Optimization Algorithm With Evolutionary Game Theory |
| URI | https://ieeexplore.ieee.org/document/10190558 https://www.proquest.com/docview/2844897153 https://doaj.org/article/4c67d954a851492eb72b571d7a85b9db |
| Volume | 11 |
| WOSCitedRecordID | wos001041935600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29T90wELcqxNAOiLZUfUCRh44NxI4T2-Pj6QFLAalFsFk-2-VDvIDCA9Sl4k_n7BgUUaksXTxYdpzzne8j8f2OkK_A0QaFqipYU9pC1BAK4BaK0ova1kI6xnwqNiH399XJiT4clPqKd8J6eOB-47aEa6TXtbDoGgjNA0gOtWReYgdoD1H7llIPgqmkgxVrdC0zzBAr9dZ4MkGKNmO18M2Ka1XGIu8DU5QQ-3OJlb_0cjI2O8tkKXuJdNy_3XvyJrQfyLsBduBH8jCmKXm2OICLXmnRAzz-s5xXSccZLJxuo53yFHtsS6ftWfrjTw8z4fTHve1mL2Zenl515_OzGT3Glk7vsnTa7jfdtbNA-3z-FXK0M_052StyOYXCYRA3L6x1IJRlNtTo8wWnGaCpapT3Amnm7pcAYLbyXDsI8e6rdNJ6q1lAbgr0qz6RhfaqDZ8JDQEnexBeqUbYMoCO-XIVc0ryqgEYEf60s8ZlrPFY8uLSpJij1KZnh4nsMJkdI_LtedJ1D7Xx7-HbkWXPQyNOdupA6TF5E81r0jMiK5Hhg_XQQarjw9efJMDkQ31j0JILpSXaiNX_sfYaeRvp6b_nrJOFeXcbvpBFdzc_v-k2kjxj-_3PdCNlJT4C0br6WQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagRQIOLY8ilhbwgSNZYseO4-N2taWIsq1EEb1ZfkxpUTeL0m0RN346Y8ddrUAgcYkiy6PY-cb-xo-ZIeSV48hBUFUFq0tbCOmgcNy6ogxCWimUZyykZBNqOm1OTvRRdlZPvjAAkC6fwTC-prP8MPdXcasMRzjSl5TNbbIuheBl76613FKJOSS0VDm2ECv1m9F4jN0YxhThw4rrpoyZ3Vf4J4Xpz3lV_piME8Psbf5n2x6QjWxK0lGP_UNyC9pH5P5KgMHH5OeIJg_b4tB97Wc2eohzxCw7X9JRjihOd5HMAsUS29JJe5auBdCjrFb043fbzX6TvPgy784XZzP6GZ90cp1V2HY_6Fs7A9o7_W-RT3uT4_F-kXMuFB5XeovCWu9EY5kFiYYheM0c8lndhCCwy9yfCueYrQLX3kG8IKu8ssFqBgi5QOPrCVlr5y08JRQAhYMToWlqYUtwOjrVVcw3ile1cwPCb5AwPgckj3kxLkxamJTa9PCZCJ_J8A3I66XQtz4ex7-r70aIl1VjMO1UgNiZ_BON8LUKWgqL1qfQHJziTioWFBY4HbChWxHvle_1UA_Izo3GmDzyLw3SvWi0QiJ59hexl-Tu_vGHA3Pwbvp-m9yLze33dHbI2qK7gufkjr9enF92L5J6_wLSvPk2 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Objective+Optimization+Approach+Based+on+an+Enhanced+Particle+Swarm+Optimization+Algorithm+With+Evolutionary+Game+Theory&rft.jtitle=IEEE+access&rft.au=Yin%2C+Kaiyang&rft.au=Tang%2C+Biwei&rft.au=Li%2C+Ming&rft.au=Zhao%2C+Huanli&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=77566&rft.epage=77584&rft_id=info:doi/10.1109%2FACCESS.2023.3298058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3298058 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |