Design of an Intrusion Detection Model for IoT-Enabled Smart Home

Machine learning (ML) provides effective solutions to develop efficient intrusion detection system (IDS) for various environments. In the present paper, a diversified study of various ensemble machine learning (ML) algorithms has been carried out to propose design of an effective and time-efficient...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 11; p. 1
Main Authors: Rani, Deepti, Gill, Nasib Singh, Gulia, Preeti, Arena, Fabio, Pau, Giovanni
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning (ML) provides effective solutions to develop efficient intrusion detection system (IDS) for various environments. In the present paper, a diversified study of various ensemble machine learning (ML) algorithms has been carried out to propose design of an effective and time-efficient IDS for an Internet of Things (IoT) enabled environment. In this paper, data captured from network traffic and real-time sensors of the IoT-enabled smart environment has been analyzed to classify and predict various types of network attacks. The performance of Logistic Regression, Random Forest, Extreme Gradient Boosting, and Light Gradient Boosting Machine classifiers have been benchmarked using an open-source largely imbalanced dataset 'DS2OS' that consists of 'normal' and 'anomalous' network traffic. An intrusion detection model "LGB-IDS" has been proposed using the LGBM library of ML after validating its superiority over other algorithms using ensemble techniques and on the basis of majority voting. The performance of the proposed intrusion detection system is suitably validated using certain performance metrics for machine learning such as train and test accuracy, time efficiency, error-rate, true-positive rate (TPR), and false-negative rate (FNR). The experimental results reveal that RF and XGB have almost equal accuracy, but the time efficiency of LGBM is much better than RF, and XGB classifiers. The main objective of the present paper is to propose a design of an efficient intrusion detection model with high accuracy, high time efficiency, and reduced false alarm rate. The experimental results show that the proposed model achieves an accuracy of 99.42% and the time efficiency comes to be much higher than other prevalent algorithms-based models. The threat detection rate is > 90% and less than 100%. Time complexity of LGBM is also very low as compared to other ML algorithms.
AbstractList Machine learning (ML) provides effective solutions to develop efficient intrusion detection system (IDS) for various environments. In the present paper, a diversified study of various ensemble machine learning (ML) algorithms has been carried out to propose design of an effective and time-efficient IDS for Internet of Things (IoT) enabled environment. In this paper, data captured from network traffic and real-time sensors of the IoT-enabled smart environment has been analyzed to classify and predict various types of network attacks. The performance of Logistic Regression, Random Forest, Extreme Gradient Boosting, and Light Gradient Boosting Machine classifiers have been benchmarked using an open-source largely imbalanced dataset ‘DS2OS’ that consists of ‘normal’ and ‘anomalous’ network traffic. An intrusion detection model “LGB-IDS” has been proposed using the LGBM library of ML after validating its superiority over other algorithms using ensemble techniques and on the basis of majority voting. The performance of the proposed intrusion detection system is suitably validated using certain performance metrics of machine learning such as train and test accuracy, time efficiency, error-rate, true-positive rate (TPR), and false-negative rate (FNR). The experimental results reveal that XGB and LGBM have almost equal accuracy, but the time efficiency of LGBM is much better than RF, and XGB classifiers. The main objective of the present paper is to propose a design of an efficient intrusion detection model with high accuracy, better time efficiency, and reduced false alarm rate. The experimental results show that the proposed model achieves an accuracy of 99.92% and the time efficiency comes to be much higher than other prevalent algorithms-based models. The threat detection rate is greater than 90% and less than 100%. Time complexity of LGBM is also very much low as compared to other ML algorithms.
Machine learning (ML) provides effective solutions to develop efficient intrusion detection system (IDS) for various environments. In the present paper, a diversified study of various ensemble machine learning (ML) algorithms has been carried out to propose design of an effective and time-efficient IDS for an Internet of Things (IoT) enabled environment. In this paper, data captured from network traffic and real-time sensors of the IoT-enabled smart environment has been analyzed to classify and predict various types of network attacks. The performance of Logistic Regression, Random Forest, Extreme Gradient Boosting, and Light Gradient Boosting Machine classifiers have been benchmarked using an open-source largely imbalanced dataset 'DS2OS' that consists of 'normal' and 'anomalous' network traffic. An intrusion detection model "LGB-IDS" has been proposed using the LGBM library of ML after validating its superiority over other algorithms using ensemble techniques and on the basis of majority voting. The performance of the proposed intrusion detection system is suitably validated using certain performance metrics for machine learning such as train and test accuracy, time efficiency, error-rate, true-positive rate (TPR), and false-negative rate (FNR). The experimental results reveal that RF and XGB have almost equal accuracy, but the time efficiency of LGBM is much better than RF, and XGB classifiers. The main objective of the present paper is to propose a design of an efficient intrusion detection model with high accuracy, high time efficiency, and reduced false alarm rate. The experimental results show that the proposed model achieves an accuracy of 99.42% and the time efficiency comes to be much higher than other prevalent algorithms-based models. The threat detection rate is > 90% and less than 100%. Time complexity of LGBM is also very low as compared to other ML algorithms.
Author Arena, Fabio
Gill, Nasib Singh
Gulia, Preeti
Pau, Giovanni
Rani, Deepti
Author_xml – sequence: 1
  givenname: Deepti
  surname: Rani
  fullname: Rani, Deepti
  organization: Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India
– sequence: 2
  givenname: Nasib Singh
  surname: Gill
  fullname: Gill, Nasib Singh
  organization: Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India
– sequence: 3
  givenname: Preeti
  surname: Gulia
  fullname: Gulia, Preeti
  organization: Department of Computer Science & Applications, Maharshi Dayanand University, Rohtak, Haryana, India
– sequence: 4
  givenname: Fabio
  orcidid: 0000-0002-6656-1797
  surname: Arena
  fullname: Arena, Fabio
  organization: Faculty of Engineering and Architecture, Kore University of Enna, Enna, Italy
– sequence: 5
  givenname: Giovanni
  orcidid: 0000-0002-5798-398X
  surname: Pau
  fullname: Pau, Giovanni
  organization: Faculty of Engineering and Architecture, Kore University of Enna, Enna, Italy
BookMark eNqFkE1LxDAQhoMo-LW_QA8Fz13z1TQ5LuuqC4qHXc9h2kykS2007R7896ZWRLwYBjIM87zz8p6Swy50SMgFo3PGqLleLJerzWbOKRdzwUullTggJ5wpk4tCqMNf_TGZ9f2OpqfTqChPyOIG--aly4LPoMvW3RD3fRO67AYHrIexewwO28yHmK3DNl91ULXoss0rxCG7D694To48tD3Ovv8z8ny72i7v84enu_Vy8ZDXkpohB-BKstqgLErhSzTIKgd14dBzIVE67QFQl55WqvS6QBSmMkC5rwVqkOKMrCddF2Bn32KTHHzYAI39GoT4YpOlpm7RAgOTSla0Aql1wjkq7wrBvAPlaNK6mrTeYnjfYz_YXdjHLtm3XHPBtCrouCWmrTqGvo_of64yasfo7RS9HaO339Enyvyh6maAMcohQtP-w15ObIOIv64xLrVS4hOnRZM0
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s12083_024_01855_z
crossref_primary_10_1016_j_trpro_2025_03_069
crossref_primary_10_1109_ACCESS_2024_3422999
crossref_primary_10_1007_s11227_024_06475_1
crossref_primary_10_1016_j_eswa_2024_124428
crossref_primary_10_1109_ACCESS_2024_3410111
crossref_primary_10_1109_TBC_2024_3437216
crossref_primary_10_1109_ACCESS_2024_3483659
crossref_primary_10_1007_s10586_025_05415_9
crossref_primary_10_1109_COMST_2024_3382470
crossref_primary_10_1109_TCE_2023_3325419
Cites_doi 10.3390/fi14100301
10.1109/ICDIS50059.2020.00014
10.1016/j.cose.2020.101984
10.1155/2022/1668676
10.1016/j.comnet.2021.108015
10.1155/2022/9068724
10.1016/j.compeleceng.2023.108626
10.1007/s10207-021-00571-6
10.1109/TNSM.2020.3032618
10.1007/s13369-022-07412-1
10.1186/s13677-023-00420-y
10.1109/CYBCONF51991.2021.9464148
10.1002/spy2.147
10.1007/978-981-16-4625-6_85
10.1007/s11227-021-04188-3
10.1109/ITNAC50341.2020.9315049
10.3390/su14148707
10.32604/cmc.2022.031734
10.1007/s11277-019-06986-8
10.1007/s13369-020-05181-3
10.1186/s40537-021-00498-8
10.1109/ACCESS.2020.2977643
10.1214/aos/1013203451
10.14569/IJACSA.2020.0111265
10.1002/cpe.7110
10.3390/sym12091458
10.1007/978-3-030-33596-0_22
10.1016/j.aej.2022.02.063
10.1016/j.comnet.2020.107247
10.3390/s22103607
10.1016/j.cose.2021.102499
10.1002/ett.3997
10.3390/computers12020034
10.1145/2939672.2939785
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3276863
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_a1a91a94b0ba488e8a2e6fd531fda6d0
10_1109_ACCESS_2023_3276863
10124866
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-aa2641c9e4573f7e9e1bdac5def234e4d8faae87f0b67f85ee39b9a02fc3e8a43
IEDL.DBID RIE
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005684800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:11 EDT 2025
Sun Jun 29 12:25:07 EDT 2025
Sat Nov 29 04:02:39 EST 2025
Tue Nov 18 21:03:49 EST 2025
Wed Aug 27 02:56:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-aa2641c9e4573f7e9e1bdac5def234e4d8faae87f0b67f85ee39b9a02fc3e8a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6656-1797
0000-0002-5798-398X
0000-0003-1565-224X
0000-0001-8535-4016
0000-0002-8594-4320
OpenAccessLink https://ieeexplore.ieee.org/document/10124866
PQID 2823186500
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3276863
crossref_primary_10_1109_ACCESS_2023_3276863
ieee_primary_10124866
doaj_primary_oai_doaj_org_article_a1a91a94b0ba488e8a2e6fd531fda6d0
proquest_journals_2823186500
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
ref30
twe (ref11) 2020; 1646
ref10
ref32
kotsiantis (ref41) 2006; 1
ref2
ref1
ref17
ref39
ref38
ref19
ref18
bhati (ref34) 2020; 32
rawat (ref42) 2017; 8
utami (ref27) 2014; 2
rani (ref5) 2022; 100
(ref4) 2018
ref24
mazumder (ref31) 2021
ref23
ref26
ref25
ref20
ref22
ref44
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref3
ref6
bentéjac (ref33) 2019
ref40
hu? (ref16) 2021; 21
References_xml – ident: ref6
  doi: 10.3390/fi14100301
– ident: ref29
  doi: 10.1109/ICDIS50059.2020.00014
– ident: ref36
  doi: 10.1016/j.cose.2020.101984
– ident: ref38
  doi: 10.1155/2022/1668676
– ident: ref14
  doi: 10.1016/j.comnet.2021.108015
– ident: ref20
  doi: 10.1155/2022/9068724
– ident: ref25
  doi: 10.1016/j.compeleceng.2023.108626
– ident: ref28
  doi: 10.1007/s10207-021-00571-6
– start-page: 1
  year: 2021
  ident: ref31
  article-title: Network intrusion detection using hybrid machine learning model
  publication-title: Proc Int Conf Adv Electr Comput Commun Sustain Technol (ICAECT)
– ident: ref32
  doi: 10.1109/TNSM.2020.3032618
– volume: 32
  start-page: 1
  year: 2020
  ident: ref34
  article-title: An improved ensemble based intrusion detection technique using XGBoost
  publication-title: Trans Emerg Telecommun Technol
– ident: ref2
  doi: 10.1007/s13369-022-07412-1
– volume: 1646
  start-page: 1
  year: 2020
  ident: ref11
  article-title: Botnets attack detection using machine learning approach for IoT environment
  publication-title: J Phys Conf Ser
– ident: ref23
  doi: 10.1186/s13677-023-00420-y
– ident: ref9
  doi: 10.1109/CYBCONF51991.2021.9464148
– ident: ref30
  doi: 10.1002/spy2.147
– ident: ref40
  doi: 10.1007/978-981-16-4625-6_85
– ident: ref10
  doi: 10.1007/s11227-021-04188-3
– ident: ref37
  doi: 10.1109/ITNAC50341.2020.9315049
– year: 2018
  ident: ref4
  publication-title: Ds2Os Traffic Traces IoT Traffic Traces Gathered in a The Ds2Os IoT Environment
– volume: 100
  start-page: 4895
  year: 2022
  ident: ref5
  article-title: Classification of security issues and cyber attacks in layered Internet of Things
  publication-title: J Theor Appl Inf Technol
– ident: ref22
  doi: 10.3390/su14148707
– ident: ref19
  doi: 10.32604/cmc.2022.031734
– ident: ref13
  doi: 10.1007/s11277-019-06986-8
– ident: ref15
  doi: 10.1007/s13369-020-05181-3
– ident: ref35
  doi: 10.1186/s40537-021-00498-8
– volume: 8
  start-page: 169
  year: 2017
  ident: ref42
  article-title: Feature engineering (FE) tools and techniques for better classification performance
  publication-title: International Journal of Engineering and Innovative Technology
– year: 2019
  ident: ref33
  article-title: A comparative analysis of XGBoost
  publication-title: arXiv 1911 01914
– volume: 2
  start-page: 17
  year: 2014
  ident: ref27
  article-title: Comparison of single and ensemble classifiers of support vector machine and classification tree
  publication-title: Applied Mathematical Science
– ident: ref3
  doi: 10.1109/ACCESS.2020.2977643
– volume: 21
  start-page: 1
  year: 2021
  ident: ref16
  article-title: Analysis of machine learning algorithms for anomaly detection on edge devices
  publication-title: SENSORS
– ident: ref8
  doi: 10.1214/aos/1013203451
– ident: ref26
  doi: 10.14569/IJACSA.2020.0111265
– ident: ref17
  doi: 10.1002/cpe.7110
– ident: ref39
  doi: 10.3390/sym12091458
– ident: ref1
  doi: 10.1007/978-3-030-33596-0_22
– volume: 1
  start-page: 111
  year: 2006
  ident: ref41
  article-title: Data preprocessing for supervised leaning
  publication-title: Int J Comput Sci
– ident: ref21
  doi: 10.1016/j.aej.2022.02.063
– ident: ref12
  doi: 10.1016/j.comnet.2020.107247
– ident: ref43
  doi: 10.3390/s22103607
– ident: ref18
  doi: 10.1016/j.cose.2021.102499
– ident: ref44
  doi: 10.1002/ett.3997
– ident: ref24
  doi: 10.3390/computers12020034
– ident: ref7
  doi: 10.1145/2939672.2939785
SSID ssj0000816957
Score 2.3831174
Snippet Machine learning (ML) provides effective solutions to develop efficient intrusion detection system (IDS) for various environments. In the present paper, a...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
and intrusion detection systems (IDS)
Boosting
Classification algorithms
Classifiers
Communications traffic
Cybersecurity
Efficiency
ensemble classifiers
False alarms
gradient boosting algorithms
Internet of Things
Intrusion detection
Intrusion detection systems
intrusion detection systems (IDS)
light gradient boosting machines (LGBM)
Machine learning
Machine learning algorithms
Machine learning classification algorithms
Model accuracy
Performance measurement
Smart buildings
Telecommunication traffic
Traffic models
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA4iHvQgfuJ0Sg4eraZNmzbHuQ_cZQhO8Bby8QaE2Ykb_n7fpN2YCHoReiopaZ43H8_bJs9DyLVmKXDgLim0FkkuPU9MltuEB6nwVNocpI5mE-VkUr28yMcNq6-wJ6yRB26Au9OplnjlhhmNnQ0qnYHwDruOd1q4mK0j69lIpuIcXKVCFmUrM5Qyedfr97FFt8Et_JZnSLIF_7YURcX-1mLlx7wcF5vRAdlvWSLtNW93SLagPiJ7G9qBx6Q3iHsv6NxTXdNxHQ5PIMZ0AMu4u6qmweZsRpGU0vF8mgzjISlHn96wzTS4o5-Q59Fw2n9IWj-ExGIWtky0RvaSWgl5UXJfgoTUOG0LBz7jOeSu8lpDVXpmROmrAoBLIzXLvOWIW85PyXY9r-GMUOYN58KACIOkkF46h4uUYEa60tjMdUi2gkbZViw8eFbMVEwamFQNnirgqVo8O-Rm_dB7o5Xxe_H7gPm6aBC6jjcw_KoNv_or_B1yEiK2UR8SlkqIDumuQqjaUblQWfjnWSEnZef_UfcF2Q3taT7IdMk2BhouyY79XL4uPq5ih_wCr8TiBg
  priority: 102
  providerName: Directory of Open Access Journals
Title Design of an Intrusion Detection Model for IoT-Enabled Smart Home
URI https://ieeexplore.ieee.org/document/10124866
https://www.proquest.com/docview/2823186500
https://doaj.org/article/a1a91a94b0ba488e8a2e6fd531fda6d0
Volume 11
WOSCitedRecordID wos001005684800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxUxFD7Y4kIX1kelV2vJwqVzm5lkksny9vYWu7AIVugu5HECQp0r9talv92cTHqpiIIwDMOQYZLz5XHyON8H8NbxFgWK2PTOqUaaJBrfydAIogpvTZBoXBGb0BcXw9WV-ViD1UssDCKWw2c4p8eylx_X4ZaWyo6Ji0oOSu3AjtZ6CtbaLqiQgoTpdWUWark5XiyXuRBzEgifiy771Ur8NvoUkv6qqvJHV1zGl7O9_8zZU3hSHUm2mJB_Bg9wfA6P79ELvoDFaTmewdaJuZGdjxRfkWFgp7gpB7BGRkpo1yz7rex8fdmsShxVZJ--5vrESEB9Hz6frS6X75sqmdCEPFHbNM5lB6cNBmWvRdJosPXRhT5i6oREGYfkHA46ca90GnpEYbxxvEtB4OCkeAm743rEA2A8eSGUR0XtqDfJxJjHMcW9idqHLs6guzOlDZVPnGQtrm2ZV3BjJ_tbsr-t9p_Bu-1H3yY6jX8nPyGMtkmJC7u8yMa3tWlZ1zqTL-m5d7k7ysXoUKWYO5cUnYp8BvsE2L3_TVjN4PAOclsb7o3taFt0yG4rf_WXz17DI8ritAxzCLsZO3wDD8OPzZeb70dlTp_vH36ujkr9_AXvfOCu
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UVlAfbNWKa2vNg4_ONpNkMpPH7bali-1S6Ap9C7mcgFBnxa79_U0y6VIRBWEehiFhkvPlcnI53wfwydAaOXJfNcbISqjAK8uEq3iiCq-VE6hMFpto5_Pu-lpdlmD1HAuDiPnyGY7Taz7L90v3K22VHSYuKtFJ-QS2GiFYPYRrrbdUkoaEatrCLVRTdTiZTmM1xkkifMxZ9Kwl_23-yTT9RVflj8E4zzCn2_9Zth14WVxJMhmwfwUb2L-GF48IBt_A5Dhf0CDLQExPZn2KsIhAkGNc5StYPUlaaDckeq5ktlxUJzmSypOr77FFkSShvgtfT08W07OqiCZULi7VVpUx0cWpnULRtDy0qLC23rjGY2BcoPBdMAa7NlAr29A1iFxZZSgLjmNnBH8Lm_2yx3dAaLCcS4sy9aRGBeV9nMkktcq31jE_AvZgSu0Ko3gStrjReWVBlR7sr5P9dbH_CD6vM_0YCDX-nfwoYbROmtiw84dofF06lza1UfERlloTB6RYDYYy-Di8BG-kpyPYTYA9-t-A1Qj2HyDXpeveapYORrvouNL3f8n2EZ6dLS7O9fls_mUPnqfiDpsy-7AZccQP8NTdrb7d_jzI7fMeLinhzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+an+Intrusion+Detection+Model+for+IoT-Enabled+Smart+Home&rft.jtitle=IEEE+access&rft.au=Rani%2C+Deepti&rft.au=Gill%2C+Nasib+Singh&rft.au=Gulia%2C+Preeti&rft.au=Arena%2C+Fabio&rft.date=2023-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3276863&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3276863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon