Fusing physics-based and deep learning models for prognostics

Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability to complex real-world domains: (1) the incompleteness of physics-based models and (2) the limited representativeness of the training dataset f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety Jg. 217; S. 107961
Hauptverfasser: Arias Chao, Manuel, Kulkarni, Chetan, Goebel, Kai, Fink, Olga
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Barking Elsevier Ltd 01.01.2022
Elsevier BV
Schlagworte:
ISSN:0951-8320, 1879-0836, 1879-0836
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability to complex real-world domains: (1) the incompleteness of physics-based models and (2) the limited representativeness of the training dataset for data-driven models. Combining the advantages of these two approaches while overcoming some of their limitations, we propose a novel hybrid framework for fusing the information from physics-based performance models with deep learning algorithms for prognostics of complex safety-critical systems. In the proposed framework, we use physics-based performance models to infer unobservable model parameters related to a system’s components health by solving a calibration problem. These parameters are subsequently combined with sensor readings and used as input to a deep neural network, thereby generating a data-driven prognostics model with physics-augmented features. The performance of the hybrid framework is evaluated on an extensive case study comprising run-to-failure degradation trajectories from a fleet of nine turbofan engines under real flight conditions. The experimental results show that the hybrid framework outperforms purely data-driven approaches by extending the prediction horizon by nearly 127%. Furthermore, it requires less training data and is less sensitive to the limited representativeness of the dataset as compared to purely data-driven approaches. Furthermore, we demonstrated the feasibility of the proposed framework on the original CMAPSS dataset, thereby confirming its superior performance. •Novel hybrid framework for prognostics of complex safety-critical systems proposed.•The framework combines deep learning and physics-based performance models.•Deep neural networks are trained with physics-augmented features for RUL prediction.•Framework evaluated on the new CMPASS aero-engine degradation dataset.•The proposed framework outperforms equivalent purely data-driven approaches.
AbstractList Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability to complex real-world domains: (1) the incompleteness of physics-based models and (2) the limited representativeness of the training dataset for data-driven models. Combining the advantages of these two approaches while overcoming some of their limitations, we propose a novel hybrid framework for fusing the information from physics-based performance models with deep learning algorithms for prognostics of complex safety-critical systems. In the proposed framework, we use physics-based performance models to infer unobservable model parameters related to a system’s components health by solving a calibration problem. These parameters are subsequently combined with sensor readings and used as input to a deep neural network, thereby generating a data-driven prognostics model with physics-augmented features. The performance of the hybrid framework is evaluated on an extensive case study comprising run-to-failure degradation trajectories from a fleet of nine turbofan engines under real flight conditions. The experimental results show that the hybrid framework outperforms purely data-driven approaches by extending the prediction horizon by nearly 127%. Furthermore, it requires less training data and is less sensitive to the limited representativeness of the dataset as compared to purely data-driven approaches. Furthermore, we demonstrated the feasibility of the proposed framework on the original CMAPSS dataset, thereby confirming its superior performance.
Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability to complex real-world domains: (1) the incompleteness of physics-based models and (2) the limited representativeness of the training dataset for data-driven models. Combining the advantages of these two approaches while overcoming some of their limitations, we propose a novel hybrid framework for fusing the information from physics-based performance models with deep learning algorithms for prognostics of complex safety-critical systems. In the proposed framework, we use physics-based performance models to infer unobservable model parameters related to a system’s components health by solving a calibration problem. These parameters are subsequently combined with sensor readings and used as input to a deep neural network, thereby generating a data-driven prognostics model with physics-augmented features. The performance of the hybrid framework is evaluated on an extensive case study comprising run-to-failure degradation trajectories from a fleet of nine turbofan engines under real flight conditions. The experimental results show that the hybrid framework outperforms purely data-driven approaches by extending the prediction horizon by nearly 127%. Furthermore, it requires less training data and is less sensitive to the limited representativeness of the dataset as compared to purely data-driven approaches. Furthermore, we demonstrated the feasibility of the proposed framework on the original CMAPSS dataset, thereby confirming its superior performance. •Novel hybrid framework for prognostics of complex safety-critical systems proposed.•The framework combines deep learning and physics-based performance models.•Deep neural networks are trained with physics-augmented features for RUL prediction.•Framework evaluated on the new CMPASS aero-engine degradation dataset.•The proposed framework outperforms equivalent purely data-driven approaches.
ArticleNumber 107961
Author Kulkarni, Chetan
Fink, Olga
Arias Chao, Manuel
Goebel, Kai
Author_xml – sequence: 1
  givenname: Manuel
  orcidid: 0000-0001-6134-3582
  surname: Arias Chao
  fullname: Arias Chao, Manuel
  email: manuel.arias@ethz.ch
  organization: Chair of Intelligent Maintenance Systems, ETH Zurich, Switzerland
– sequence: 2
  givenname: Chetan
  surname: Kulkarni
  fullname: Kulkarni, Chetan
  email: chetan.s.kulkarni@nasa.gov
  organization: KBR, Inc., NASA Ames Research Center, USA
– sequence: 3
  givenname: Kai
  orcidid: 0000-0002-0240-0943
  surname: Goebel
  fullname: Goebel, Kai
  email: kai.goebel@ltu.se
  organization: Luleå University of Technology, Operation and Maintenance Engineering, Luleå, Sweden
– sequence: 4
  givenname: Olga
  orcidid: 0000-0002-9546-1488
  surname: Fink
  fullname: Fink, Olga
  email: ofink@ethz.ch
  organization: Chair of Intelligent Maintenance Systems, ETH Zurich, Switzerland
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87121$$DView record from Swedish Publication Index
BookMark eNp9kE1LxDAQhoOs4Lr6BzwVvNp10o80AT0s6ycIXtRrSNPpmqUmNWkV_71ZKh48eBqYeZ7h5T0kM-ssEnJCYUmBsvPt0mMIywwyGheVYHSPzCmvRAo8ZzMyB1HSlOcZHJDDELYAUIiympPLmzEYu0n6169gdEhrFbBJlG2SBrFPOlTe7u5vrsEuJK3zSe_dxrowRPyI7LeqC3j8Mxfk-eb6aX2XPjze3q9XD6kuQAypKvNMYFVALYDzXGeQ1yLnDGJcWjU1Q6xbVmDFtdBtKTgi56hzphmURY35gpxNf8Mn9mMte2_elP-SThl5ZV5W0vmN7IZR8opmNOKnEx6jvo8YBrl1o7cxocwYFawCJspIZROlvQvBY_v7loLctSq3cteq3LUqp1ajxP9I2gxqMM4OXpnuf_ViUmOR-GHQy6ANWo2N8agH2Tjzn_4NpmOUew
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3203406
crossref_primary_10_2118_220725_PA
crossref_primary_10_1002_qre_3698
crossref_primary_10_1016_j_ymssp_2025_113042
crossref_primary_10_1016_j_ress_2025_111730
crossref_primary_10_1177_14759217251324103
crossref_primary_10_1016_j_ymssp_2024_112192
crossref_primary_10_1109_JSEN_2023_3326487
crossref_primary_10_1016_j_renene_2024_122267
crossref_primary_10_1016_j_ifacol_2024_12_027
crossref_primary_10_1029_2022WR033318
crossref_primary_10_1088_1361_6501_ad83ea
crossref_primary_10_1016_j_ymssp_2022_109610
crossref_primary_10_1007_s40430_025_05400_8
crossref_primary_10_1109_ACCESS_2025_3573400
crossref_primary_10_3390_s22249738
crossref_primary_10_1016_j_ress_2022_108676
crossref_primary_10_1145_3514228
crossref_primary_10_3390_aerospace12080725
crossref_primary_10_1109_JSEN_2025_3547323
crossref_primary_10_1088_1361_6501_adfcf9
crossref_primary_10_1007_s10845_023_02125_0
crossref_primary_10_1109_ACCESS_2025_3607733
crossref_primary_10_1038_s41598_023_33018_0
crossref_primary_10_1109_TIM_2025_3561378
crossref_primary_10_3390_ai5030074
crossref_primary_10_1109_TIM_2023_3260283
crossref_primary_10_1007_s10845_024_02398_z
crossref_primary_10_1109_JSEN_2024_3514168
crossref_primary_10_1109_ACCESS_2024_3391823
crossref_primary_10_1080_24725854_2023_2223245
crossref_primary_10_1016_j_inffus_2025_103427
crossref_primary_10_1109_JSEN_2025_3563586
crossref_primary_10_1016_j_ymssp_2024_111120
crossref_primary_10_1016_j_ress_2024_110659
crossref_primary_10_1016_j_ymssp_2025_113200
crossref_primary_10_1109_TASE_2025_3549061
crossref_primary_10_1016_j_engappai_2023_106623
crossref_primary_10_3390_machines10110974
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1109_MPEL_2024_3524742
crossref_primary_10_1016_j_measurement_2024_116345
crossref_primary_10_1680_jsmic_22_00003
crossref_primary_10_3390_aerospace12030175
crossref_primary_10_1016_j_engappai_2025_110246
crossref_primary_10_1007_s11071_024_10163_3
crossref_primary_10_3390_aerospace9050236
crossref_primary_10_1109_ACCESS_2022_3209205
crossref_primary_10_1007_s42484_024_00184_x
crossref_primary_10_1016_j_ress_2023_109341
crossref_primary_10_1109_TASE_2023_3267860
crossref_primary_10_1088_1361_6501_ad0ad5
crossref_primary_10_1109_JIOT_2025_3569857
crossref_primary_10_3390_a15030098
crossref_primary_10_1002_qre_3445
crossref_primary_10_1016_j_ress_2024_110352
crossref_primary_10_1088_1361_6501_ad3b2c
crossref_primary_10_1016_j_ress_2025_110893
crossref_primary_10_1007_s00521_024_10605_4
crossref_primary_10_3390_aerospace11030217
crossref_primary_10_3390_aerospace10060496
crossref_primary_10_3390_s23198124
crossref_primary_10_1016_j_apenergy_2025_125402
crossref_primary_10_1007_s10845_023_02077_5
crossref_primary_10_1109_JSEN_2024_3477489
crossref_primary_10_1109_OJITS_2025_3585274
crossref_primary_10_1080_23307706_2024_2398536
crossref_primary_10_3390_jlpea11040044
crossref_primary_10_1186_s10033_024_01173_8
crossref_primary_10_1016_j_ress_2024_110285
crossref_primary_10_1177_01423312241292756
crossref_primary_10_1016_j_engappai_2024_109556
crossref_primary_10_3390_coatings15060660
crossref_primary_10_1017_aer_2024_40
crossref_primary_10_1016_j_ress_2023_109723
crossref_primary_10_3390_aerospace11100809
crossref_primary_10_1016_j_asoc_2022_109533
crossref_primary_10_3390_jmse12111913
crossref_primary_10_1088_1361_6501_ad73f1
crossref_primary_10_1016_j_ress_2022_108908
crossref_primary_10_1109_TAES_2023_3338179
crossref_primary_10_1061_JAEEEZ_ASENG_5887
crossref_primary_10_1016_j_ress_2022_108628
crossref_primary_10_1016_j_aei_2023_101973
crossref_primary_10_1017_dce_2024_24
crossref_primary_10_1016_j_aei_2024_102566
crossref_primary_10_1016_j_ress_2022_108900
crossref_primary_10_1016_j_ress_2022_108989
crossref_primary_10_3390_pr10091764
crossref_primary_10_1080_08982112_2024_2385920
crossref_primary_10_1109_ACCESS_2023_3265722
crossref_primary_10_1088_1361_6501_ad2d50
crossref_primary_10_3390_aerospace10010010
crossref_primary_10_1088_1361_6501_ad5746
crossref_primary_10_1016_j_energy_2023_130153
crossref_primary_10_1109_TII_2023_3333933
crossref_primary_10_3390_aerospace10070644
crossref_primary_10_1038_s41598_025_09155_z
crossref_primary_10_1016_j_autcon_2024_105648
crossref_primary_10_1142_S0218539325500068
crossref_primary_10_1016_j_apm_2023_07_011
crossref_primary_10_1016_j_engappai_2022_104926
crossref_primary_10_1016_j_engappai_2023_106707
crossref_primary_10_1115_1_4068697
crossref_primary_10_1016_j_apor_2024_104208
crossref_primary_10_1109_ACCESS_2022_3211258
crossref_primary_10_1109_TIM_2025_3551586
crossref_primary_10_1002_asmb_2930
crossref_primary_10_1016_j_apm_2023_05_038
crossref_primary_10_1177_14759217251368254
crossref_primary_10_1061_JHYEFF_HEENG_6316
crossref_primary_10_1016_j_eng_2024_12_034
crossref_primary_10_1088_2631_8695_ade04f
crossref_primary_10_1016_j_ress_2025_110989
crossref_primary_10_1016_j_ress_2024_110394
crossref_primary_10_3390_s24061765
crossref_primary_10_1002_qre_3520
crossref_primary_10_1007_s00170_023_10969_2
crossref_primary_10_1007_s40747_025_01886_w
crossref_primary_10_1016_j_ymssp_2023_110359
crossref_primary_10_1088_1361_648X_accdab
crossref_primary_10_1109_ACCESS_2024_3387702
crossref_primary_10_1109_TASE_2023_3239004
crossref_primary_10_3390_machines10121137
crossref_primary_10_1016_j_ress_2022_108686
crossref_primary_10_1038_s42256_023_00662_0
crossref_primary_10_1109_TEM_2023_3268618
crossref_primary_10_1016_j_ress_2024_109974
crossref_primary_10_1038_s41598_023_37154_5
crossref_primary_10_1016_j_measurement_2024_114242
Cites_doi 10.3390/app9224813
10.3389/frai.2020.578613
10.1016/j.ress.2017.11.021
10.36001/phmconf.2019.v11i1.807
10.1214/14-STS511
10.1016/j.ress.2018.11.027
10.1109/ACCESS.2020.2987324
10.1115/1.4045293
10.3934/mbe.2019040
10.3390/data6010005
10.1016/j.ress.2020.106926
10.1016/j.ress.2020.107257
10.1109/TSMCA.2012.2207109
10.1016/j.ymssp.2017.11.024
10.1111/1467-9868.00294
10.1016/j.ress.2018.11.011
10.36001/phmconf.2019.v11i1.786
10.1016/j.engappai.2020.103678
10.1198/jasa.2009.ap07466
10.36001/phmconf.2019.v11i1.814
10.3390/s20164537
10.1109/TIE.2019.2962438
10.1109/ACCESS.2019.2920297
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier BV Jan 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1016/j.ress.2021.107961
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-0836
ExternalDocumentID oai_DiVA_org_ltu_87121
10_1016_j_ress_2021_107961
S0951832021004725
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c409t-a5329e740b90883c203b9386002117db6eebf64e78c9cf598ee88ec36c6054be3
ISICitedReferencesCount 260
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702360100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
1879-0836
IngestDate Sat Oct 25 06:17:02 EDT 2025
Wed Aug 13 10:34:36 EDT 2025
Sat Nov 29 07:05:12 EST 2025
Tue Nov 18 22:14:05 EST 2025
Fri Feb 23 02:39:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
CMAPSS
Hybrid model
Prognostics
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-a5329e740b90883c203b9386002117db6eebf64e78c9cf598ee88ec36c6054be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0240-0943
0000-0001-6134-3582
0000-0002-9546-1488
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87121
PQID 2619670695
PQPubID 2045406
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_87121
proquest_journals_2619670695
crossref_primary_10_1016_j_ress_2021_107961
crossref_citationtrail_10_1016_j_ress_2021_107961
elsevier_sciencedirect_doi_10_1016_j_ress_2021_107961
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Khan, Yairi (b5) 2018; 107
Wen, Dong, Gao (b51) 2019; 16
Yucesan YA, Viana FAC. Wind turbine main bearing fatigue life estimation with physics-informed neural networks. In: Annual conference of the PHM society, vol. 11, no. 1. p. 1–14. 2019.
Jia, Karpatne, Willard, Steinbach, Read, Hanson (b21) 2018
Yang, Zhao, Jiang, Sun, Mei (b39) 2019; 9
Saxena, Celaya, Saha, Saha, Goebel (b45) 2010
Kingma, Ba (b43) 2015
Zhang, Dey, Perez, Moura (b17) 2017
Glorot, Bengio (b44) 2010
Walsh, Fletcher (b56) 2004
Rai, Sahu (b15) 2020; 8
Li, Zhang, Ding (b38) 2019; 182
Tian, Chao, Kulkarni, Goebel, Fink (b34) 2020
Arias Chao, Kulkarni, Goebel, Fink (b23) 2021; 6
Kantas, Doucet, Singh, Maciejowski, Chopin (b32) 2015; 30
Borguet (b31) 2012
Fink, Wang, Svensén, Dersin, Lee, Ducoffe (b13) 2020; 92
Ellefsen, Ushakov, Æsøy, Zhang (b35) 2019; 7
Arias Chao, Lilley, Mathé, Schloßhauer (b25) 2015
Biggio, Kastanis (b12) 2020; 3
Kennedy, O’Hagan (b26) 2001; 63
Turner, Rasmussen (b30) 2010
Roth, Doel, Cissell (b24) 2005
.
Bolander, Qiu, Eklund, Hindle, Rosenfeld (b1) 2009
Shi, Chehade (b10) 2021; 205
Saxena, Goebel, Simon, Eklund (b46) 2008
Yu, Kim, Mechefske (b9) 2020; 199
Frederick, Decastro, Litt (b22) 2007
Rutter, Miglioretti, Savarino (b33) 2009; 104
de Oliveira da Costa, Akçay, Zhang, Kaymak (b36) 2020; 195
Crassidis, Junkins (b28) 2011
Julier, Uhlmann (b29) 1997
Kiranyaz, Ince, Abdeljaber, Avci, Gabbouj (b41) 2019
Li, Ding, Sun (b6) 2018; 172
Dourado A, Viana FAC. Physics-informed neural networks for corrosion-fatigue prognosis. In: Annual conference of the PHM society, vol. 11, no. 1. 2019.
Saxena, Goebel (b11) 2008
Malhotra P, TV V, Ramakrishnan A, Anand G, Vig L, Agarwal P et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. In: 1st ACM SIGKDD workshop on machine learning for prognostics and health management. San Francisco: 2016. p. 10.
Willard, Jia, Xu, Steinbach, Kumar (b16) 2020
Arias Chao, Kulkarni, Goebel, Fink (b14) 2019; 10
Schwabacher M, Goebel K. A survey of artificial intelligence for prognostics. In: Association for the advancement of artificial intelligence AAAI fall symposium 2007. 2007. p. 107–14.
Sacks, Welch, Mitchell, Wynn (b27) 1989; 4
URL
Daigle, Goebel (b3) 2013; 43
Alet, Kawaguchi, Bauza, Kuru, Lozano-Perez, Kaelbling (b53) 2020
de Oliveira da Costa, Akcay, Zhang, Kaymak (b7) 2019; 10
Listou Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (b8) 2019; 183
Saravanamuttoo, Rogers, Cohen (b55) 2001
Ji, Han, Hou, Song, Du (b42) 2020; 20
Wang, Michau, Fink (b37) 2021; 68
Narwariya, Malhotra, TV, Vig, Shroff (b52) 2020
Razak (b54) 2013
Pasa GD, de Medeiros IP, Yoneyama T. Operating condition-invariant neural network-based prognostics methods applied on turbofan aircraft engines. In: Proceedings of the annual conference of the PHM society, vol. 11, no. 1. 2019.
Mo, Wu, Li, Huang (b50) 2021
Xu, Wu, Li, Huang (b49) 2020; 20
May R, Csank J, Lavelle T, Litt J, Guo T-H. A high-fidelity simulation of a generic commercial aircraft engine and controller. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. p. 6630.
Nascimento, Viana (b18) 2019
Palazuelos, Droguett, Pascual (b48) 2020; 234
Daigle, Goebel (b2) 2011; 2
Daigle (10.1016/j.ress.2021.107961_b2) 2011; 2
Frederick (10.1016/j.ress.2021.107961_b22) 2007
de Oliveira da Costa (10.1016/j.ress.2021.107961_b36) 2020; 195
Arias Chao (10.1016/j.ress.2021.107961_b14) 2019; 10
Arias Chao (10.1016/j.ress.2021.107961_b25) 2015
Saxena (10.1016/j.ress.2021.107961_b46) 2008
10.1016/j.ress.2021.107961_b47
Mo (10.1016/j.ress.2021.107961_b50) 2021
10.1016/j.ress.2021.107961_b40
Li (10.1016/j.ress.2021.107961_b38) 2019; 182
Ji (10.1016/j.ress.2021.107961_b42) 2020; 20
Ellefsen (10.1016/j.ress.2021.107961_b35) 2019; 7
Willard (10.1016/j.ress.2021.107961_b16) 2020
Borguet (10.1016/j.ress.2021.107961_b31) 2012
Arias Chao (10.1016/j.ress.2021.107961_b23) 2021; 6
Fink (10.1016/j.ress.2021.107961_b13) 2020; 92
Biggio (10.1016/j.ress.2021.107961_b12) 2020; 3
Turner (10.1016/j.ress.2021.107961_b30) 2010
Bolander (10.1016/j.ress.2021.107961_b1) 2009
Kiranyaz (10.1016/j.ress.2021.107961_b41) 2019
Nascimento (10.1016/j.ress.2021.107961_b18) 2019
Walsh (10.1016/j.ress.2021.107961_b56) 2004
Kantas (10.1016/j.ress.2021.107961_b32) 2015; 30
Saxena (10.1016/j.ress.2021.107961_b45) 2010
Wen (10.1016/j.ress.2021.107961_b51) 2019; 16
Zhang (10.1016/j.ress.2021.107961_b17) 2017
Narwariya (10.1016/j.ress.2021.107961_b52) 2020
Razak (10.1016/j.ress.2021.107961_b54) 2013
Kingma (10.1016/j.ress.2021.107961_b43) 2015
Palazuelos (10.1016/j.ress.2021.107961_b48) 2020; 234
Yu (10.1016/j.ress.2021.107961_b9) 2020; 199
Saxena (10.1016/j.ress.2021.107961_b11) 2008
Rutter (10.1016/j.ress.2021.107961_b33) 2009; 104
Julier (10.1016/j.ress.2021.107961_b29) 1997
Sacks (10.1016/j.ress.2021.107961_b27) 1989; 4
Khan (10.1016/j.ress.2021.107961_b5) 2018; 107
10.1016/j.ress.2021.107961_b4
Shi (10.1016/j.ress.2021.107961_b10) 2021; 205
10.1016/j.ress.2021.107961_b20
Jia (10.1016/j.ress.2021.107961_b21) 2018
Kennedy (10.1016/j.ress.2021.107961_b26) 2001; 63
Tian (10.1016/j.ress.2021.107961_b34) 2020
Alet (10.1016/j.ress.2021.107961_b53) 2020
Li (10.1016/j.ress.2021.107961_b6) 2018; 172
Glorot (10.1016/j.ress.2021.107961_b44) 2010
Crassidis (10.1016/j.ress.2021.107961_b28) 2011
Roth (10.1016/j.ress.2021.107961_b24) 2005
de Oliveira da Costa (10.1016/j.ress.2021.107961_b7) 2019; 10
Yang (10.1016/j.ress.2021.107961_b39) 2019; 9
10.1016/j.ress.2021.107961_b19
Wang (10.1016/j.ress.2021.107961_b37) 2021; 68
Listou Ellefsen (10.1016/j.ress.2021.107961_b8) 2019; 183
Daigle (10.1016/j.ress.2021.107961_b3) 2013; 43
Rai (10.1016/j.ress.2021.107961_b15) 2020; 8
Saravanamuttoo (10.1016/j.ress.2021.107961_b55) 2001
Xu (10.1016/j.ress.2021.107961_b49) 2020; 20
10.1016/j.ress.2021.107961_b57
References_xml – volume: 20
  year: 2020
  ident: b42
  article-title: Remaining useful life prediction of airplane engine based on PCA–BLSTM
  publication-title: Sensors
– volume: 63
  start-page: 425
  year: 2001
  end-page: 464
  ident: b26
  article-title: Bayesian calibration of computer models
  publication-title: J R Stat Soc Ser B Stat Methodol
– start-page: 8360
  year: 2019
  end-page: 8364
  ident: b41
  article-title: 1-D convolutional neural networks for signal processing applications
  publication-title: 2019 IEEE international conference on acoustics, speech and signal processing
– volume: 43
  start-page: 535
  year: 2013
  end-page: 546
  ident: b3
  article-title: Model-based prognostics with concurrent damage progression processes
  publication-title: IEEE Trans Syst Man Cybern A
– year: 2020
  ident: b16
  article-title: Integrating physics-based modeling with machine learning: A survey
– volume: 234
  start-page: 151
  year: 2020
  end-page: 167
  ident: b48
  article-title: A novel deep capsule neural network for remaining useful life estimation
  publication-title: Proc. Inst. Mech. Eng. O
– volume: 182
  start-page: 208
  year: 2019
  end-page: 218
  ident: b38
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab Eng Syst Saf
– year: 2015
  ident: b25
  article-title: Calibration and uncertainty quantification of gas turbine performance models
  publication-title: Proceedings of the ASME turbo expo, vol. 7A
– reference: Pasa GD, de Medeiros IP, Yoneyama T. Operating condition-invariant neural network-based prognostics methods applied on turbofan aircraft engines. In: Proceedings of the annual conference of the PHM society, vol. 11, no. 1. 2019.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b50
  article-title: Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit
  publication-title: J Intell Manuf
– year: 2020
  ident: b53
  article-title: Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time
– start-page: 423
  year: 2013
  end-page: 514
  ident: b54
  article-title: 11 - Gas turbine performance modelling, analysis and optimisation
  publication-title: Modern gas turbine systems
– year: 2012
  ident: b31
  article-title: Variations on the Kalman filter for enhanced performance monitoring of gas turbine engines
– volume: 8
  start-page: 71050
  year: 2020
  end-page: 71073
  ident: b15
  article-title: Driven by data or derived through physics? A review of hybrid physics guided machine learning techniques with cyber-physical system (CPS) focus
  publication-title: IEEE Access
– year: 2004
  ident: b56
  article-title: Gas Turbine Performance
– start-page: 249
  year: 2010
  end-page: 256
  ident: b44
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume: 6
  start-page: 5
  year: 2021
  ident: b23
  article-title: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics
  publication-title: Data
– volume: 68
  start-page: 663
  year: 2021
  end-page: 671
  ident: b37
  article-title: Missing-class-robust domain adaptation by unilateral alignment
  publication-title: IEEE Trans Ind Electron
– start-page: 3
  year: 2018
  ident: b21
  article-title: Physics guided recurrent neural networks for modeling dynamical systems: Application to monitoring water temperature and quality in lakes
– volume: 20
  year: 2020
  ident: b49
  article-title: Dilated convolution neural network for remaining useful life prediction
  publication-title: J Comput Inf Sci Eng
– volume: 199
  year: 2020
  ident: b9
  article-title: An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme
  publication-title: Reliab Eng Syst Saf
– volume: 3
  start-page: 88
  year: 2020
  ident: b12
  article-title: Prognostics and health management of industrial assets: Current progress and road ahead
  publication-title: Front Artif Intell
– year: 2015
  ident: b43
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd international conference on learning representations - Conference Track Proceedings
– volume: 92
  year: 2020
  ident: b13
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng Appl Artif Intell
– volume: 30
  start-page: 328
  year: 2015
  end-page: 351
  ident: b32
  article-title: On particle methods for parameter estimation in state-space models
  publication-title: Statist Sci
– start-page: 182
  year: 1997
  end-page: 193
  ident: b29
  article-title: New extension of the Kalman filter to nonlinear systems
  publication-title: Signal processing, sensor fusion, and target recognition VI, vol. 3068
– year: 2010
  ident: b45
  article-title: Metrics for offline evaluation of prognostic performance
  publication-title: Int J Progn Health Manag
– year: 2008
  ident: b11
  article-title: Turbofan engine degradation simulation data set
– year: 2009
  ident: b1
  article-title: Physics-based remaining useful life prediction for aircraft engine bearing prognosis
– reference: Yucesan YA, Viana FAC. Wind turbine main bearing fatigue life estimation with physics-informed neural networks. In: Annual conference of the PHM society, vol. 11, no. 1. p. 1–14. 2019.
– reference: Schwabacher M, Goebel K. A survey of artificial intelligence for prognostics. In: Association for the advancement of artificial intelligence AAAI fall symposium 2007. 2007. p. 107–14.
– start-page: 541
  year: 2005
  end-page: 548
  ident: b24
  article-title: Probabilistic matching of turbofan engine performance models to test data
  publication-title: Proceedings of the ASME turbo expo, vol. 1
– volume: 4
  start-page: 409
  year: 1989
  end-page: 423
  ident: b27
  article-title: Design and analysis of computer experiments
  publication-title: Statist Sci
– volume: 9
  start-page: 4813
  year: 2019
  ident: b39
  article-title: A novel deep learning approach for machinery prognostics based on time windows
  publication-title: Appl Sci
– year: 2001
  ident: b55
  article-title: Gas turbine theory
– start-page: 178
  year: 2010
  end-page: 183
  ident: b30
  article-title: Model based learning of sigma points in unscented Kalman filtering
  publication-title: Proceedings of the 2010 IEEE international workshop on machine learning for signal processing
– volume: 107
  start-page: 241
  year: 2018
  end-page: 265
  ident: b5
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech Syst Signal Process
– reference: Malhotra P, TV V, Ramakrishnan A, Anand G, Vig L, Agarwal P et al. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder. In: 1st ACM SIGKDD workshop on machine learning for prognostics and health management. San Francisco: 2016. p. 10.
– year: 2011
  ident: b28
  publication-title: Optimal estimation of dynamic systems
– volume: 183
  start-page: 240
  year: 2019
  end-page: 251
  ident: b8
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab Eng Syst Saf
– reference: Dourado A, Viana FAC. Physics-informed neural networks for corrosion-fatigue prognosis. In: Annual conference of the PHM society, vol. 11, no. 1. 2019.
– reference: , URL
– volume: 16
  start-page: 862
  year: 2019
  end-page: 880
  ident: b51
  article-title: A new ensemble residual convolutional neural network for remaining useful life estimation
  publication-title: Math Biosci Eng
– reference: May R, Csank J, Lavelle T, Litt J, Guo T-H. A high-fidelity simulation of a generic commercial aircraft engine and controller. In: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. p. 6630.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 19
  ident: b14
  article-title: Hybrid deep fault detection and isolation: Combining deep neural networks and system performance models
  publication-title: Int J Progn Health Manag
– volume: 2
  start-page: 1
  year: 2011
  end-page: 16
  ident: b2
  article-title: A model-based prognostics approach applied to pneumatic valves
  publication-title: Int J Progn Health Manag
– volume: 205
  year: 2021
  ident: b10
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
– year: 2020
  ident: b52
  article-title: Graph neural networks for leveraging industrial equipment structure: An application to remaining useful life estimation
– volume: 10
  year: 2019
  ident: b7
  article-title: Attention and long short-term memory network for remaining useful lifetime predictions of turbofan engine degradation
  publication-title: Int J Progn Health Manag
– volume: 195
  year: 2020
  ident: b36
  article-title: Remaining useful lifetime prediction via deep domain adaptation
  publication-title: Reliab Eng Syst Saf
– volume: 104
  start-page: 1338
  year: 2009
  end-page: 1350
  ident: b33
  article-title: Bayesian calibration of microsimulation models
  publication-title: J Amer Statist Assoc
– reference: .
– year: 2007
  ident: b22
  article-title: User’s guide for the commercial modular aero-propulsion system simulation (C-MAPSS)
– year: 2020
  ident: b34
  article-title: Real-time model calibration with deep reinforcement learning
– volume: 7
  start-page: 71563
  year: 2019
  end-page: 71575
  ident: b35
  article-title: Validation of data-driven labeling approaches using a novel deep network structure for remaining useful life predictions
  publication-title: IEEE Access
– start-page: 1740
  year: 2019
  end-page: 1747
  ident: b18
  article-title: Fleet prognosis with physics-informed recurrent neural networks
  publication-title: Structural health monitoring 2019 - Proceedings of the 12th international workshop on structural health monitoring, vol. 2
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: b6
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
– start-page: 1
  year: 2008
  end-page: 9
  ident: b46
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
  publication-title: 2008 international conference on prognostics and health management
– start-page: 4042
  year: 2017
  end-page: 4047
  ident: b17
  article-title: Remaining useful life estimation of lithium-ion batteries based on thermal dynamics
  publication-title: 2017 american control conference
– volume: 9
  start-page: 4813
  issue: 22
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b39
  article-title: A novel deep learning approach for machinery prognostics based on time windows
  publication-title: Appl Sci
  doi: 10.3390/app9224813
– year: 2020
  ident: 10.1016/j.ress.2021.107961_b34
– volume: 4
  start-page: 409
  issue: 4
  year: 1989
  ident: 10.1016/j.ress.2021.107961_b27
  article-title: Design and analysis of computer experiments
  publication-title: Statist Sci
– year: 2020
  ident: 10.1016/j.ress.2021.107961_b53
– start-page: 1740
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b18
  article-title: Fleet prognosis with physics-informed recurrent neural networks
– year: 2020
  ident: 10.1016/j.ress.2021.107961_b16
– start-page: 182
  year: 1997
  ident: 10.1016/j.ress.2021.107961_b29
  article-title: New extension of the Kalman filter to nonlinear systems
– volume: 3
  start-page: 88
  year: 2020
  ident: 10.1016/j.ress.2021.107961_b12
  article-title: Prognostics and health management of industrial assets: Current progress and road ahead
  publication-title: Front Artif Intell
  doi: 10.3389/frai.2020.578613
– volume: 195
  year: 2020
  ident: 10.1016/j.ress.2021.107961_b36
  article-title: Remaining useful lifetime prediction via deep domain adaptation
  publication-title: Reliab Eng Syst Saf
– volume: 172
  start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2021.107961_b6
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.11.021
– ident: 10.1016/j.ress.2021.107961_b20
  doi: 10.36001/phmconf.2019.v11i1.807
– volume: 30
  start-page: 328
  issue: 3
  year: 2015
  ident: 10.1016/j.ress.2021.107961_b32
  article-title: On particle methods for parameter estimation in state-space models
  publication-title: Statist Sci
  doi: 10.1214/14-STS511
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b14
  article-title: Hybrid deep fault detection and isolation: Combining deep neural networks and system performance models
  publication-title: Int J Progn Health Manag
– volume: 183
  start-page: 240
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b8
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.027
– start-page: 4042
  year: 2017
  ident: 10.1016/j.ress.2021.107961_b17
  article-title: Remaining useful life estimation of lithium-ion batteries based on thermal dynamics
– year: 2011
  ident: 10.1016/j.ress.2021.107961_b28
– start-page: 178
  year: 2010
  ident: 10.1016/j.ress.2021.107961_b30
  article-title: Model based learning of sigma points in unscented Kalman filtering
– volume: 8
  start-page: 71050
  year: 2020
  ident: 10.1016/j.ress.2021.107961_b15
  article-title: Driven by data or derived through physics? A review of hybrid physics guided machine learning techniques with cyber-physical system (CPS) focus
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987324
– year: 2001
  ident: 10.1016/j.ress.2021.107961_b55
– ident: 10.1016/j.ress.2021.107961_b4
– volume: 20
  issue: 2
  year: 2020
  ident: 10.1016/j.ress.2021.107961_b49
  article-title: Dilated convolution neural network for remaining useful life prediction
  publication-title: J Comput Inf Sci Eng
  doi: 10.1115/1.4045293
– year: 2009
  ident: 10.1016/j.ress.2021.107961_b1
– year: 2007
  ident: 10.1016/j.ress.2021.107961_b22
– volume: 234
  start-page: 151
  issue: 1
  year: 2020
  ident: 10.1016/j.ress.2021.107961_b48
  article-title: A novel deep capsule neural network for remaining useful life estimation
  publication-title: Proc. Inst. Mech. Eng. O
– volume: 16
  start-page: 862
  issue: 2
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b51
  article-title: A new ensemble residual convolutional neural network for remaining useful life estimation
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2019040
– year: 2008
  ident: 10.1016/j.ress.2021.107961_b11
– volume: 6
  start-page: 5
  issue: 1
  year: 2021
  ident: 10.1016/j.ress.2021.107961_b23
  article-title: Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics
  publication-title: Data
  doi: 10.3390/data6010005
– start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2021.107961_b50
  article-title: Remaining useful life estimation via transformer encoder enhanced by a gated convolutional unit
  publication-title: J Intell Manuf
– volume: 199
  year: 2020
  ident: 10.1016/j.ress.2021.107961_b9
  article-title: An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.106926
– volume: 205
  year: 2021
  ident: 10.1016/j.ress.2021.107961_b10
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107257
– start-page: 3
  year: 2018
  ident: 10.1016/j.ress.2021.107961_b21
– start-page: 541
  year: 2005
  ident: 10.1016/j.ress.2021.107961_b24
  article-title: Probabilistic matching of turbofan engine performance models to test data
– year: 2012
  ident: 10.1016/j.ress.2021.107961_b31
– volume: 43
  start-page: 535
  issue: 3
  year: 2013
  ident: 10.1016/j.ress.2021.107961_b3
  article-title: Model-based prognostics with concurrent damage progression processes
  publication-title: IEEE Trans Syst Man Cybern A
  doi: 10.1109/TSMCA.2012.2207109
– volume: 107
  start-page: 241
  year: 2018
  ident: 10.1016/j.ress.2021.107961_b5
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.11.024
– volume: 63
  start-page: 425
  issue: 3
  year: 2001
  ident: 10.1016/j.ress.2021.107961_b26
  article-title: Bayesian calibration of computer models
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/1467-9868.00294
– volume: 182
  start-page: 208
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b38
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.011
– year: 2015
  ident: 10.1016/j.ress.2021.107961_b25
  article-title: Calibration and uncertainty quantification of gas turbine performance models
– ident: 10.1016/j.ress.2021.107961_b57
– volume: 10
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b7
  article-title: Attention and long short-term memory network for remaining useful lifetime predictions of turbofan engine degradation
  publication-title: Int J Progn Health Manag
– ident: 10.1016/j.ress.2021.107961_b40
  doi: 10.36001/phmconf.2019.v11i1.786
– volume: 92
  year: 2020
  ident: 10.1016/j.ress.2021.107961_b13
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103678
– start-page: 249
  year: 2010
  ident: 10.1016/j.ress.2021.107961_b44
– ident: 10.1016/j.ress.2021.107961_b47
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.ress.2021.107961_b2
  article-title: A model-based prognostics approach applied to pneumatic valves
  publication-title: Int J Progn Health Manag
– year: 2004
  ident: 10.1016/j.ress.2021.107961_b56
– volume: 104
  start-page: 1338
  issue: 488
  year: 2009
  ident: 10.1016/j.ress.2021.107961_b33
  article-title: Bayesian calibration of microsimulation models
  publication-title: J Amer Statist Assoc
  doi: 10.1198/jasa.2009.ap07466
– ident: 10.1016/j.ress.2021.107961_b19
  doi: 10.36001/phmconf.2019.v11i1.814
– year: 2020
  ident: 10.1016/j.ress.2021.107961_b52
– volume: 20
  issue: 16
  year: 2020
  ident: 10.1016/j.ress.2021.107961_b42
  article-title: Remaining useful life prediction of airplane engine based on PCA–BLSTM
  publication-title: Sensors
  doi: 10.3390/s20164537
– start-page: 423
  year: 2013
  ident: 10.1016/j.ress.2021.107961_b54
  article-title: 11 - Gas turbine performance modelling, analysis and optimisation
– year: 2015
  ident: 10.1016/j.ress.2021.107961_b43
  article-title: Adam: A method for stochastic optimization
– start-page: 8360
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b41
  article-title: 1-D convolutional neural networks for signal processing applications
– year: 2010
  ident: 10.1016/j.ress.2021.107961_b45
  article-title: Metrics for offline evaluation of prognostic performance
  publication-title: Int J Progn Health Manag
– start-page: 1
  year: 2008
  ident: 10.1016/j.ress.2021.107961_b46
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
– volume: 68
  start-page: 663
  issue: 1
  year: 2021
  ident: 10.1016/j.ress.2021.107961_b37
  article-title: Missing-class-robust domain adaptation by unilateral alignment
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2962438
– volume: 7
  start-page: 71563
  year: 2019
  ident: 10.1016/j.ress.2021.107961_b35
  article-title: Validation of data-driven labeling approaches using a novel deep network structure for remaining useful life predictions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920297
SSID ssj0004957
Score 2.70571
Snippet Physics-based and data-driven models for remaining useful lifetime (RUL) prediction typically suffer from two major challenges that limit their applicability...
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107961
SubjectTerms Algorithms
Artificial neural networks
CMAPSS
Datasets
Deep learning
Drift och underhållsteknik
Flight conditions
Hybrid model
Learning algorithms
Machine learning
Mathematical models
Neural networks
Operation and Maintenance
Parameters
Physics
Prognostics
Reliability engineering
Safety critical
Training
Turbofan engines
Title Fusing physics-based and deep learning models for prognostics
URI https://dx.doi.org/10.1016/j.ress.2021.107961
https://www.proquest.com/docview/2619670695
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-87121
Volume 217
WOSCitedRecordID wos000702360100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 1879-0836
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hlAMcEE8RWpAPcIqM4ufuHiNoeUmFQ0G5rez1OEqJ7Ci2Ufvvmd1ZOwZKVQ5crGhjx9bMl_HM7Mw3jL00lCcF2n0_1VmJAUpU-DIWpV-IAu0hxOikCDtsgp-eiuVSfnFj7ho7ToBXlbi4kNv_qmpcQ2Wb1tl_UPfwo7iAn1HpeES14_FGij_pbPhPKYvGN68pS8c6KwC2_ZSIFY3AsWQMtkarqi1h89hXNdXKxOJ9OYM9baEFCxFAz5qsdDwiBJp11pgN_Jq6gKoOhvqNT93mu7kzbfFDuwfluxo1TD1C2XqAE4bIZunzZpWNExPhKEtpJphb2uuxmQ2pR_MPk03Zg_PXJruA8XoY4BKXxNB-BRX22_W3hap3K7VpO4XRniEROAg5xkUTdrD4cLz8uG-LlUT0ik6kj4bL9sb2T-b6p6jU7_db_81HGccgY15Z64uc3Wf3XBDhLUj5D9gtqB6yuyNqyUfMwcD7BQYewsAzMPB6GHgEAw9h4I1g8Jh9PTk-e_Ped6MyfI0BeutnSRRK4PE8N3VrkQ7nUS4jYTZdg4AXeQqQl2kMXGipy0QKACFAR6nGcDbOIXrCJlVdwVPmBToJE13EZcbLuASexVwWAedZVEYxBHLKgl44SjseeTPOZKP6gsFzZQSqjEAVCXTKZsM1W2JRufbspJe5cn4g-XcKMXPtdUe9gpT7Q-L3Kb5j-DyVyZS9IqUNj3A1np7d8LxDdsfAnvJxR2zS7jp4zm7rH-262b1wYPwJZCOVug
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+physics-based+and+deep+learning+models+for+prognostics&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Arias+Chao%2C+Manuel&rft.au=Kulkarni%2C+Chetan&rft.au=Goebel%2C+Kai&rft.au=Fink%2C+Olga&rft.date=2022&rft.issn=1879-0836&rft.volume=217&rft_id=info:doi/10.1016%2Fj.ress.2021.107961&rft.externalDocID=oai_DiVA_org_ltu_87121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon