A Special Points and Neural Network-Based Dynamic Multi-Objective Optimization Algorithm

This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective optimization problems (DMOPs) with an irregularly changing pareto set. In the stage of population initialization, the algorithm employs a fe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 13; pp. 24765 - 24792
Main Authors: Li, Sanyi, Hou, Wenjie, Liu, Peng, Yue, Weichao, Wang, Qian
Format: Journal Article
Language:English
Published: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective optimization problems (DMOPs) with an irregularly changing pareto set. In the stage of population initialization, the algorithm employs a feedforward neural network (FNN) along with special points to generate an initial population. The FNN is trained with historical special points (knee point, boundary point, center point), and the current special points are generated by the FNN when an environmental change is detected. Then the decision variables are classified into convergence variables and diversity variables. The convergence variables of special points are locally searched to form a new population and the best individuals of this population are selected. Finally, a portion of the initial population is generated by conducting a local search on the diversity variables of best individuals, while the remaining portion is produced using random strategies. SPNN-DMOA only needs to maintain non-dominated solutions in proximity to special points, which reduces the computational complexity in the dynamic evolution process. The proposed algorithm has been compared with other state-of-the-art algorithms on a series of benchmark problems, demonstrating its superior performance in optimizing DMOPs.
AbstractList This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective optimization problems (DMOPs) with an irregularly changing pareto set. In the stage of population initialization, the algorithm employs a feedforward neural network (FNN) along with special points to generate an initial population. The FNN is trained with historical special points (knee point, boundary point, center point), and the current special points are generated by the FNN when an environmental change is detected. Then the decision variables are classified into convergence variables and diversity variables. The convergence variables of special points are locally searched to form a new population and the best individuals of this population are selected. Finally, a portion of the initial population is generated by conducting a local search on the diversity variables of best individuals, while the remaining portion is produced using random strategies. SPNN-DMOA only needs to maintain non-dominated solutions in proximity to special points, which reduces the computational complexity in the dynamic evolution process. The proposed algorithm has been compared with other state-of-the-art algorithms on a series of benchmark problems, demonstrating its superior performance in optimizing DMOPs.
Author Liu, Peng
Yue, Weichao
Wang, Qian
Hou, Wenjie
Li, Sanyi
Author_xml – sequence: 1
  givenname: Sanyi
  orcidid: 0009-0009-0373-7562
  surname: Li
  fullname: Li, Sanyi
  email: wslisanyi@163.com
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
– sequence: 2
  givenname: Wenjie
  orcidid: 0009-0004-8054-2703
  surname: Hou
  fullname: Hou, Wenjie
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
– sequence: 3
  givenname: Peng
  surname: Liu
  fullname: Liu, Peng
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
– sequence: 4
  givenname: Weichao
  surname: Yue
  fullname: Yue, Weichao
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
– sequence: 5
  givenname: Qian
  orcidid: 0000-0001-9525-8124
  surname: Wang
  fullname: Wang, Qian
  organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
BookMark eNp9kc1u1DAUhS1UJErbJ4BFJNYZ7Pgn8XIYWqhUOkgDEjvr2r4pHjLx4HhA5elxm1aqWOCN7aP7HR_rvCRHYxyRkFeMLhij-u1ytTrfbBYNbeSCS95J3j4jxw1Tui5XdfTk_IKcTdOWltUVSbbH5Nuy2uzRBRiqzzGMeapg9NU1HlJRrjH_julH_Q4m9NX72xF2wVWfDkMO9dpu0eXwC6v1Podd-AM5xLFaDjcxhfx9d0qe9zBMePawn5CvF-dfVh_rq_WHy9XyqnaC6lxDidUKbZmyUsimcd5J1iLXFqDrhe5BsY5xy2njkQrZUd8DU85Zy7S0jJ-Qy9nXR9iafQo7SLcmQjD3Qkw3BlIObkCjgQqwopOKl7dap5Xy2vlOCs8t0qZ4vZm99in-POCUzTYe0ljiG86U1IJyysuUnqdcitOUsDcu5Pvf5wRhMIyau17M3Iu568U89FJY_g_7mPj_1OuZCoj4hOjaErrhfwGJ0Zo2
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_eswa_2025_129642
Cites_doi 10.1109/TCYB.2020.2989465
10.1016/j.swevo.2023.101284
10.1016/j.ins.2019.01.066
10.1109/TCYB.2015.2510698
10.1109/TCYB.2013.2245892
10.1109/TCYB.2020.3041212
10.1016/j.swevo.2021.100975
10.1109/CEC.2009.4983135
10.1016/j.ins.2024.120193
10.1109/TEVC.2008.920671
10.1007/s00500-014-1477-4
10.1109/TCYB.2020.2986600
10.1007/s00500-015-1820-4
10.1016/j.est.2024.110779
10.1016/j.swevo.2022.101164
10.54254/2755-2721/50/20241499
10.1016/j.neucom.2023.03.073
10.1016/j.ins.2019.09.016
10.1016/j.rcim.2023.102597
10.1016/j.ins.2023.119867
10.1109/TCYB.2022.3180214
10.1109/TC.2024.3365949
10.1016/j.ins.2020.08.101
10.1016/j.ins.2022.09.022
10.1080/0305215X.2010.548863
10.1016/j.eswa.2024.123472
10.1016/j.ins.2015.10.010
10.1109/TEVC.2004.831456
10.1016/j.ins.2023.04.006
10.1016/j.ins.2023.119627
10.1016/j.swevo.2023.101385
10.1109/ICCIA49625.2020.00039
10.1016/j.cie.2023.109590
10.3390/pr11020613
10.1109/TEVC.2014.2378512
10.1007/978-3-030-72062-9_18
10.1109/tits.2023.3267103
10.1016/j.knosys.2020.106612
10.1016/j.asoc.2017.08.004
10.1016/j.ins.2024.120565
10.1109/TEVC.2016.2574621
10.1016/j.asoc.2023.111114
10.3390/app13084795
10.1016/j.ins.2021.01.021
10.1016/j.ins.2021.08.065
10.1016/j.swevo.2020.100829
10.1109/TCYB.2021.3086501
10.1109/TEVC.2023.3314766
10.1016/j.ins.2021.08.027
10.1016/j.eswa.2023.120268
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3538537
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 24792
ExternalDocumentID oai_doaj_org_article_9a04ab485635457c966d9cd854d3be02
10_1109_ACCESS_2025_3538537
10870232
Genre orig-research
GrantInformation_xml – fundername: Henan Provincial Key Science and Technology Research Project
  grantid: 232102321034
  funderid: 10.13039/501100017700
– fundername: National Natural Science Foundation of China
  grantid: 62203402
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-a353749b16b54522cdc517e39baa8f49fa61813b302de04580dfa16ccbb195b13
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420279300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:40 EDT 2025
Mon Jun 30 12:39:26 EDT 2025
Sat Nov 29 08:17:44 EST 2025
Tue Nov 18 21:17:28 EST 2025
Wed Aug 27 01:50:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-a353749b16b54522cdc517e39baa8f49fa61813b302de04580dfa16ccbb195b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-8054-2703
0009-0009-0373-7562
0000-0001-9525-8124
OpenAccessLink https://ieeexplore.ieee.org/document/10870232
PQID 3165940303
PQPubID 4845423
PageCount 28
ParticipantIDs proquest_journals_3165940303
doaj_primary_oai_doaj_org_article_9a04ab485635457c966d9cd854d3be02
crossref_citationtrail_10_1109_ACCESS_2025_3538537
crossref_primary_10_1109_ACCESS_2025_3538537
ieee_primary_10870232
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref10
  doi: 10.1109/TCYB.2020.2989465
– ident: ref21
  doi: 10.1016/j.swevo.2023.101284
– ident: ref11
  doi: 10.1016/j.ins.2019.01.066
– ident: ref47
  doi: 10.1109/TCYB.2015.2510698
– ident: ref33
  doi: 10.1109/TCYB.2013.2245892
– ident: ref39
  doi: 10.1109/TCYB.2020.3041212
– ident: ref1
  doi: 10.1016/j.swevo.2021.100975
– ident: ref34
  doi: 10.1109/CEC.2009.4983135
– ident: ref27
  doi: 10.1016/j.ins.2024.120193
– ident: ref45
  doi: 10.1109/TEVC.2008.920671
– ident: ref28
  doi: 10.1007/s00500-014-1477-4
– ident: ref38
  doi: 10.1109/TCYB.2020.2986600
– ident: ref23
  doi: 10.1007/s00500-015-1820-4
– ident: ref5
  doi: 10.1016/j.est.2024.110779
– ident: ref12
  doi: 10.1016/j.swevo.2022.101164
– ident: ref8
  doi: 10.54254/2755-2721/50/20241499
– ident: ref29
  doi: 10.1016/j.neucom.2023.03.073
– ident: ref40
  doi: 10.1016/j.ins.2019.09.016
– ident: ref2
  doi: 10.1016/j.rcim.2023.102597
– ident: ref19
  doi: 10.1016/j.ins.2023.119867
– ident: ref36
  doi: 10.1109/TCYB.2022.3180214
– ident: ref18
  doi: 10.1109/TC.2024.3365949
– ident: ref32
  doi: 10.1016/j.ins.2020.08.101
– ident: ref13
  doi: 10.1016/j.ins.2022.09.022
– ident: ref41
  doi: 10.1080/0305215X.2010.548863
– ident: ref7
  doi: 10.1016/j.eswa.2024.123472
– ident: ref48
  doi: 10.1016/j.ins.2015.10.010
– ident: ref46
  doi: 10.1109/TEVC.2004.831456
– ident: ref22
  doi: 10.1016/j.ins.2023.04.006
– ident: ref30
  doi: 10.1016/j.ins.2023.119627
– ident: ref26
  doi: 10.1016/j.swevo.2023.101385
– ident: ref25
  doi: 10.1109/ICCIA49625.2020.00039
– ident: ref3
  doi: 10.1016/j.cie.2023.109590
– ident: ref16
  doi: 10.3390/pr11020613
– ident: ref42
  doi: 10.1109/TEVC.2014.2378512
– ident: ref44
  doi: 10.1007/978-3-030-72062-9_18
– ident: ref4
  doi: 10.1109/tits.2023.3267103
– ident: ref20
  doi: 10.1016/j.knosys.2020.106612
– ident: ref43
  doi: 10.1016/j.asoc.2017.08.004
– ident: ref9
  doi: 10.1016/j.ins.2024.120565
– ident: ref24
  doi: 10.1109/TEVC.2016.2574621
– ident: ref14
  doi: 10.1016/j.asoc.2023.111114
– ident: ref31
  doi: 10.3390/app13084795
– ident: ref37
  doi: 10.1016/j.ins.2021.01.021
– ident: ref49
  doi: 10.1016/j.ins.2021.08.065
– ident: ref35
  doi: 10.1016/j.swevo.2020.100829
– ident: ref17
  doi: 10.1109/TCYB.2021.3086501
– ident: ref15
  doi: 10.1109/TEVC.2023.3314766
– ident: ref50
  doi: 10.1016/j.ins.2021.08.027
– ident: ref6
  doi: 10.1016/j.eswa.2023.120268
SSID ssj0000816957
Score 2.3411171
Snippet This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24765
SubjectTerms Artificial neural networks
Classification algorithms
Convergence
decision variable classification
Diversity reception
Dynamic multi-objective optimization
Evolutionary algorithms
Heuristic algorithms
irregular environment
Machine learning algorithms
Multiple objective analysis
neural network
Neural networks
Optical fibers
Optimization
Optimization algorithms
Pareto optimization
prediction
Prediction algorithms
Random variables
special point
Vectors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQYoABcYpyyQMjATu2k3gsBcTUdgCpm-WrUAQpagO_n-fYoEhIsLBajpx3-B2J_X0InTnjK-qpzcIVr4w7mWeaOZ0Jwj0hrgiAMC3ZRDkcVpOJHHeovsKZsAgPHBV3KTXh2vBKQGbkorRQnjtpXSW4Y8ZHGElSyk4z1cbgihZSlAlmiBJ52R8MQCJoCHNxwWCXi8B83klFLWJ_olj5EZfbZHO7hTZTlYj78e220Yqvd9BGBztwF036OHHH4_F8VjdLrGuHA9YGjAzj4e7sCnKUw9eRdR63l22zkXmOQQ6PIFy8pnuYuP_yOF_MmqfXPfRwe3M_uMsSTUJmoTlrQLcgC5eGFiYQhufWWUFLz6TRuppyOdUFpHFmGMmdD_9FiZtqWlhrDJXCULaPVut57Q8QNpDutZzmpSYeOhmi88JyaLkq6aA0dLqH8i-NKZswxAOVxYtqewkiVVSzCmpWSc09dP790FuE0Ph9-lUwxffUgH_dDoBXqOQV6i-v6KG9YMjOeiANFI89dPxlWZU261IxWgjJIdqxw_9Y-witB3nid5pjtNos3v0JWrMfzWy5OG399BMC5edU
  priority: 102
  providerName: Directory of Open Access Journals
Title A Special Points and Neural Network-Based Dynamic Multi-Objective Optimization Algorithm
URI https://ieeexplore.ieee.org/document/10870232
https://www.proquest.com/docview/3165940303
https://doaj.org/article/9a04ab485635457c966d9cd854d3be02
Volume 13
WOSCitedRecordID wos001420279300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7RigMcoLRFpC2VDz2yxV7bu-tjGlr1QtpDkXKz_AoEtRuUbDny2xk_GkVCIHFZrSxbu_Z4xjO25_sAzrwNHQvMVTHFqxJe1ZXh3lSSikCpbyIgTCKbaKfTbjZTtyVZPeXChBDS5bNwHl_TWb5fuse4VYYajrMLXYAd2GnbJidrbTZUIoOEkm1BFmJUfRxPJtgJjAFrec5RsWUkO99afRJIf2FV-cMUp_Xl6vV__tkevCqOJBlnyb-BZ6Hfh5db8IIHMBuTQi9PbpeLflgT03sS4TiwZJrvf1cXuIx58ikT05OUj1vd2O_ZDpIbtCgPJVWTjO-_LleL4dvDIXy5urybXFeFSaFyGL8NOPzYd6Esa2zkFK-dd5K1gStrTDcXam4aXOm55bT2IR6dUj83rHHOWqakZfwt7PbLPrwDYtEjMGpet4YGDHaoqRsnMCrrlEfv0ZsR1E8jrF2BGY9sF_c6hRtU6SwWHcWii1hG8GHT6EdG2fh39Ysouk3VCJGdClAmumicVoYKY0Un0aUSsnUY13nlfCeF5zbQegSHUY5b38siHMHJ00zQRZ_XmrNGKoEGkR_9pdkxvIi_mHdnTmB3WD2G9_Dc_RwW69VpCvXx-fnX5Wmatr8B6VnnmA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxQxFH9RJFEPfiCGVZQePDLQTtuZ6XFZJRhw4QDJ3pp-La6BWbI7-Pf72imbTQwm3ibNNNPOr--r7Xs_gC_ehoYF5oqY4lUIr8rCcG8KSUWg1FexIEwim6jH42YyURc5WT3lwoQQ0uWzcBAf01m-n7v7uFWGEo6rC12Ap_AsUmfldK3VlkrkkFCyzrWFGFWHw9EIp4FRYCkPOIq2jHTna_YnlenPvCp_KeNkYY5f_-fY3sCr7EqSYY_9W3gS2i14uVZg8B1MhiQTzJOL-aztlsS0nsSCHNgy7m-AF0doyDz52lPTk5SRW5zbX70mJOeoU25zsiYZ3lzPF7Pu5-02XB1_uxydFJlLoXAYwXUIAM5dKMsqG1nFS-edZHXgyhrTTIWamgptPbeclj7Ew1Pqp4ZVzlnLlLSMv4eNdt6GHSAWfQKjpmVtaMBwh5qycgLjskZ59B-9GUD58Ie1y4XGI9_FjU4BB1W6h0VHWHSGZQD7q053fZ2Nf79-FKFbvRqLZKcGxERnmdPKUGGsaCQ6VULWDiM7r5xvpPDcBloOYDviuPa9HsIB7D6sBJ0leqk5q6QSqBL5h0e67cHzk8sfZ_rs-_j0I7yIw-33anZho1vch0-w6X53s-Xic1q2fwA2eui7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Special+Points+and+Neural+Network-Based+Dynamic+Multi-Objective+Optimization+Algorithm&rft.jtitle=IEEE+access&rft.au=Li%2C+Sanyi&rft.au=Hou%2C+Wenjie&rft.au=Liu%2C+Peng&rft.au=Yue%2C+Weichao&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=24765&rft.epage=24792&rft_id=info:doi/10.1109%2FACCESS.2025.3538537&rft.externalDocID=10870232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon