A Special Points and Neural Network-Based Dynamic Multi-Objective Optimization Algorithm
This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective optimization problems (DMOPs) with an irregularly changing pareto set. In the stage of population initialization, the algorithm employs a fe...
Saved in:
| Published in: | IEEE access Vol. 13; pp. 24765 - 24792 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective optimization problems (DMOPs) with an irregularly changing pareto set. In the stage of population initialization, the algorithm employs a feedforward neural network (FNN) along with special points to generate an initial population. The FNN is trained with historical special points (knee point, boundary point, center point), and the current special points are generated by the FNN when an environmental change is detected. Then the decision variables are classified into convergence variables and diversity variables. The convergence variables of special points are locally searched to form a new population and the best individuals of this population are selected. Finally, a portion of the initial population is generated by conducting a local search on the diversity variables of best individuals, while the remaining portion is produced using random strategies. SPNN-DMOA only needs to maintain non-dominated solutions in proximity to special points, which reduces the computational complexity in the dynamic evolution process. The proposed algorithm has been compared with other state-of-the-art algorithms on a series of benchmark problems, demonstrating its superior performance in optimizing DMOPs. |
|---|---|
| AbstractList | This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective optimization problems (DMOPs) with an irregularly changing pareto set. In the stage of population initialization, the algorithm employs a feedforward neural network (FNN) along with special points to generate an initial population. The FNN is trained with historical special points (knee point, boundary point, center point), and the current special points are generated by the FNN when an environmental change is detected. Then the decision variables are classified into convergence variables and diversity variables. The convergence variables of special points are locally searched to form a new population and the best individuals of this population are selected. Finally, a portion of the initial population is generated by conducting a local search on the diversity variables of best individuals, while the remaining portion is produced using random strategies. SPNN-DMOA only needs to maintain non-dominated solutions in proximity to special points, which reduces the computational complexity in the dynamic evolution process. The proposed algorithm has been compared with other state-of-the-art algorithms on a series of benchmark problems, demonstrating its superior performance in optimizing DMOPs. |
| Author | Liu, Peng Yue, Weichao Wang, Qian Hou, Wenjie Li, Sanyi |
| Author_xml | – sequence: 1 givenname: Sanyi orcidid: 0009-0009-0373-7562 surname: Li fullname: Li, Sanyi email: wslisanyi@163.com organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China – sequence: 2 givenname: Wenjie orcidid: 0009-0004-8054-2703 surname: Hou fullname: Hou, Wenjie organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China – sequence: 3 givenname: Peng surname: Liu fullname: Liu, Peng organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China – sequence: 4 givenname: Weichao surname: Yue fullname: Yue, Weichao organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China – sequence: 5 givenname: Qian orcidid: 0000-0001-9525-8124 surname: Wang fullname: Wang, Qian organization: School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China |
| BookMark | eNp9kc1u1DAUhS1UJErbJ4BFJNYZ7Pgn8XIYWqhUOkgDEjvr2r4pHjLx4HhA5elxm1aqWOCN7aP7HR_rvCRHYxyRkFeMLhij-u1ytTrfbBYNbeSCS95J3j4jxw1Tui5XdfTk_IKcTdOWltUVSbbH5Nuy2uzRBRiqzzGMeapg9NU1HlJRrjH_julH_Q4m9NX72xF2wVWfDkMO9dpu0eXwC6v1Podd-AM5xLFaDjcxhfx9d0qe9zBMePawn5CvF-dfVh_rq_WHy9XyqnaC6lxDidUKbZmyUsimcd5J1iLXFqDrhe5BsY5xy2njkQrZUd8DU85Zy7S0jJ-Qy9nXR9iafQo7SLcmQjD3Qkw3BlIObkCjgQqwopOKl7dap5Xy2vlOCs8t0qZ4vZm99in-POCUzTYe0ljiG86U1IJyysuUnqdcitOUsDcu5Pvf5wRhMIyau17M3Iu568U89FJY_g_7mPj_1OuZCoj4hOjaErrhfwGJ0Zo2 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_129642 |
| Cites_doi | 10.1109/TCYB.2020.2989465 10.1016/j.swevo.2023.101284 10.1016/j.ins.2019.01.066 10.1109/TCYB.2015.2510698 10.1109/TCYB.2013.2245892 10.1109/TCYB.2020.3041212 10.1016/j.swevo.2021.100975 10.1109/CEC.2009.4983135 10.1016/j.ins.2024.120193 10.1109/TEVC.2008.920671 10.1007/s00500-014-1477-4 10.1109/TCYB.2020.2986600 10.1007/s00500-015-1820-4 10.1016/j.est.2024.110779 10.1016/j.swevo.2022.101164 10.54254/2755-2721/50/20241499 10.1016/j.neucom.2023.03.073 10.1016/j.ins.2019.09.016 10.1016/j.rcim.2023.102597 10.1016/j.ins.2023.119867 10.1109/TCYB.2022.3180214 10.1109/TC.2024.3365949 10.1016/j.ins.2020.08.101 10.1016/j.ins.2022.09.022 10.1080/0305215X.2010.548863 10.1016/j.eswa.2024.123472 10.1016/j.ins.2015.10.010 10.1109/TEVC.2004.831456 10.1016/j.ins.2023.04.006 10.1016/j.ins.2023.119627 10.1016/j.swevo.2023.101385 10.1109/ICCIA49625.2020.00039 10.1016/j.cie.2023.109590 10.3390/pr11020613 10.1109/TEVC.2014.2378512 10.1007/978-3-030-72062-9_18 10.1109/tits.2023.3267103 10.1016/j.knosys.2020.106612 10.1016/j.asoc.2017.08.004 10.1016/j.ins.2024.120565 10.1109/TEVC.2016.2574621 10.1016/j.asoc.2023.111114 10.3390/app13084795 10.1016/j.ins.2021.01.021 10.1016/j.ins.2021.08.065 10.1016/j.swevo.2020.100829 10.1109/TCYB.2021.3086501 10.1109/TEVC.2023.3314766 10.1016/j.ins.2021.08.027 10.1016/j.eswa.2023.120268 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2025.3538537 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 24792 |
| ExternalDocumentID | oai_doaj_org_article_9a04ab485635457c966d9cd854d3be02 10_1109_ACCESS_2025_3538537 10870232 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Henan Provincial Key Science and Technology Research Project grantid: 232102321034 funderid: 10.13039/501100017700 – fundername: National Natural Science Foundation of China grantid: 62203402 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-a353749b16b54522cdc517e39baa8f49fa61813b302de04580dfa16ccbb195b13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001420279300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:52:40 EDT 2025 Mon Jun 30 12:39:26 EDT 2025 Sat Nov 29 08:17:44 EST 2025 Tue Nov 18 21:17:28 EST 2025 Wed Aug 27 01:50:09 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-a353749b16b54522cdc517e39baa8f49fa61813b302de04580dfa16ccbb195b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-8054-2703 0009-0009-0373-7562 0000-0001-9525-8124 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10870232 |
| PQID | 3165940303 |
| PQPubID | 4845423 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_3165940303 doaj_primary_oai_doaj_org_article_9a04ab485635457c966d9cd854d3be02 crossref_citationtrail_10_1109_ACCESS_2025_3538537 crossref_primary_10_1109_ACCESS_2025_3538537 ieee_primary_10870232 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref10 doi: 10.1109/TCYB.2020.2989465 – ident: ref21 doi: 10.1016/j.swevo.2023.101284 – ident: ref11 doi: 10.1016/j.ins.2019.01.066 – ident: ref47 doi: 10.1109/TCYB.2015.2510698 – ident: ref33 doi: 10.1109/TCYB.2013.2245892 – ident: ref39 doi: 10.1109/TCYB.2020.3041212 – ident: ref1 doi: 10.1016/j.swevo.2021.100975 – ident: ref34 doi: 10.1109/CEC.2009.4983135 – ident: ref27 doi: 10.1016/j.ins.2024.120193 – ident: ref45 doi: 10.1109/TEVC.2008.920671 – ident: ref28 doi: 10.1007/s00500-014-1477-4 – ident: ref38 doi: 10.1109/TCYB.2020.2986600 – ident: ref23 doi: 10.1007/s00500-015-1820-4 – ident: ref5 doi: 10.1016/j.est.2024.110779 – ident: ref12 doi: 10.1016/j.swevo.2022.101164 – ident: ref8 doi: 10.54254/2755-2721/50/20241499 – ident: ref29 doi: 10.1016/j.neucom.2023.03.073 – ident: ref40 doi: 10.1016/j.ins.2019.09.016 – ident: ref2 doi: 10.1016/j.rcim.2023.102597 – ident: ref19 doi: 10.1016/j.ins.2023.119867 – ident: ref36 doi: 10.1109/TCYB.2022.3180214 – ident: ref18 doi: 10.1109/TC.2024.3365949 – ident: ref32 doi: 10.1016/j.ins.2020.08.101 – ident: ref13 doi: 10.1016/j.ins.2022.09.022 – ident: ref41 doi: 10.1080/0305215X.2010.548863 – ident: ref7 doi: 10.1016/j.eswa.2024.123472 – ident: ref48 doi: 10.1016/j.ins.2015.10.010 – ident: ref46 doi: 10.1109/TEVC.2004.831456 – ident: ref22 doi: 10.1016/j.ins.2023.04.006 – ident: ref30 doi: 10.1016/j.ins.2023.119627 – ident: ref26 doi: 10.1016/j.swevo.2023.101385 – ident: ref25 doi: 10.1109/ICCIA49625.2020.00039 – ident: ref3 doi: 10.1016/j.cie.2023.109590 – ident: ref16 doi: 10.3390/pr11020613 – ident: ref42 doi: 10.1109/TEVC.2014.2378512 – ident: ref44 doi: 10.1007/978-3-030-72062-9_18 – ident: ref4 doi: 10.1109/tits.2023.3267103 – ident: ref20 doi: 10.1016/j.knosys.2020.106612 – ident: ref43 doi: 10.1016/j.asoc.2017.08.004 – ident: ref9 doi: 10.1016/j.ins.2024.120565 – ident: ref24 doi: 10.1109/TEVC.2016.2574621 – ident: ref14 doi: 10.1016/j.asoc.2023.111114 – ident: ref31 doi: 10.3390/app13084795 – ident: ref37 doi: 10.1016/j.ins.2021.01.021 – ident: ref49 doi: 10.1016/j.ins.2021.08.065 – ident: ref35 doi: 10.1016/j.swevo.2020.100829 – ident: ref17 doi: 10.1109/TCYB.2021.3086501 – ident: ref15 doi: 10.1109/TEVC.2023.3314766 – ident: ref50 doi: 10.1016/j.ins.2021.08.027 – ident: ref6 doi: 10.1016/j.eswa.2023.120268 |
| SSID | ssj0000816957 |
| Score | 2.3411171 |
| Snippet | This paper introduces a special points and neural network- based dynamic multi-objective optimization algorithm (SPNN-DMOA) for solving dynamic multi-objective... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 24765 |
| SubjectTerms | Artificial neural networks Classification algorithms Convergence decision variable classification Diversity reception Dynamic multi-objective optimization Evolutionary algorithms Heuristic algorithms irregular environment Machine learning algorithms Multiple objective analysis neural network Neural networks Optical fibers Optimization Optimization algorithms Pareto optimization prediction Prediction algorithms Random variables special point Vectors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQYoABcYpyyQMjATu2k3gsBcTUdgCpm-WrUAQpagO_n-fYoEhIsLBajpx3-B2J_X0InTnjK-qpzcIVr4w7mWeaOZ0Jwj0hrgiAMC3ZRDkcVpOJHHeovsKZsAgPHBV3KTXh2vBKQGbkorRQnjtpXSW4Y8ZHGElSyk4z1cbgihZSlAlmiBJ52R8MQCJoCHNxwWCXi8B83klFLWJ_olj5EZfbZHO7hTZTlYj78e220Yqvd9BGBztwF036OHHH4_F8VjdLrGuHA9YGjAzj4e7sCnKUw9eRdR63l22zkXmOQQ6PIFy8pnuYuP_yOF_MmqfXPfRwe3M_uMsSTUJmoTlrQLcgC5eGFiYQhufWWUFLz6TRuppyOdUFpHFmGMmdD_9FiZtqWlhrDJXCULaPVut57Q8QNpDutZzmpSYeOhmi88JyaLkq6aA0dLqH8i-NKZswxAOVxYtqewkiVVSzCmpWSc09dP790FuE0Ph9-lUwxffUgH_dDoBXqOQV6i-v6KG9YMjOeiANFI89dPxlWZU261IxWgjJIdqxw_9Y-witB3nid5pjtNos3v0JWrMfzWy5OG399BMC5edU priority: 102 providerName: Directory of Open Access Journals |
| Title | A Special Points and Neural Network-Based Dynamic Multi-Objective Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/10870232 https://www.proquest.com/docview/3165940303 https://doaj.org/article/9a04ab485635457c966d9cd854d3be02 |
| Volume | 13 |
| WOSCitedRecordID | wos001420279300014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7RigMcoLRFpC2VDz2yxV7bu-tjGlr1QtpDkXKz_AoEtRuUbDny2xk_GkVCIHFZrSxbu_Z4xjO25_sAzrwNHQvMVTHFqxJe1ZXh3lSSikCpbyIgTCKbaKfTbjZTtyVZPeXChBDS5bNwHl_TWb5fuse4VYYajrMLXYAd2GnbJidrbTZUIoOEkm1BFmJUfRxPJtgJjAFrec5RsWUkO99afRJIf2FV-cMUp_Xl6vV__tkevCqOJBlnyb-BZ6Hfh5db8IIHMBuTQi9PbpeLflgT03sS4TiwZJrvf1cXuIx58ikT05OUj1vd2O_ZDpIbtCgPJVWTjO-_LleL4dvDIXy5urybXFeFSaFyGL8NOPzYd6Esa2zkFK-dd5K1gStrTDcXam4aXOm55bT2IR6dUj83rHHOWqakZfwt7PbLPrwDYtEjMGpet4YGDHaoqRsnMCrrlEfv0ZsR1E8jrF2BGY9sF_c6hRtU6SwWHcWii1hG8GHT6EdG2fh39Ysouk3VCJGdClAmumicVoYKY0Un0aUSsnUY13nlfCeF5zbQegSHUY5b38siHMHJ00zQRZ_XmrNGKoEGkR_9pdkxvIi_mHdnTmB3WD2G9_Dc_RwW69VpCvXx-fnX5Wmatr8B6VnnmA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTxQxFH9RJFEPfiCGVZQePDLQTtuZ6XFZJRhw4QDJ3pp-La6BWbI7-Pf72imbTQwm3ibNNNPOr--r7Xs_gC_ehoYF5oqY4lUIr8rCcG8KSUWg1FexIEwim6jH42YyURc5WT3lwoQQ0uWzcBAf01m-n7v7uFWGEo6rC12Ap_AsUmfldK3VlkrkkFCyzrWFGFWHw9EIp4FRYCkPOIq2jHTna_YnlenPvCp_KeNkYY5f_-fY3sCr7EqSYY_9W3gS2i14uVZg8B1MhiQTzJOL-aztlsS0nsSCHNgy7m-AF0doyDz52lPTk5SRW5zbX70mJOeoU25zsiYZ3lzPF7Pu5-02XB1_uxydFJlLoXAYwXUIAM5dKMsqG1nFS-edZHXgyhrTTIWamgptPbeclj7Ew1Pqp4ZVzlnLlLSMv4eNdt6GHSAWfQKjpmVtaMBwh5qycgLjskZ59B-9GUD58Ie1y4XGI9_FjU4BB1W6h0VHWHSGZQD7q053fZ2Nf79-FKFbvRqLZKcGxERnmdPKUGGsaCQ6VULWDiM7r5xvpPDcBloOYDviuPa9HsIB7D6sBJ0leqk5q6QSqBL5h0e67cHzk8sfZ_rs-_j0I7yIw-33anZho1vch0-w6X53s-Xic1q2fwA2eui7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Special+Points+and+Neural+Network-Based+Dynamic+Multi-Objective+Optimization+Algorithm&rft.jtitle=IEEE+access&rft.au=Li%2C+Sanyi&rft.au=Hou%2C+Wenjie&rft.au=Liu%2C+Peng&rft.au=Yue%2C+Weichao&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=24765&rft.epage=24792&rft_id=info:doi/10.1109%2FACCESS.2025.3538537&rft.externalDocID=10870232 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |