At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers in 6G Wireless Intelligence
As we transition from the 5G epoch, a new horizon beckons with the advent of 6G, seeking a profound fusion with novel communication paradigms and emerging technological trends, bringing once-futuristic visions to life along with added technical intricacies. Although analytical models lay the foundat...
Gespeichert in:
| Veröffentlicht in: | IEEE open journal of the Communications Society Jg. 5; S. 2433 - 2489 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2644-125X, 2644-125X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As we transition from the 5G epoch, a new horizon beckons with the advent of 6G, seeking a profound fusion with novel communication paradigms and emerging technological trends, bringing once-futuristic visions to life along with added technical intricacies. Although analytical models lay the foundations and offer systematic insights, we have recently witnessed a noticeable surge in research suggesting machine learning (ML) and artificial intelligence (AI) can efficiently deal with complex problems by complementing or replacing model-based approaches. The majority of data-driven wireless research leans heavily on discriminative AI (DAI) that requires vast real-world datasets. Unlike the DAI, Generative AI (GenAI) pertains to generative models (GMs) capable of discerning the underlying data distribution, patterns, and features of the input data. This makes GenAI a crucial asset in wireless domain wherein real-world data is often scarce, incomplete, costly to acquire, and hard to model or comprehend. With these appealing attributes, GenAI can replace or supplement DAI methods in various capacities. Accordingly, this combined tutorial-survey paper commences with preliminaries of 6G and wireless intelligence by outlining candidate 6G applications and services, presenting a taxonomy of state-of-the-art DAI models, exemplifying prominent DAI use cases, and elucidating the multifaceted ways through which GenAI enhances DAI. Subsequently, we present a tutorial on GMs by spotlighting seminal examples such as generative adversarial networks, variational autoencoders, flow-based GMs, diffusion-based GMs, generative transformers, large language models, autoregressive GMs, to name a few. Contrary to the prevailing belief that GenAI is a nascent trend, our exhaustive review of approximately 120 technical papers demonstrates the scope of research across core wireless research areas, including 1) physical layer design; 2) network optimization, organization, and management; 3) network traffic analytics; 4) cross-layer network security; and 5) localization & positioning. Furthermore, we outline the central role of GMs in pioneering areas of 6G network research, including semantic communications, integrated sensing and communications, THz communications, extremely large antenna arrays, near-field communications, digital twins, AI-generated content services, mobile edge computing and edge AI, adversarial ML, and trustworthy AI. Lastly, we shed light on the multifarious challenges ahead, suggesting potential strategies and promising remedies. Given its depth and breadth, we are confident that this tutorial-cum-survey will serve as a pivotal reference for researchers and professionals delving into this dynamic and promising domain. |
|---|---|
| AbstractList | As we transition from the 5G epoch, a new horizon beckons with the advent of 6G, seeking a profound fusion with novel communication paradigms and emerging technological trends, bringing once-futuristic visions to life along with added technical intricacies. Although analytical models lay the foundations and offer systematic insights, we have recently witnessed a noticeable surge in research suggesting machine learning (ML) and artificial intelligence (AI) can efficiently deal with complex problems by complementing or replacing model-based approaches. The majority of data-driven wireless research leans heavily on discriminative AI (DAI) that requires vast real-world datasets. Unlike the DAI, Generative AI (GenAI) pertains to generative models (GMs) capable of discerning the underlying data distribution, patterns, and features of the input data. This makes GenAI a crucial asset in wireless domain wherein real-world data is often scarce, incomplete, costly to acquire, and hard to model or comprehend. With these appealing attributes, GenAI can replace or supplement DAI methods in various capacities. Accordingly, this combined tutorial-survey paper commences with preliminaries of 6G and wireless intelligence by outlining candidate 6G applications and services, presenting a taxonomy of state-of-the-art DAI models, exemplifying prominent DAI use cases, and elucidating the multifaceted ways through which GenAI enhances DAI. Subsequently, we present a tutorial on GMs by spotlighting seminal examples such as generative adversarial networks, variational autoencoders, flow-based GMs, diffusion-based GMs, generative transformers, large language models, autoregressive GMs, to name a few. Contrary to the prevailing belief that GenAI is a nascent trend, our exhaustive review of approximately 120 technical papers demonstrates the scope of research across core wireless research areas, including 1) physical layer design; 2) network optimization, organization, and management; 3) network traffic analytics; 4) cross-layer network security; and 5) localization & positioning. Furthermore, we outline the central role of GMs in pioneering areas of 6G network research, including semantic communications, integrated sensing and communications, THz communications, extremely large antenna arrays, near-field communications, digital twins, AI-generated content services, mobile edge computing and edge AI, adversarial ML, and trustworthy AI. Lastly, we shed light on the multifarious challenges ahead, suggesting potential strategies and promising remedies. Given its depth and breadth, we are confident that this tutorial-cum-survey will serve as a pivotal reference for researchers and professionals delving into this dynamic and promising domain. |
| Author | Eltawil, Ahmed M. Celik, Abdulkadir |
| Author_xml | – sequence: 1 givenname: Abdulkadir orcidid: 0000-0001-9007-9979 surname: Celik fullname: Celik, Abdulkadir email: abdulkadir.celik@kaust.edu.sa organization: Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – sequence: 2 givenname: Ahmed M. orcidid: 0000-0003-1849-083X surname: Eltawil fullname: Eltawil, Ahmed M. organization: Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia |
| BookMark | eNqFkU1P3DAQhq0KpNItv6A9WOo5W39Mkk1vqy1sF1H2AKi9WY49oV4Fm9oOiH9PlqAK9cJpRjPzvDOa9wM58MEjIZ84m3POmq_bs9X25-VcMAFzKSshav6OHIkKoOCi_H3wKn9PjlPaMcZEyTmXcETsMtP8B-l3_eBp6OgaPUad3T3S5YaeRP2NLunVkEN0ui_McFtcDvEeH2nw9AIf6GkMPjuMiTpPqzX95SL2mBLd-Ix9727QG_xIDjvdJzx-iTNyfXpytfpRnG_Xm9XyvDDAmlxo1lUaUGILVlvdGllXogVdQ9uKFq3tNKvAQAO1hQ7LzrAFb1hdQ91AKa2ckc2ka4PeqbvobnV8VEE79VwI8UbpmJ3pUWlr7WKUkxwlaGALtihbMFhxZE0n-aj1ZdK6i-HvgCmrXRiiH89Xko0nNHU90jMipykTQ0oRu39bOVN7d9Tkjtq7o17cGanmP8q4PD59fGXUrn-D_TyxDhFfbYN9t5JPNgGeiQ |
| CODEN | IOJCAZ |
| CitedBy_id | crossref_primary_10_1007_s12145_025_01912_y crossref_primary_10_1088_2631_8695_ade02b crossref_primary_10_1109_OJIES_2025_3560946 crossref_primary_10_1177_01655515251353188 crossref_primary_10_1109_ACCESS_2024_3521579 crossref_primary_10_1109_TWC_2025_3562731 crossref_primary_10_1109_MNET_2024_3420702 crossref_primary_10_1109_JIOT_2024_3487627 crossref_primary_10_1145_3742891 crossref_primary_10_1109_TNSM_2025_3543022 crossref_primary_10_1016_j_comnet_2025_111573 crossref_primary_10_1109_OJCOMS_2025_3544871 crossref_primary_10_1109_TWC_2025_3556118 crossref_primary_10_1109_TCE_2025_3526826 crossref_primary_10_1109_TCCN_2025_3527719 crossref_primary_10_1109_TCCN_2025_3558992 crossref_primary_10_1016_j_comnet_2025_111594 crossref_primary_10_1109_TCE_2025_3538785 crossref_primary_10_1016_j_comnet_2025_111614 crossref_primary_10_1109_JIOT_2024_3493611 crossref_primary_10_1109_MCOM_001_2400699 crossref_primary_10_3390_fi16100365 crossref_primary_10_1109_MCOM_001_2400558 crossref_primary_10_3390_s25113488 crossref_primary_10_1109_ACCESS_2024_3521005 crossref_primary_10_1109_JIOT_2025_3579780 crossref_primary_10_1109_OJCOMS_2025_3591535 crossref_primary_10_1109_ACCESS_2025_3573371 crossref_primary_10_1109_OJCOMS_2025_3568496 crossref_primary_10_3390_e27080815 crossref_primary_10_1109_TCCN_2025_3540256 crossref_primary_10_3390_app15062920 crossref_primary_10_3390_technologies12070099 crossref_primary_10_3390_admsci15020066 crossref_primary_10_1109_TCCN_2025_3531486 |
| Cites_doi | 10.1109/TCCN.2023.3279260 10.1007/978-0-387-21579-2_9 10.1016/j.ins.2020.04.019 10.1109/TMC.2021.3075083 10.1109/ACCESS.2020.2991337 10.1109/MILCOM.2018.8599782 10.1109/IWCMC.2019.8766353 10.1109/CBD.2014.41 10.1109/TCOMM.2020.3031930 10.1109/TETCI.2019.2948058 10.1109/ICCSN52437.2021.9463629 10.1109/LCOMM.2021.3132947 10.1109/ICC42927.2021.9500893 10.1109/MCOM.001.1900509 10.1109/GLOBECOM42002.2020.9322583 10.48550/arXiv.1312.6114 10.1109/MWC.101.2100269 10.1109/TNNLS.2020.3010724 10.1109/JIOT.2022.3211346 10.1080/02564602.2014.987328 10.1109/TWC.2017.2782690 10.1109/ACCESS.2018.2815741 10.1016/j.eswa.2022.117163 10.1145/3143361.3143393 10.1109/TWC.2021.3103971 10.1109/GLOBECOM54140.2023.10437200 10.1109/CISCE55963.2022.9851065 10.1038/s41928-019-0355-6 10.1109/ACCESS.2019.2921522 10.1109/jproc.2020.2998530 10.1109/TWC.2019.2921955 10.1109/CVPR.2018.00916 10.1109/MCOM.004.2200136 10.1109/JSAC.2019.2959185 10.1109/TCOMM.2018.2879508 10.1145/3491209 10.1109/MNET.001.1900287 10.1109/TCOMM.2019.2924010 10.1109/ICCV.2017.304 10.1109/ACCESS.2017.2760350 10.1109/CVPR42600.2020.00813 10.1109/MNET.011.2000493 10.1109/ISIT.2019.8849476 10.1109/CSNDSP54353.2022.9907905 10.1109/mwc.019.2100721 10.1109/iccv.2017.244 10.1109/ACCESS.2022.3195299 10.1109/MVT.2020.3017152 10.1136/svn-2017-000101 10.1109/TWC.2022.3220784 10.3390/telecom2010009 10.1109/icc45855.2022.9839142 10.1109/MCOM.006.2200480 10.1109/TII.2022.3155656 10.1109/MCOM.001.1900698 10.1016/j.dsp.2021.103188 10.1109/INFOCOM.2019.8737631 10.1109/ICCT.2018.8600032 10.1109/jsac.2021.3126076 10.1109/CVPR.2017.202 10.1109/COMST.2014.2329501 10.1109/TSMCC.2009.2038279 10.1007/978-3-030-64793-3_1 10.1109/ACCESS.2019.2917207 10.1145/3285029 10.1109/LWC.2023.3263224 10.1109/MCOM.2019.1900271 10.1109/ACCESS.2019.2919996 10.1109/PRDC50213.2020.00018 10.1109/TNNLS.2020.3011671 10.1016/j.comnet.2021.108149 10.1109/TC.2013.13 10.1109/WCNC51071.2022.9771907 10.1109/IEMCON.2019.8936224 10.1109/tip.2023.3273451 10.1007/s11004-021-09934-0 10.1109/ICC45855.2022.9838574 10.1109/WCNC49053.2021.9417513 10.1145/3229556.3229562 10.1016/0004-3702(92)90065-6 10.1109/spawc48557.2020.9154331 10.1109/ICCW.2018.8403666 10.1007/BF00058655 10.48550/ARXIV.1706.03762 10.1109/ICCW.2018.8403655 10.1145/3395352.3402622 10.3390/app12168085 10.1109/TPAMI.2013.50 10.1109/TCCN.2023.3288108 10.1007/s12243-023-00980-9 10.1109/GLOBECOM38437.2019.9014102 10.1109/BMSB53066.2021.9547015 10.1145/3439729 10.1109/LWC.2021.3081509 10.1016/j.eswa.2021.115680 10.1109/ICSP48669.2020.9320987 10.1109/TWC.2020.3047100 10.1364/AOP.361502 10.1109/ICC42927.2021.9501056 10.1016/b978-0-7506-7531-4.x5000-3 10.1016/j.phycom.2019.100900 10.1109/ACSSC.2018.8645463 10.1109/TWC.2022.3219140 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00141 10.1007/s11276-021-02781-1 10.1162/NECO_a_00142 10.1109/MILCOM47813.2019.9020907 10.1109/WCNC51071.2022.9771710 10.1109/WACV51458.2022.00188 10.18653/v1/W18-5446 10.1109/JSEN.2021.3105404 10.1109/SNAMS60348.2023.10375400 10.1145/3324921.3328782 10.1109/TWC.2020.3039013 10.1109/CCNC51644.2023.10060056 10.1109/MWC.001.1900534 10.1109/CCAAW.2019.8904907 10.1109/TPAMI.2020.2970919 10.1145/3331184.3331303 10.1109/TCCN.2020.2970693 10.1109/LNET.2022.3193766 10.1109/WCNC.2019.8885548 10.1109/ICPAI51961.2020.00012 10.1162/neco.2006.18.7.1527 10.1145/3269206.3269294 10.1109/MVT.2020.3015184 10.1109/twc.2023.3347419 10.1109/LWC.2018.2843359 10.1109/JSEN.2019.2958201 10.1109/JSAC.2023.3288243 10.1109/ICC.2019.8761755 10.1109/LCOMM.2020.2988384 10.1109/ECTI-CON54298.2022.9795409 10.1609/aaai.v34i03.5659 10.1109/COMST.2019.2904897 10.1109/TCCN.2022.3153004 10.1109/ICCNC.2019.8685527 10.5555/2969033.2969125 10.1016/j.comnet.2021.108535 10.3390/s18113913 10.1109/GLOBECOM42002.2020.9348244 10.1109/GLOCOMW.2018.8644149 10.1109/MCOM.2016.7470933 10.48550/arXiv.1609.03499 10.1109/GLOCOMW.2018.8644250 10.1016/j.measurement.2021.108974 10.1109/TPAMI.2021.3116668 10.1109/TWC.2019.2951416 10.1109/TCDS.2022.3176977 10.1109/TCCN.2018.2884910 10.1007/978-981-15-8462-6_96 10.1109/GLOBECOM38437.2019.9014217 10.1109/ACCESS.2021.3132127 10.1109/TCOMM.2007.892447 10.1109/OJCOMS.2023.3320646 10.1109/TCCN.2021.3105133 10.23919/EUSIPCO.2018.8553233 10.1109/TETCI.2019.2892748 10.1609/aaai.v33i01.3301541 10.1109/TWC.2021.3124202 10.1177/1548512921991245 10.1109/LWC.2021.3075467 10.1109/SPW.2018.00019 10.1109/BigData47090.2019.9005997 10.1016/j.adhoc.2020.102151 10.1145/3324921.3329695 10.1109/ICC.2018.8422223 10.22331/q-2018-08-06-79 10.1109/JIOT.2016.2579198 10.1109/COMST.2023.3249835 10.1109/ACCESS.2021.3095546 10.1109/ICTC52510.2021.9621134 10.1109/JIOT.2020.3024800 10.1016/j.adhoc.2020.102177 10.1007/978-3-031-19842-7_39 10.1109/ACCESS.2022.3161511 10.1109/LWC.2019.2947041 10.1109/IOTM.001.2100209 10.1109/JSAC.2021.3078489 10.1109/ACCESS.2023.3296707 10.1016/j.future.2022.01.026 10.1109/ACCESS.2022.3187837 10.1056/NEJMoa1210384 10.1023/B:MACH.0000015881.36452.6e 10.1109/TCYB.2022.3163811 10.1145/3468691.3468742 10.1098/rsta.1927.0007 10.3390/s22218085 10.1109/ICCWorkshops50388.2021.9473497 10.1109/GLOBECOM48099.2022.10001178 10.1109/compsac48688.2020.0-218 10.1109/TWC.2020.3046766 10.1145/3459992 10.1109/access.2021.3130418 10.1109/ICCNC.2019.8685573 10.1109/RADAR.2018.8378737 10.1109/IPIN54987.2022.9918146 10.1109/TCCN.2020.3010330 10.1109/MCOM.001.2200866 10.1109/MILCOM55135.2022.10017520 10.3390/electronics12010084 10.1109/BalkanCom53780.2021.9593240 10.1109/WCNC51071.2022.9771754 10.1109/ICC.2018.8423008 10.1109/jiot.2021.3098028 10.1109/TPAMI.2020.2992934 10.1186/s13638-021-01950-2 10.23919/JCC.2020.02.002 10.1109/LCOMM.2022.3172171 10.1109/COMST.2015.2476474 10.1109/JIOT.2022.3213593 10.1109/MCOM.2019.1800635 10.1109/INFOCOMWKSHPS51825.2021.9484569 10.1109/GLOBECOM54140.2023.10437725 10.1109/JSAC.2022.3191346 10.1109/MTTW51045.2020.9245065 10.1109/comst.2016.2532458 10.1109/COMST.2021.3136132 10.1109/COMST.2022.3223224 10.1109/MNET.011.2000195 10.1109/UkrMiCo43733.2018.9047611 10.1109/PST.2018.8514157 10.1109/MNET.2019.1800439 10.1016/j.array.2022.100142 10.1109/MWC.004.2100362 10.1109/GLOBECOM42002.2020.9322456 10.1145/3626235 10.1162/089976602760128018 10.1109/UEMCON.2018.8796769 10.1109/TCOMM.2019.2927561 10.1109/msp.2017.3151326 10.1109/CVPR.2017.632 10.1109/ACCESS.2022.3177906 10.1109/JPROC.2020.3004555 10.1109/TCCN.2019.2948919 10.1109/LWC.2018.2867459 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD L7M DOA |
| DOI | 10.1109/OJCOMS.2024.3362271 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2644-125X |
| EndPage | 2489 |
| ExternalDocumentID | oai_doaj_org_article_addd8a0631e34a408085b4ce61e09f31 10_1109_OJCOMS_2024_3362271 10422716 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Office of Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUST) |
| GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c409t-a0f6a4e3eb4dadabc3762b4a74bb2beddfa064c4947d4fe5fc0819077479453d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001214542600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2644-125X |
| IngestDate | Fri Oct 03 12:50:29 EDT 2025 Sun Jun 29 16:00:36 EDT 2025 Tue Nov 18 21:51:10 EST 2025 Sat Nov 29 05:54:16 EST 2025 Wed Aug 27 02:06:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-a0f6a4e3eb4dadabc3762b4a74bb2beddfa064c4947d4fe5fc0819077479453d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9007-9979 0000-0003-1849-083X |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10422716 |
| PQID | 3049497706 |
| PQPubID | 5075783 |
| PageCount | 57 |
| ParticipantIDs | crossref_primary_10_1109_OJCOMS_2024_3362271 doaj_primary_oai_doaj_org_article_addd8a0631e34a408085b4ce61e09f31 crossref_citationtrail_10_1109_OJCOMS_2024_3362271 proquest_journals_3049497706 ieee_primary_10422716 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE open journal of the Communications Society |
| PublicationTitleAbbrev | OJCOMS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 ref56 ref59 ref58 Portree (ref154) 1993 Chen (ref212) ref53 ref52 ref55 Mirza (ref206) 2014 ref54 ref202 Ferdowsi (ref219) 2020 Cao (ref295) 2022 Donahue (ref211) 2016 Dinh (ref231) 2014 ref51 ref50 Higgins (ref221) ref46 ref218 ref45 ref216 ref47 ref217 ref42 ref214 ref41 Nair (ref253) ref43 ref213 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 Van Den Oord (ref249) ref40 ref220 ref34 ref37 ref36 ref31 ref302 ref30 ref303 ref33 ref300 ref32 Bariah (ref266) 2023 ref301 ref39 ref38 Arjovsky (ref209) ref24 Devlin (ref240) 2018 ref23 ref26 Xu (ref19) 2023 ref25 ref20 ref22 ref21 Ren (ref194) 2021 ref28 ref27 ref29 ref200 Goodfellow (ref204) 2016 ref128 ref129 ref97 ref126 ref96 ref127 Papamakarios (ref232); 30 ref99 ref124 ref245 ref98 ref125 Lee (ref254) 2007; 20 ref93 ref133 Song (ref235) 2020 Shabaninia (ref293) 2022 ref92 ref134 ref255 ref95 ref131 ref94 ref132 ref250 ref130 ref251 ref91 Radford (ref238) 2019; 1 ref90 ref89 ref139 ref86 ref137 ref258 ref85 ref138 ref259 ref88 ref135 ref256 ref87 ref136 ref257 Sønderby (ref225) ref82 ref144 ref81 ref145 ref84 ref263 ref83 ref143 ref264 ref140 Kingma (ref233) ref261 ref141 ref262 ref80 Zou (ref265) 2023 ref260 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 Zhang (ref67) 2023 ref74 ref105 ref77 ref102 ref76 ref103 Tolstikhin (ref222) Nemati (ref48) 2023 ref71 ref111 ref70 ref112 ref73 ref72 ref110 Zhang (ref193) 2018 Estiri (ref44) 2020 ref68 ref119 Karras (ref210) 2017 ref117 ref69 ref118 ref64 ref115 ref236 ref63 ref116 ref237 ref66 ref113 ref65 ref114 Welling (ref252) Rezende (ref227) Li (ref284); 35 ref60 ref122 ref243 ref123 ref62 ref120 ref61 Li (ref281) 2018 ref168 ref289 ref169 Kim (ref277) 2018 Bowles (ref192) 2018 ref170 Larochelle (ref246) ref177 ref298 ref178 ref299 ref175 ref296 ref176 ref297 ref173 ref294 ref174 ref171 ref292 ref172 ref179 ref180 Larsen (ref228) ref181 Box (ref244) 2015 ref188 ref189 ref186 ref187 Ivanov (ref223) ref184 Kingma (ref229); 31 ref185 ref182 ref183 ref148 ref149 ref146 ref267 ref147 ref268 Brown (ref239); 33 ref155 Radford (ref208) 2015 ref156 ref153 ref274 ref275 ref151 ref272 ref152 ref270 ref150 ref271 ref159 ref157 ref278 ref158 ref166 ref287 ref167 ref288 ref164 ref285 ref165 ref286 ref162 ref283 ref163 ref160 ref161 Chen (ref276) 2018 ref282 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 Ho (ref234) 2020; 33 Papamakarios (ref279) 2021; 22 Sorzano (ref197) 2014 Ho (ref203) Sallab (ref280) 2019 Metz (ref205) Spinner (ref273) Piantadosi (ref269) 2022 Liu (ref18) 2023 Yang (ref121) Dinh (ref230) 2016 Germain (ref247) Tschantz (ref201) 2020 ref2 ref1 Smith (ref242) 2022 ref191 ref190 ref199 ref198 ref195 Van Den Oord (ref224) ref196 Van Den Oord (ref248) Liu (ref142) 2022 Raffel (ref241) 2019 Song (ref35) Cheng (ref290) 2023 Bariah (ref291) 2022 Sohn (ref226) Springenberg (ref215) 2015 |
| References_xml | – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref232 article-title: Masked autoregressive flow for density estimation – ident: ref55 doi: 10.1109/TCCN.2023.3279260 – ident: ref176 doi: 10.1007/978-0-387-21579-2_9 – ident: ref299 doi: 10.1016/j.ins.2020.04.019 – ident: ref151 doi: 10.1109/TMC.2021.3075083 – ident: ref200 doi: 10.1109/ACCESS.2020.2991337 – ident: ref71 doi: 10.1109/MILCOM.2018.8599782 – ident: ref116 doi: 10.1109/IWCMC.2019.8766353 – ident: ref109 doi: 10.1109/CBD.2014.41 – ident: ref66 doi: 10.1109/TCOMM.2020.3031930 – ident: ref133 doi: 10.1109/TETCI.2019.2948058 – ident: ref263 doi: 10.1109/ICCSN52437.2021.9463629 – ident: ref272 doi: 10.1109/LCOMM.2021.3132947 – ident: ref83 doi: 10.1109/ICC42927.2021.9500893 – ident: ref188 doi: 10.1109/MCOM.001.1900509 – ident: ref90 doi: 10.1109/GLOBECOM42002.2020.9322583 – ident: ref220 doi: 10.48550/arXiv.1312.6114 – ident: ref4 doi: 10.1109/MWC.101.2100269 – ident: ref124 doi: 10.1109/TNNLS.2020.3010724 – year: 2023 ident: ref18 article-title: Deep generative model and its applications in efficient wireless network management: A tutorial and case study publication-title: arXiv:2303.17114 – year: 2020 ident: ref235 article-title: Score-based generative modeling through stochastic differential equations publication-title: arXiv:2011.13456 – year: 2018 ident: ref240 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: arXiv:1810.04805 – ident: ref112 doi: 10.1109/JIOT.2022.3211346 – ident: ref196 doi: 10.1080/02564602.2014.987328 – year: 2023 ident: ref266 article-title: Large Generative AI model for telecom: The next big thing? publication-title: arXiv:2306.10249 – ident: ref144 doi: 10.1109/TWC.2017.2782690 – ident: ref39 doi: 10.1109/ACCESS.2018.2815741 – ident: ref187 doi: 10.1016/j.eswa.2022.117163 – ident: ref79 doi: 10.1145/3143361.3143393 – year: 2014 ident: ref197 article-title: A survey of dimensionality reduction techniques publication-title: arXiv:1403.2877 – ident: ref29 doi: 10.1109/TWC.2021.3103971 – ident: ref81 doi: 10.1109/GLOBECOM54140.2023.10437200 – ident: ref88 doi: 10.1109/CISCE55963.2022.9851065 – ident: ref2 doi: 10.1038/s41928-019-0355-6 – volume: 1 start-page: 9 issue: 8 year: 2019 ident: ref238 article-title: Language models are unsupervised multitask learners publication-title: OpenAI Blog – ident: ref143 doi: 10.1109/ACCESS.2019.2921522 – ident: ref170 doi: 10.1109/jproc.2020.2998530 – ident: ref152 doi: 10.1109/TWC.2019.2921955 – ident: ref213 doi: 10.1109/CVPR.2018.00916 – ident: ref12 doi: 10.1109/MCOM.004.2200136 – ident: ref60 doi: 10.1109/JSAC.2019.2959185 – volume-title: Proc. Workshop Vis. AI Explain. ident: ref273 article-title: Towards an interpretable latent space: An intuitive comparison of autoencoders with variational autoencoders – ident: ref260 doi: 10.1109/TCOMM.2018.2879508 – ident: ref303 doi: 10.1145/3491209 – ident: ref169 doi: 10.1109/MNET.001.1900287 – ident: ref14 doi: 10.1109/TCOMM.2019.2924010 – ident: ref216 doi: 10.1109/ICCV.2017.304 – ident: ref261 doi: 10.1109/ACCESS.2017.2760350 – ident: ref218 doi: 10.1109/CVPR42600.2020.00813 – ident: ref5 doi: 10.1109/MNET.011.2000493 – start-page: 1 volume-title: Proc. NIPS ident: ref35 article-title: Blind channel equalization using vector-quantized variational autoencoders – volume-title: Time Series Analysis: Forecasting and Control year: 2015 ident: ref244 – ident: ref45 doi: 10.1109/ISIT.2019.8849476 – ident: ref84 doi: 10.1109/CSNDSP54353.2022.9907905 – ident: ref174 doi: 10.1109/mwc.019.2100721 – ident: ref207 doi: 10.1109/iccv.2017.244 – ident: ref180 doi: 10.1109/ACCESS.2022.3195299 – ident: ref259 doi: 10.1109/MVT.2020.3017152 – ident: ref164 doi: 10.1136/svn-2017-000101 – ident: ref34 doi: 10.1109/TWC.2022.3220784 – ident: ref62 doi: 10.3390/telecom2010009 – ident: ref179 doi: 10.1109/icc45855.2022.9839142 – year: 2015 ident: ref208 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv:1511.06434 – year: 2018 ident: ref277 article-title: FloWaveNet: A generative flow for raw audio publication-title: arXiv:1811.02155 – ident: ref7 doi: 10.1109/MCOM.006.2200480 – ident: ref21 doi: 10.1109/TII.2022.3155656 – ident: ref9 doi: 10.1109/MCOM.001.1900698 – ident: ref52 doi: 10.1016/j.dsp.2021.103188 – ident: ref76 doi: 10.1109/INFOCOM.2019.8737631 – ident: ref41 doi: 10.1109/ICCT.2018.8600032 – year: 2022 ident: ref291 article-title: The interplay of ai and digital twin: Bridging the gap between data-driven and model-driven approaches publication-title: arXiv:2209.12423 – ident: ref173 doi: 10.1109/jsac.2021.3126076 – ident: ref214 doi: 10.1109/CVPR.2017.202 – ident: ref6 doi: 10.1109/COMST.2014.2329501 – ident: ref178 doi: 10.1109/TSMCC.2009.2038279 – ident: ref100 doi: 10.1007/978-3-030-64793-3_1 – ident: ref297 doi: 10.1109/ACCESS.2019.2917207 – ident: ref162 doi: 10.1145/3285029 – ident: ref148 doi: 10.1109/LWC.2023.3263224 – start-page: 1530 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref227 article-title: Variational inference with normalizing flows – start-page: 881 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref247 article-title: MADE: Masked autoencoder for distribution estimation – ident: ref165 doi: 10.1109/MCOM.2019.1900271 – ident: ref77 doi: 10.1109/ACCESS.2019.2919996 – year: 2019 ident: ref241 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: arXiv:1910.10683 – year: 2023 ident: ref19 article-title: Unleashing the power of edge-cloud generative ai in mobile networks: A survey of AIGC services publication-title: arXiv:2303.16129 – ident: ref74 doi: 10.1109/PRDC50213.2020.00018 – start-page: 3745 volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst. ident: ref225 article-title: Ladder variational autoencoders – ident: ref274 doi: 10.1109/TNNLS.2020.3011671 – ident: ref20 doi: 10.1016/j.comnet.2021.108149 – ident: ref117 doi: 10.1109/TC.2013.13 – year: 2018 ident: ref281 article-title: Anomaly detection with generative adversarial networks for multivariate time series publication-title: arXiv:1809.04758 – ident: ref33 doi: 10.1109/WCNC51071.2022.9771907 – year: 2018 ident: ref276 article-title: When provably secure steganography meets generative models publication-title: arXiv:1811.03732 – ident: ref73 doi: 10.1109/IEMCON.2019.8936224 – ident: ref288 doi: 10.1109/tip.2023.3273451 – ident: ref283 doi: 10.1007/s11004-021-09934-0 – ident: ref87 doi: 10.1109/ICC45855.2022.9838574 – ident: ref135 doi: 10.1109/WCNC49053.2021.9417513 – ident: ref167 doi: 10.1145/3229556.3229562 – ident: ref245 doi: 10.1016/0004-3702(92)90065-6 – ident: ref46 doi: 10.1109/spawc48557.2020.9154331 – ident: ref36 doi: 10.1109/ICCW.2018.8403666 – ident: ref175 doi: 10.1007/BF00058655 – start-page: 2180 volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst. ident: ref212 article-title: InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref229 article-title: Glow: Generative flow with invertible 1x1 convolutions – ident: ref237 doi: 10.48550/ARXIV.1706.03762 – ident: ref91 doi: 10.1109/ICCW.2018.8403655 – year: 2022 ident: ref293 article-title: Transformers in action recognition: A review on temporal modeling publication-title: arXiv:2302.01921 – ident: ref38 doi: 10.1145/3395352.3402622 – start-page: 214 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref209 article-title: Wasserstein generative adversarial networks – ident: ref302 doi: 10.3390/app12168085 – year: 2016 ident: ref230 article-title: Density estimation using real NVP publication-title: arXiv:1605.08803 – ident: ref198 doi: 10.1109/TPAMI.2013.50 – ident: ref262 doi: 10.1109/TCCN.2023.3288108 – ident: ref22 doi: 10.1007/s12243-023-00980-9 – ident: ref119 doi: 10.1109/GLOBECOM38437.2019.9014102 – ident: ref139 doi: 10.1109/BMSB53066.2021.9547015 – ident: ref300 doi: 10.1145/3439729 – volume-title: All-in-one: VQ-VAE for end-to-end joint source-channel coding year: 2023 ident: ref48 – ident: ref93 doi: 10.1109/LWC.2021.3081509 – start-page: 1481 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref252 article-title: Exponential family harmoniums with an application to information retrieval – ident: ref202 doi: 10.1016/j.eswa.2021.115680 – volume: 22 start-page: 2617 issue: 1 year: 2021 ident: ref279 article-title: Normalizing flows for probabilistic modeling and inference publication-title: J. Mach. Learn. Res. – ident: ref89 doi: 10.1109/ICSP48669.2020.9320987 – ident: ref30 doi: 10.1109/TWC.2020.3047100 – ident: ref158 doi: 10.1364/AOP.361502 – ident: ref28 doi: 10.1109/ICC42927.2021.9501056 – year: 2020 ident: ref44 article-title: A variational autoencoder approach for image transmission in wireless channel publication-title: arXiv:2010.03967 – ident: ref163 doi: 10.1016/b978-0-7506-7531-4.x5000-3 – ident: ref156 doi: 10.1016/j.phycom.2019.100900 – year: 2023 ident: ref265 article-title: Wireless multi-agent generative AI: From connected intelligence to collective intelligence publication-title: arXiv:2307.02757 – year: 2023 ident: ref290 article-title: Bifidelity variational auto-encoder for uncertainty quantification publication-title: arXiv:2305.16530 – ident: ref27 doi: 10.1109/ACSSC.2018.8645463 – ident: ref10 doi: 10.1109/TWC.2022.3219140 – year: 2022 ident: ref142 article-title: ViFi-Loc: Multi-modal pedestrian localization using GAN with camera-phone correspondences publication-title: arXiv:2211.12021 – ident: ref75 doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00141 – ident: ref185 doi: 10.1007/s11276-021-02781-1 – ident: ref236 doi: 10.1162/NECO_a_00142 – ident: ref82 doi: 10.1109/MILCOM47813.2019.9020907 – start-page: 29 volume-title: Proc. 14th Int. Conf. Artif. Intell. Statist. ident: ref246 article-title: The neural autoregressive distribution estimator – ident: ref298 doi: 10.1109/WCNC51071.2022.9771710 – ident: ref282 doi: 10.1109/WACV51458.2022.00188 – ident: ref270 doi: 10.18653/v1/W18-5446 – year: 2022 ident: ref269 article-title: Meaning without reference in large language models publication-title: arXiv:2208.02957 – ident: ref98 doi: 10.1109/JSEN.2021.3105404 – ident: ref268 doi: 10.1109/SNAMS60348.2023.10375400 – ident: ref50 doi: 10.1145/3324921.3328782 – ident: ref153 doi: 10.1109/TWC.2020.3039013 – ident: ref181 doi: 10.1109/CCNC51644.2023.10060056 – volume: 35 start-page: 23009 volume-title: Proc. 35th Adv. Neural Inf. Process. Syst. ident: ref284 article-title: Generative time series forecasting with diffusion, denoise, and disentanglement – ident: ref13 doi: 10.1109/MWC.001.1900534 – ident: ref32 doi: 10.1109/CCAAW.2019.8904907 – year: 2017 ident: ref210 article-title: Progressive growing of GANs for improved quality, stability, and variation publication-title: arXiv:1710.10196 – start-page: 6309 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref224 article-title: Neural discrete representation learning – year: 2023 ident: ref67 article-title: Generative ai-enabled vehicular networks: Fundamentals, framework, and case study publication-title: arXiv:2304.11098 – ident: ref217 doi: 10.1109/TPAMI.2020.2970919 – ident: ref267 doi: 10.1145/3331184.3331303 – ident: ref99 doi: 10.1109/TCCN.2020.2970693 – ident: ref146 doi: 10.1109/LNET.2022.3193766 – ident: ref96 doi: 10.1109/WCNC.2019.8885548 – ident: ref140 doi: 10.1109/ICPAI51961.2020.00012 – ident: ref255 doi: 10.1162/neco.2006.18.7.1527 – ident: ref68 doi: 10.1145/3269206.3269294 – ident: ref184 doi: 10.1109/MVT.2020.3015184 – ident: ref182 doi: 10.1109/twc.2023.3347419 – ident: ref256 doi: 10.1109/LWC.2018.2843359 – ident: ref131 doi: 10.1109/JSEN.2019.2958201 – start-page: 3483 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. ident: ref226 article-title: Learning structured output representation using deep conditional generative models – ident: ref43 doi: 10.1109/JSAC.2023.3288243 – year: 2015 ident: ref215 article-title: Unsupervised and semi-supervised learning with categorical generative adversarial networks publication-title: arXiv:1511.06390 – ident: ref61 doi: 10.1109/ICC.2019.8761755 – ident: ref122 doi: 10.1109/LCOMM.2020.2988384 – ident: ref130 doi: 10.1109/ECTI-CON54298.2022.9795409 – ident: ref289 doi: 10.1609/aaai.v34i03.5659 – ident: ref15 doi: 10.1109/COMST.2019.2904897 – ident: ref24 doi: 10.1109/TCCN.2022.3153004 – ident: ref64 doi: 10.1109/ICCNC.2019.8685527 – ident: ref16 doi: 10.5555/2969033.2969125 – ident: ref78 doi: 10.1016/j.comnet.2021.108535 – ident: ref42 doi: 10.3390/s18113913 – volume-title: Orbital Debris and Near-Earth Environmental Management: A Chronology year: 1993 ident: ref154 – ident: ref101 doi: 10.1109/GLOBECOM42002.2020.9348244 – ident: ref132 doi: 10.1109/GLOCOMW.2018.8644149 – ident: ref149 doi: 10.1109/MCOM.2016.7470933 – ident: ref250 doi: 10.48550/arXiv.1609.03499 – start-page: 1558 volume-title: Proc. 33rd Int. Conf. Int. Conf. Mach. Learn. ident: ref228 article-title: Autoencoding beyond pixels using a learned similarity metric – ident: ref56 doi: 10.1109/GLOCOMW.2018.8644250 – ident: ref189 doi: 10.1016/j.measurement.2021.108974 – start-page: 1747 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref248 article-title: Pixel recurrent neural networks – ident: ref294 doi: 10.1109/TPAMI.2021.3116668 – ident: ref157 doi: 10.1109/TWC.2019.2951416 – ident: ref278 doi: 10.1109/TCDS.2022.3176977 – ident: ref92 doi: 10.1109/TCCN.2018.2884910 – ident: ref141 doi: 10.1007/978-981-15-8462-6_96 – volume: 33 start-page: 6840 year: 2020 ident: ref234 article-title: Denoising diffusion probabilistic models publication-title: Adv. Neural Inf. Process. Syst. – ident: ref59 doi: 10.1109/GLOBECOM38437.2019.9014217 – ident: ref102 doi: 10.1109/ACCESS.2021.3132127 – ident: ref54 doi: 10.1109/TCOMM.2007.892447 – ident: ref296 doi: 10.1109/OJCOMS.2023.3320646 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref221 article-title: Beta-VAE: Learning basic visual concepts with a constrained variational framework – ident: ref150 doi: 10.1109/TCCN.2021.3105133 – volume: 20 start-page: 1 year: 2007 ident: ref254 article-title: Sparse deep belief net model for visual area V2 publication-title: Proc. Adv. Neural Inf. Process. Syst. – ident: ref57 doi: 10.23919/EUSIPCO.2018.8553233 – ident: ref126 doi: 10.1109/TETCI.2019.2892748 – ident: ref301 doi: 10.1609/aaai.v33i01.3301541 – ident: ref8 doi: 10.1109/TWC.2021.3124202 – ident: ref40 doi: 10.1177/1548512921991245 – year: 2020 ident: ref201 article-title: Reinforcement learning through active inference publication-title: arXiv:2002.12636 – year: 2019 ident: ref280 article-title: LiDAR sensor modeling and data augmentation with GANs for autonomous driving publication-title: arXiv:1905.07290 – ident: ref65 doi: 10.1109/LWC.2021.3075467 – ident: ref123 doi: 10.1109/SPW.2018.00019 – ident: ref285 doi: 10.1109/BigData47090.2019.9005997 – ident: ref53 doi: 10.1016/j.adhoc.2020.102151 – ident: ref94 doi: 10.1145/3324921.3329695 – ident: ref49 doi: 10.1109/ICC.2018.8422223 – ident: ref159 doi: 10.22331/q-2018-08-06-79 – ident: ref168 doi: 10.1109/JIOT.2016.2579198 – ident: ref3 doi: 10.1109/COMST.2023.3249835 – ident: ref128 doi: 10.1109/ACCESS.2021.3095546 – ident: ref134 doi: 10.1109/ICTC52510.2021.9621134 – ident: ref118 doi: 10.1109/JIOT.2020.3024800 – ident: ref113 doi: 10.1016/j.adhoc.2020.102177 – ident: ref286 doi: 10.1007/978-3-031-19842-7_39 – ident: ref190 doi: 10.1109/ACCESS.2022.3161511 – ident: ref63 doi: 10.1109/LWC.2019.2947041 – ident: ref172 doi: 10.1109/IOTM.001.2100209 – ident: ref47 doi: 10.1109/JSAC.2021.3078489 – start-page: 4790 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref249 article-title: Conditional image generation with pixelCNN decoders – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref223 article-title: Variational autoencoder with arbitrary conditioning – ident: ref25 doi: 10.1109/ACCESS.2023.3296707 – ident: ref111 doi: 10.1016/j.future.2022.01.026 – ident: ref129 doi: 10.1109/ACCESS.2022.3187837 – ident: ref195 doi: 10.1056/NEJMoa1210384 – ident: ref177 doi: 10.1023/B:MACH.0000015881.36452.6e – volume: 33 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref239 article-title: Language models are few-shot learners – year: 2021 ident: ref194 article-title: Learning disentangled representation by exploiting pretrained generative models: A contrastive learning view publication-title: arXiv:2102.10543 – ident: ref108 doi: 10.1109/TCYB.2022.3163811 – ident: ref125 doi: 10.1145/3468691.3468742 – ident: ref243 doi: 10.1098/rsta.1927.0007 – year: 2016 ident: ref211 article-title: Adversarial feature learning publication-title: arXiv:1605.09782 – ident: ref103 doi: 10.3390/s22218085 – ident: ref257 doi: 10.1109/ICCWorkshops50388.2021.9473497 – ident: ref58 doi: 10.1109/GLOBECOM48099.2022.10001178 – year: 2022 ident: ref295 article-title: A survey on generative diffusion model publication-title: arXiv:2209.02646 – ident: ref120 doi: 10.1109/compsac48688.2020.0-218 – start-page: 1 volume-title: Proc. 30th Conf. Neural Inf. Process. Syst. ident: ref203 article-title: Generative adversarial imitation learning – year: 2020 ident: ref219 article-title: Brainstorming generative adversarial networks (BGANs): Towards multi-agent generative models with distributed private datasets publication-title: arXiv:2002.00306 – year: 2022 ident: ref242 article-title: Using deepSpeed and Megatron to train Megatronturing NLG 530B, a large-scale generative language model publication-title: arXiv:2201.11990 – ident: ref11 doi: 10.1109/TWC.2020.3046766 – ident: ref23 doi: 10.1145/3459992 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref222 article-title: Wasserstein auto-encoders – year: 2014 ident: ref231 article-title: NICE: Non-linear independent components estimation publication-title: arXiv:1410.8516 – ident: ref166 doi: 10.1109/access.2021.3130418 – ident: ref31 doi: 10.1109/ICCNC.2019.8685573 – ident: ref51 doi: 10.1109/RADAR.2018.8378737 – ident: ref138 doi: 10.1109/IPIN54987.2022.9918146 – start-page: 4743 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref233 article-title: Improved variational inference with inverse autoregressive flow – ident: ref95 doi: 10.1109/TCCN.2020.3010330 – start-page: 1743 volume-title: Proc. 18th Int. Conf. Auton. Agents MultiAgent Syst. ident: ref121 article-title: Attack-resilient connectivity game for UAV networks using generative adversarial learning – ident: ref292 doi: 10.1109/MCOM.001.2200866 – ident: ref105 doi: 10.1109/MILCOM55135.2022.10017520 – ident: ref97 doi: 10.3390/electronics12010084 – ident: ref127 doi: 10.1109/BalkanCom53780.2021.9593240 – ident: ref104 doi: 10.1109/WCNC51071.2022.9771754 – ident: ref136 doi: 10.1109/ICC.2018.8423008 – ident: ref171 doi: 10.1109/jiot.2021.3098028 – start-page: 1 volume-title: Proc. ICLR ident: ref205 article-title: Unrolled generative adversarial networks – ident: ref287 doi: 10.1109/TPAMI.2020.2992934 – ident: ref80 doi: 10.1186/s13638-021-01950-2 – ident: ref70 doi: 10.23919/JCC.2020.02.002 – ident: ref147 doi: 10.1109/LCOMM.2022.3172171 – ident: ref155 doi: 10.1109/COMST.2015.2476474 – year: 2014 ident: ref206 article-title: Conditional generative adversarial nets publication-title: arXiv:1411.1784 – ident: ref85 doi: 10.1109/JIOT.2022.3213593 – ident: ref17 doi: 10.1109/MCOM.2019.1800635 – ident: ref114 doi: 10.1109/INFOCOMWKSHPS51825.2021.9484569 – ident: ref264 doi: 10.1109/GLOBECOM54140.2023.10437725 – ident: ref37 doi: 10.1109/JSAC.2022.3191346 – ident: ref186 doi: 10.1109/MTTW51045.2020.9245065 – ident: ref1 doi: 10.1109/comst.2016.2532458 – year: 2018 ident: ref192 article-title: GAN augmentation: Augmenting training data using generative adversarial networks publication-title: arXiv:1810.10863 – ident: ref26 doi: 10.1109/COMST.2021.3136132 – ident: ref145 doi: 10.1109/COMST.2022.3223224 – ident: ref161 doi: 10.1109/MNET.011.2000195 – year: 2018 ident: ref193 article-title: Missing value imputation based on deep generative models publication-title: arXiv:1808.01684 – ident: ref69 doi: 10.1109/UkrMiCo43733.2018.9047611 – ident: ref110 doi: 10.1109/PST.2018.8514157 – ident: ref183 doi: 10.1109/MNET.2019.1800439 – ident: ref191 doi: 10.1016/j.array.2022.100142 – ident: ref107 doi: 10.1109/MWC.004.2100362 – ident: ref137 doi: 10.1109/GLOBECOM42002.2020.9322456 – ident: ref275 doi: 10.1145/3626235 – ident: ref251 doi: 10.1162/089976602760128018 – ident: ref115 doi: 10.1109/UEMCON.2018.8796769 – ident: ref258 doi: 10.1109/TCOMM.2019.2927561 – ident: ref160 doi: 10.1109/msp.2017.3151326 – start-page: 1339 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref253 article-title: 3D object recognition with deep belief nets – ident: ref271 doi: 10.1109/CVPR.2017.632 – ident: ref72 doi: 10.1109/ACCESS.2022.3177906 – ident: ref199 doi: 10.1109/JPROC.2020.3004555 – year: 2016 ident: ref204 article-title: NIPS 2016 tutorial: Generative adversarial networks publication-title: arXiv:1701.00160 – ident: ref86 doi: 10.1109/TCCN.2019.2948919 – ident: ref106 doi: 10.1109/LWC.2018.2867459 |
| SSID | ssj0002511134 |
| Score | 2.555837 |
| Snippet | As we transition from the 5G epoch, a new horizon beckons with the advent of 6G, seeking a profound fusion with novel communication paradigms and emerging... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2433 |
| SubjectTerms | 6G mobile communication adversarial ML AI-generated content Antenna arrays Artificial intelligence artificial intelligence (AI) autoregressive generative models Autoregressive models Communication system security Communications traffic Data models deep learning (DL) Design optimization diffusion models Digital twins discriminative AI Edge computing explainable AI extremely large antenna arrays Generative adversarial networks generative AI Generative artificial intelligence generative models generative pre-trained transformers generative transformers holographic beamforming integrated sensing and communications Large language models Machine learning machine learning (ML) mMIMO mmWave Mobile computing Near field communication network function virtualization Network management systems normalizing flows open RAN semantic communications software defined networks Surveys Taxonomy Technical papers terahertz trustworthy AI variational autoencoders Wireless communication zero-touch service management |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQ4lAOqFAQ29JqDj024MSzeXDbUpZuxUsCJG6WX5GQIFvtC_XfdyYJqyAkuHCLLCdOZsafv0mcb4T4br23UqkiMia1EcYB6YiVEaVRLGFFSVft6dPs_Dy_vS0uO6W-eE9YIw_cGI631fjc0EIaB4UGieDkfYsupHGQRVn_QZ1QYyeZYgxm4hwrbGWGYlkcXPw5uji7ooQwwX1FqJ1k8bOlqFbsb0usvMDlerEZfhQbLUuEQXN3m2IlVFtivaMd-En4wQyIvMEv81jBuIRGP5rBCwYjOJ6YQxjANSsUUIRFbv4QXc0ni_APxhUQssGQlQu4DjbcVZCeAG-DvSfYg1FHpHNb3AyPr49-R23JhMhRojaLjCxTg0EFi954Yx3hR2LRZGhtYoP3JZkSHRaYeSxDv3Q1JSAOSPOyr7zaEavVuAq7AoIn5liqzJSORdWcMcQO80L2c5k5ZVxPJE_W067VE-eyFve6zitkoRuTaza5bk3eEz-WJ_1t5DRe7_6T3bLsylrYdQNFiG4jRL8VIT2xzU7tjId87bQn9p68rNuJO9X81RGJE8v083uM_UV84Odp3tnsidXZZB6-ijW3mN1NJ9_qmP0PrwLrwA priority: 102 providerName: Directory of Open Access Journals |
| Title | At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers in 6G Wireless Intelligence |
| URI | https://ieeexplore.ieee.org/document/10422716 https://www.proquest.com/docview/3049497706 https://doaj.org/article/addd8a0631e34a408085b4ce61e09f31 |
| Volume | 5 |
| WOSCitedRecordID | wos001214542600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2644-125X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511134 issn: 2644-125X databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2644-125X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511134 issn: 2644-125X databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPIu6UKo5cCTFib1xwm0pu1BEW6QWqTfLj4lUqcqi7W4RF347M467WoRA4hJZkZ04-ezxN358I8QrH6OXSrWFc7UvdImaUqyMKJ1iCStyuhLSn83JSXNx0X7Jh9XTWRhETJvP8ICTaS0_zsOKp8qoh-uqIoK_JbaMMcNhrfWECnPlUumsLFTK9s3pp8PT4zPyASt9oMhQV6b8bfRJIv05qsofpjiNL7OH_1mzR-JBJpIwGZB_LO5g_0Tc35AXfCriZAnE7-C9-97DvINBYprtG0yOYLpwb2EC5yxiQI2woHcUZ6vFDf6AeQ9k_GDG4gYcKhsue6g_AO-UvSLLCEcbOp474utsen74schRFYpAvtyycLKrnUaFXkcXnQ9kYiqvndHeVx5j7BzRlKBbbaLucNyFxBqIJlLXHauonontft7jrgCMRC47ZVwXWHctOEcEsmnluJEmKBdGorr92zZkyXGOfHFlk-shWztAZBkimyEaidfrQt8GxY1_Z3_HMK6zslx2ukH42Nz7LBnx2NBnqRKVdppYcjP2OmBdomw7RQ_ZYUw33jfAORJ7t63C5r59bXlhUhNtlvXzvxR7Ie5xFYeZmj2xvVys8KW4G26Wl9eL_eT20_X453Q_NeFf1gLrgQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bTxQxFG4QTNQHUcG4CNgHHx3sTM_ceFuRhdVlMWFJeGt6m4SEzJplF-O_95xO2awhkvjWTNppZ76e06-37zD20ThnhJR1onVhEkg9YIqUEYWWJGGFk66A9Kgcj6urq_pHvKwe7sJ478PhM39AybCX76Z2QUtlaOGQZUjwn7CNHCBLu-tayyUVYsuphKgtlIr68_m3o_OzC5wFZnAg0VVnZfrX-BNk-mNclQfOOIwwg83_bNsr9jJSSd7vsH_N1nz7hr1YERjcYq4_58jw-Ff9q-XThnci0-TheH_Ij2f6kPf5hGQMsBsmWEdysZjd-d982nJ0f3xA8gYULJtft7w44XRW9gZ9Ix-uKHlus8vB8eToNIlxFRKLs7l5okVTaPDSG3DaaWPRyWQGdAnGZMY712gkKhZqKB00Pm9s4A1IFNF4c-nkW7beTlv_jnHvkF42stSNJeU1qzVSyKoWeSVKK7Xtsez-bysbRccp9sWNCpMPUasOIkUQqQhRj31aFvrZaW48nv0LwbjMSoLZ4QHio6L9KXTjrsLPkqmXoAF5cpUbsL5IvagbiS_ZJkxX6uvg7LHd-16honXfKtqaBCTOotj5R7EP7Nnp5GykRsPx9_fsOTW3W7fZZevz2cLvsaf2bn59O9sPXfgPIODsog |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=At+the+Dawn+of+Generative+AI+Era%3A+A+Tutorial-cum-Survey+on+New+Frontiers+in+6G+Wireless+Intelligence&rft.jtitle=IEEE+open+journal+of+the+Communications+Society&rft.au=Celik%2C+Abdulkadir&rft.au=Eltawil%2C+Ahmed+M.&rft.date=2024&rft.pub=IEEE&rft.eissn=2644-125X&rft.volume=5&rft.spage=2433&rft.epage=2489&rft_id=info:doi/10.1109%2FOJCOMS.2024.3362271&rft.externalDocID=10422716 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-125X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-125X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-125X&client=summon |