IA-CIOU: An Improved IOU Bounding Box Loss Function for SAR Ship Target Detection Methods

Ship detection in synthetic aperture radar (SAR) images is crucial in both civilian and military fields, offering extensive application prospects. Nonetheless, owing to the distinctive characteristics of SAR imaging, this task confronts numerous challenges. Specifically, ships with high aspect ratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 17; S. 10569 - 10582
Hauptverfasser: Huang, Pingping, Tian, Shihao, Su, Yun, Tan, Weixian, Dong, Yifan, Xu, Wei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ship detection in synthetic aperture radar (SAR) images is crucial in both civilian and military fields, offering extensive application prospects. Nonetheless, owing to the distinctive characteristics of SAR imaging, this task confronts numerous challenges. Specifically, ships with high aspect ratios, dense arrangements and small sizes in complex environments frequently yield in suboptimal positioning effects, consequently impacting detection performance. In response to the challenges in ship target detection, this article introduces a novel approach, termed Inner-alpha-CIOU (IA-CIOU), that relies on an enhanced intersection over union (IOU). Primarily, the method introduces Inner IOU, which effectively regulates generation of auxiliary bounding boxes through scale factor r . This ensures a better fit for dimensions of ship target frames, thereby enhancing target detection performance as well as expediting model convergence. Subsequently, this method introduces Alpha IOU, enhancing robustness of small-size ship targets in complex backgrounds by adjusting α . This allows the detector to achieve greater flexibility in ship regression accuracy. Following numerous experimental validations, proposed algorithm consistently outperforms on both SAR-Ship-Dataset, MSAR-1.0 dataset, and SAR ship detection dataset (SSDD) dataset. This groundbreaking innovation not only possesses immeasurable practical worth, but also introduces a fresh perspective together with enlightening insights for future research efforts.
AbstractList Ship detection in synthetic aperture radar (SAR) images is crucial in both civilian and military fields, offering extensive application prospects. Nonetheless, owing to the distinctive characteristics of SAR imaging, this task confronts numerous challenges. Specifically, ships with high aspect ratios, dense arrangements and small sizes in complex environments frequently yield in suboptimal positioning effects, consequently impacting detection performance. In response to the challenges in ship target detection, this article introduces a novel approach, termed Inner-alpha-CIOU (IA-CIOU), that relies on an enhanced intersection over union (IOU). Primarily, the method introduces Inner IOU, which effectively regulates generation of auxiliary bounding boxes through scale factor r . This ensures a better fit for dimensions of ship target frames, thereby enhancing target detection performance as well as expediting model convergence. Subsequently, this method introduces Alpha IOU, enhancing robustness of small-size ship targets in complex backgrounds by adjusting α . This allows the detector to achieve greater flexibility in ship regression accuracy. Following numerous experimental validations, proposed algorithm consistently outperforms on both SAR-Ship-Dataset, MSAR-1.0 dataset, and SAR ship detection dataset (SSDD) dataset. This groundbreaking innovation not only possesses immeasurable practical worth, but also introduces a fresh perspective together with enlightening insights for future research efforts.
Author Tian, Shihao
Su, Yun
Tan, Weixian
Huang, Pingping
Xu, Wei
Dong, Yifan
Author_xml – sequence: 1
  givenname: Pingping
  orcidid: 0000-0001-7720-1183
  surname: Huang
  fullname: Huang, Pingping
  email: hwangpp@imut.edu.cn
  organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 2
  givenname: Shihao
  orcidid: 0009-0007-8642-9252
  surname: Tian
  fullname: Tian, Shihao
  email: tsh127140@163.com
  organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 3
  givenname: Yun
  orcidid: 0009-0008-5831-9344
  surname: Su
  fullname: Su, Yun
  email: suyun@imut.edu.cn
  organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 4
  givenname: Weixian
  orcidid: 0000-0001-9071-9470
  surname: Tan
  fullname: Tan, Weixian
  email: wxtan@imut.edu.cn
  organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 5
  givenname: Yifan
  orcidid: 0000-0002-3155-6437
  surname: Dong
  fullname: Dong, Yifan
  email: yfdong@imut.edu.cn
  organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-8045-8817
  surname: Xu
  fullname: Xu, Wei
  email: xuwei1983@imut.edu.cn
  organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
BookMark eNqFUU2P0zAQtdAi0V34BXCwxDnFn0nMLRQWgopW2nYPnCx_TLquunFxXAT_HpesEOLCaUYz894bvXeJLsY4AkIvKVlSStSbz5ttd7tZMsLEkgvCpCBP0IJRSSsqubxAC6q4qqgg4hm6nKY9ITVrFF-gr31Xrfqbu7e4G3H_cEzxO3hcBvhdPI0-jLvS_MDrOE34-jS6HOKIh5jwprvFm_twxFuTdpDxe8gwb79Avo9-eo6eDuYwwYvHeoXurj9sV5-q9c3HftWtKyeIypWCATxhzoKwloOzVhrKrVXKtUQQ2xjD1NAMjaBEuoYLDpx7JnzTkMGIll-hfub10ez1MYUHk37qaIL-PYhpp03KwR1AD4OhtRPGW9kK74VqadsyT23hr1XNC9frmav48O0EU9b7eEpjeV9zUteqGCpkueLzlUvFlgTDH1VK9DkPPeehz3noxzwKSv2DciGbs2M5mXD4D_bVjA0A8Jea5LxuBf8FykuZRQ
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1007_s11760_025_04237_x
crossref_primary_10_1016_j_indcrop_2025_121515
crossref_primary_10_1109_TGRS_2025_3583467
crossref_primary_10_3390_electronics14030498
crossref_primary_10_3390_sym17081210
crossref_primary_10_1109_JSTARS_2025_3602497
crossref_primary_10_1109_JSEN_2025_3593135
crossref_primary_10_3390_agriculture14122324
crossref_primary_10_3390_s25072223
crossref_primary_10_1109_JSTARS_2025_3587701
crossref_primary_10_3390_rs16162878
crossref_primary_10_3390_app14188150
crossref_primary_10_1109_JSTARS_2025_3579292
crossref_primary_10_3390_electronics13224540
crossref_primary_10_1016_j_heliyon_2024_e37605
crossref_primary_10_1109_JSTARS_2025_3574184
crossref_primary_10_3390_app15179380
crossref_primary_10_1016_j_engappai_2025_112348
Cites_doi 10.3390/rs14236103
10.3390/rs15153771
10.1109/CVPR.2017.106
10.1109/CVPR.2018.00913
10.1007/s11042-020-08976-6
10.1109/TIP.2022.3231126
10.1109/ICCV.2017.324
10.1109/LGRS.2023.3307793
10.1145/2964284.2967274
10.1016/j.neucom.2022.07.042
10.1109/TGRS.2021.3062038
10.1109/TGRS.2020.3018879
10.3390/rs11070765
10.1007/978-3-319-46493-0_22
10.1109/CVPR.2016.90
10.1109/CVPR.2016.91
10.3390/rs14194801
10.3390/rs14061488
10.3390/rs11101206
10.1109/JSTARS.2022.3187009
10.1109/MGRS.2022.3161377
10.3390/rs13214209
10.3390/rs13183690
10.1109/CVPR.2014.81
10.1109/TPAMI.2016.2577031
10.3390/s22093447
10.1109/ACCESS.2020.2964540
10.1109/tgrs.2022.3216532
10.1080/07038992.2001.10854896
10.1049/ip-rsn:20030566
10.1117/12.197337
10.1109/LGRS.2022.3192559
10.1016/j.sigpro.2023.109303
10.1109/83.791978
10.3390/app13179793
10.1109/TGRS.2021.3108585
10.1109/CVPR.2018.00644
10.48550/ARXIV.1807.06521
10.1109/TGRS.2023.3264231
10.1109/igarss46834.2022.9883800
10.1007/978-3-319-46448-0_2
10.1109/ACCESS.2021.3064362
10.1109/JSTARS.2017.2764506
10.1109/JSTARS.2022.3213583
10.1109/JSTARS.2022.3142025
10.48550/arXiv.1911.08287
10.1016/j.ins.2020.09.003
10.1109/TPAMI.2019.2913372
10.5589/m11-054
10.1109/CVPR.2019.00075
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2024.3402540
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 10582
ExternalDocumentID oai_doaj_org_article_ffa16c4adb584dd4981882d1bf7f6963
10_1109_JSTARS_2024_3402540
10533684
Genre orig-research
GrantInformation_xml – fundername: Inner Mongolia Autonomous Region 2022 Science and Technology Leading Talent Team
  grantid: 2022LJRC0002
– fundername: National Natural Science Foundation of China
  grantid: U22A2010
  funderid: 10.13039/501100001809
– fundername: Key Industry Development Special Fund Project of Inner Mongolia
  grantid: JY20220077; JY20220174
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-9efed02cbe4bb3ecbb5a13bb99c8040b7aa29f7f74105c7343e33d24d770fa483
IEDL.DBID DOA
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246279000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:49:14 EDT 2025
Fri Jul 25 10:40:08 EDT 2025
Sat Nov 29 07:50:22 EST 2025
Tue Nov 18 20:45:57 EST 2025
Wed Aug 27 01:41:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9efed02cbe4bb3ecbb5a13bb99c8040b7aa29f7f74105c7343e33d24d770fa483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-5831-9344
0000-0001-7720-1183
0009-0007-8642-9252
0000-0001-9071-9470
0000-0002-3155-6437
0000-0002-8045-8817
OpenAccessLink https://doaj.org/article/ffa16c4adb584dd4981882d1bf7f6963
PQID 3066915145
PQPubID 75722
PageCount 14
ParticipantIDs ieee_primary_10533684
doaj_primary_oai_doaj_org_article_ffa16c4adb584dd4981882d1bf7f6963
crossref_citationtrail_10_1109_JSTARS_2024_3402540
proquest_journals_3066915145
crossref_primary_10_1109_JSTARS_2024_3402540
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Gevorgyan (ref48) 2022
ref51
Wang (ref42)
ref46
ref45
ref47
ref41
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Tong (ref50) 2023
Wang (ref23) 2022
ref35
ref34
ref36
ref31
ref30
He (ref38); 34
ref33
ref32
Zhang (ref37) 2023
ref2
ref1
ref39
Siliang (ref49) 2023
ref26
ref25
ref20
ref22
ref21
Wang (ref24) 2024
ref28
ref27
ref29
Redmon (ref44) 2018
References_xml – ident: ref9
  doi: 10.3390/rs14236103
– ident: ref58
  doi: 10.3390/rs15153771
– volume: 34
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Alpha-IoU: A family of power intersection over union losses for bounding box regression
– ident: ref39
  doi: 10.1109/CVPR.2017.106
– ident: ref40
  doi: 10.1109/CVPR.2018.00913
– ident: ref41
  doi: 10.1007/s11042-020-08976-6
– ident: ref18
  doi: 10.1109/TIP.2022.3231126
– ident: ref22
  doi: 10.1109/ICCV.2017.324
– ident: ref59
  doi: 10.1109/LGRS.2023.3307793
– ident: ref43
  doi: 10.1145/2964284.2967274
– year: 2023
  ident: ref50
  article-title: Wise-IoU: Bounding box regression loss with dynamic focusing mechanism
– ident: ref47
  doi: 10.1016/j.neucom.2022.07.042
– ident: ref31
  doi: 10.1109/TGRS.2021.3062038
– ident: ref19
  doi: 10.1109/TGRS.2020.3018879
– ident: ref54
  doi: 10.3390/rs11070765
– ident: ref27
  doi: 10.1007/978-3-319-46493-0_22
– ident: ref35
  doi: 10.1109/CVPR.2016.90
– ident: ref20
  doi: 10.1109/CVPR.2016.91
– ident: ref51
  doi: 10.3390/rs14194801
– ident: ref56
  doi: 10.3390/rs14061488
– ident: ref4
  doi: 10.3390/rs11101206
– ident: ref16
  doi: 10.1109/JSTARS.2022.3187009
– ident: ref34
  doi: 10.1109/MGRS.2022.3161377
– ident: ref3
  doi: 10.3390/rs13214209
– ident: ref55
  doi: 10.3390/rs13183690
– ident: ref25
  doi: 10.1109/CVPR.2014.81
– ident: ref26
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref52
  doi: 10.3390/s22093447
– ident: ref29
  doi: 10.1109/ACCESS.2020.2964540
– year: 2022
  ident: ref48
  article-title: SIoU loss: More powerful learning for bounding box regression
– ident: ref1
  doi: 10.1109/tgrs.2022.3216532
– ident: ref12
  doi: 10.1080/07038992.2001.10854896
– ident: ref5
  doi: 10.1049/ip-rsn:20030566
– ident: ref6
  doi: 10.1117/12.197337
– ident: ref30
  doi: 10.1109/LGRS.2022.3192559
– ident: ref11
  doi: 10.1016/j.sigpro.2023.109303
– year: 2018
  ident: ref44
  article-title: YOLOv3: An incremental improvement
– ident: ref36
  doi: 10.1109/83.791978
– ident: ref10
  doi: 10.3390/app13179793
– start-page: 3853
  volume-title: Proc. 31st Int. Conf. Mach. Learn.
  ident: ref42
  article-title: Robust distance metric learning via simultaneous 1-norm minimization and maximization
– year: 2023
  ident: ref49
  article-title: MPDIoU: A loss for efficient and accurate bounding box regression
– ident: ref7
  doi: 10.1109/TGRS.2021.3108585
– ident: ref28
  doi: 10.1109/CVPR.2018.00644
– ident: ref32
  doi: 10.48550/ARXIV.1807.06521
– year: 2023
  ident: ref37
  article-title: Inner-IoU: More effective intersection over union loss with auxiliary bounding box
– ident: ref53
  doi: 10.1109/TGRS.2023.3264231
– ident: ref2
  doi: 10.1109/igarss46834.2022.9883800
– ident: ref21
  doi: 10.1007/978-3-319-46448-0_2
– year: 2024
  ident: ref24
  article-title: YOLOv9: Learning what you want to learn using programmable gradient information
– ident: ref8
  doi: 10.1109/ACCESS.2021.3064362
– ident: ref13
  doi: 10.1109/JSTARS.2017.2764506
– ident: ref57
  doi: 10.1109/JSTARS.2022.3213583
– ident: ref17
  doi: 10.1109/JSTARS.2022.3142025
– ident: ref46
  doi: 10.48550/arXiv.1911.08287
– ident: ref15
  doi: 10.1016/j.ins.2020.09.003
– ident: ref33
  doi: 10.1109/TPAMI.2019.2913372
– ident: ref14
  doi: 10.5589/m11-054
– year: 2022
  ident: ref23
  article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
– ident: ref45
  doi: 10.1109/CVPR.2019.00075
SSID ssj0062793
Score 2.514441
Snippet Ship detection in synthetic aperture radar (SAR) images is crucial in both civilian and military fields, offering extensive application prospects. Nonetheless,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10569
SubjectTerms Algorithms
Aspect ratio
Classification algorithms
Datasets
Deep learning
Feature extraction
Intersection over union (IOU) loss function
Marine vehicles
Military applications
Radar detection
Radar imaging
Radar polarimetry
SAR (radar)
ship detection
Synthetic aperture radar
synthetic aperture radar (SAR) images
Target detection
Task analysis
YOLO
YOLOv5
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG6EaOKLimI8RdMHHi3ubue2LW8LeEKCaDhI8Knpj9lAYg7CHUb-e6bdHtEYTXxrum22u99M-03bmWFsM4IfB_BK-NhWArTRQqNyAkw6JvMKoXI52YQ6OtJnZ-ZrcVbPvjCImC-f4VYq5rP8eBlu0lYZaTiRk1bDCltRSg3OWstpt21UjrBLhMSIFDOmhBiqK_OBZLw7npIx2MCWhOT_Xf22DOVo_SW9yh9zcl5oJk__c4jP2JPCKHk3iMAae4Cz5-zRp5yx9_YF-3bQid2DL6fbvJvxYQsBI6cKvpMyKtHKRYWf_JBGySe0yCWgODFZPu2O-fT84oqf5MvifA8XODz9nLNOz9fZ6eTjye6-KPkURCArbiEM9hirJngE7yUG78eult4bEzTpslfONaZXvUpXP4OSIFHK2EBUquodaPmSrc4uZ_iKca9NiAGb6M0Y-io4R2ZkxNqAIb5RyxFrlr_XhhJsPOW8-G6z0VEZO2BiEya2YDJi7-87XQ2xNv7dfCfhdt80BcrOFQSILXpn-97VbQAXPTGtGMEQQdFNrD19Z0uTz4itJxB_ed-A34htLMXAFq2eWzKvWkMUCcav_9LtDXuchjjs0Wyw1cX1Db5lD8OPxcX8-l0W2Ds7VuT0
  priority: 102
  providerName: IEEE
Title IA-CIOU: An Improved IOU Bounding Box Loss Function for SAR Ship Target Detection Methods
URI https://ieeexplore.ieee.org/document/10533684
https://www.proquest.com/docview/3066915145
https://doaj.org/article/ffa16c4adb584dd4981882d1bf7f6963
Volume 17
WOSCitedRecordID wos001246279000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQAqmXilfV5SUfOOKSxLOxzS27sIAEtGJBoifLr6hI1YLYbQX_nrGdRaBK7aW3yHHkZGbsmXHG30fIngfbd2AFs74uGEglmQzCMFDxN5kVAQqTyCbE5aW8vVXf3lB9xZqwDA-cBXfQtqasHRhv0VV6Dwo9jKx8aVvR1mg9cfXFqGeeTOU1uK5EgtvF6ESxCCDT4Q2VhTpAg2-uxpgZVvCFQzwMXrzzSQm6v-Na-WOBTl5ntEI-duEibfJrrpKFMFkjyyeJjvd5nXw_a9jw7OvNIW0mNO8PBE-xgQ4iXRK6Jbx4ouc4Kh2hB4taoBim0nFzRcc_7h7odaoEp0dhFvLdi0QpPd0gN6Pj6-Ep68gSmMMUbcZUaIMvKmcDWMuDs7ZvSm6tUk7iRLXCmEqhzESs63SCAw-c-wq8EEVrQPJPZHFyPwmfCbVSOe9C5a3qQ1s4YzBH9KFUoDCYKHmPVHNxadchiUdCi586ZRSF0lnGOspYdzLukf3Xhx4ykMbfuw-iHl67RhTs1IC2oTvb0P-yjR7ZiFp8Mx4Gt7WEHtmeq1V3U3aqMXeqFcY_0N_8H2NvkQ_xe_JuzTZZnD3-Cjtkyf2e3U0fd5O17qbThi8rROjp
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEG8UNfriB2I4Re2DjxT3Y3a79W1BTy4ep-GOBJ-afswGEnIQ7jD63zvt9gjEaOJb022z3f3NtL9pOzOMvfNgKwdWCuvrTECjGtGgNAJUOCazEiEzMdmEnEya42P1LTmrR18YRIyXz3AnFONZvj93V2GrjDScyEndwF12rwIo8t5dazXx1oWMMXaJkigRosakIEN5pt6TlLeHUzIHC9gpIXiAZ7cWohivPyVY-WNWjkvN8Ml_DvIpe5w4JW97IXjG7uB8nT34HHP2_nrOvo9asTf6evSBt3PebyKg51TBd0NOJVq7qPCTj2mUfEjLXICKE5fl0_aQT09OL_gsXhfnH3GJ_dODmHd6scGOhp9me_siZVQQjuy4pVDYoc8KZxGsLdFZW5m8tFYp15A2W2lMoTrZyXD508kSSixLX4CXMusMNOULtjY_n-Mm47ZRzjssvFUVdJkzhgxJj7kCRYwjLwesWP1e7VK48ZD14kxHsyNTusdEB0x0wmTAtq87XfTRNv7dfDfgdt00hMqOFQSITpqnu87ktQPjLXEt70ERRWkKn1v6zpqmnwHbCCDeeF-P34BtrcRAJ71eaDKwakUkCaqXf-n2lj3cnx2M9Xg0-fKKPQrD7Xdsttja8vIKX7P77sfydHH5Jgrvb0wp6Ds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IA-CIOU%3A+An+Improved+IOU+Bounding+Box+Loss+Function+for+SAR+Ship+Target+Detection+Methods&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Huang%2C+Pingping&rft.au=Tian%2C+Shihao&rft.au=Su%2C+Yun&rft.au=Tan%2C+Weixian&rft.date=2024&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=10569&rft.epage=10582&rft_id=info:doi/10.1109%2FJSTARS.2024.3402540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2024_3402540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon