IA-CIOU: An Improved IOU Bounding Box Loss Function for SAR Ship Target Detection Methods
Ship detection in synthetic aperture radar (SAR) images is crucial in both civilian and military fields, offering extensive application prospects. Nonetheless, owing to the distinctive characteristics of SAR imaging, this task confronts numerous challenges. Specifically, ships with high aspect ratio...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 17; S. 10569 - 10582 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ship detection in synthetic aperture radar (SAR) images is crucial in both civilian and military fields, offering extensive application prospects. Nonetheless, owing to the distinctive characteristics of SAR imaging, this task confronts numerous challenges. Specifically, ships with high aspect ratios, dense arrangements and small sizes in complex environments frequently yield in suboptimal positioning effects, consequently impacting detection performance. In response to the challenges in ship target detection, this article introduces a novel approach, termed Inner-alpha-CIOU (IA-CIOU), that relies on an enhanced intersection over union (IOU). Primarily, the method introduces Inner IOU, which effectively regulates generation of auxiliary bounding boxes through scale factor r . This ensures a better fit for dimensions of ship target frames, thereby enhancing target detection performance as well as expediting model convergence. Subsequently, this method introduces Alpha IOU, enhancing robustness of small-size ship targets in complex backgrounds by adjusting α . This allows the detector to achieve greater flexibility in ship regression accuracy. Following numerous experimental validations, proposed algorithm consistently outperforms on both SAR-Ship-Dataset, MSAR-1.0 dataset, and SAR ship detection dataset (SSDD) dataset. This groundbreaking innovation not only possesses immeasurable practical worth, but also introduces a fresh perspective together with enlightening insights for future research efforts. |
|---|---|
| AbstractList | Ship detection in synthetic aperture radar (SAR) images is crucial in both civilian and military fields, offering extensive application prospects. Nonetheless, owing to the distinctive characteristics of SAR imaging, this task confronts numerous challenges. Specifically, ships with high aspect ratios, dense arrangements and small sizes in complex environments frequently yield in suboptimal positioning effects, consequently impacting detection performance. In response to the challenges in ship target detection, this article introduces a novel approach, termed Inner-alpha-CIOU (IA-CIOU), that relies on an enhanced intersection over union (IOU). Primarily, the method introduces Inner IOU, which effectively regulates generation of auxiliary bounding boxes through scale factor r . This ensures a better fit for dimensions of ship target frames, thereby enhancing target detection performance as well as expediting model convergence. Subsequently, this method introduces Alpha IOU, enhancing robustness of small-size ship targets in complex backgrounds by adjusting α . This allows the detector to achieve greater flexibility in ship regression accuracy. Following numerous experimental validations, proposed algorithm consistently outperforms on both SAR-Ship-Dataset, MSAR-1.0 dataset, and SAR ship detection dataset (SSDD) dataset. This groundbreaking innovation not only possesses immeasurable practical worth, but also introduces a fresh perspective together with enlightening insights for future research efforts. |
| Author | Tian, Shihao Su, Yun Tan, Weixian Huang, Pingping Xu, Wei Dong, Yifan |
| Author_xml | – sequence: 1 givenname: Pingping orcidid: 0000-0001-7720-1183 surname: Huang fullname: Huang, Pingping email: hwangpp@imut.edu.cn organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 2 givenname: Shihao orcidid: 0009-0007-8642-9252 surname: Tian fullname: Tian, Shihao email: tsh127140@163.com organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 3 givenname: Yun orcidid: 0009-0008-5831-9344 surname: Su fullname: Su, Yun email: suyun@imut.edu.cn organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 4 givenname: Weixian orcidid: 0000-0001-9071-9470 surname: Tan fullname: Tan, Weixian email: wxtan@imut.edu.cn organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 5 givenname: Yifan orcidid: 0000-0002-3155-6437 surname: Dong fullname: Dong, Yifan email: yfdong@imut.edu.cn organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 6 givenname: Wei orcidid: 0000-0002-8045-8817 surname: Xu fullname: Xu, Wei email: xuwei1983@imut.edu.cn organization: College of Information Engineering, Inner Mongolia University of Technology, Hohhot, China |
| BookMark | eNqFUU2P0zAQtdAi0V34BXCwxDnFn0nMLRQWgopW2nYPnCx_TLquunFxXAT_HpesEOLCaUYz894bvXeJLsY4AkIvKVlSStSbz5ttd7tZMsLEkgvCpCBP0IJRSSsqubxAC6q4qqgg4hm6nKY9ITVrFF-gr31Xrfqbu7e4G3H_cEzxO3hcBvhdPI0-jLvS_MDrOE34-jS6HOKIh5jwprvFm_twxFuTdpDxe8gwb79Avo9-eo6eDuYwwYvHeoXurj9sV5-q9c3HftWtKyeIypWCATxhzoKwloOzVhrKrVXKtUQQ2xjD1NAMjaBEuoYLDpx7JnzTkMGIll-hfub10ez1MYUHk37qaIL-PYhpp03KwR1AD4OhtRPGW9kK74VqadsyT23hr1XNC9frmav48O0EU9b7eEpjeV9zUteqGCpkueLzlUvFlgTDH1VK9DkPPeehz3noxzwKSv2DciGbs2M5mXD4D_bVjA0A8Jea5LxuBf8FykuZRQ |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1007_s11760_025_04237_x crossref_primary_10_1016_j_indcrop_2025_121515 crossref_primary_10_1109_TGRS_2025_3583467 crossref_primary_10_3390_electronics14030498 crossref_primary_10_3390_sym17081210 crossref_primary_10_1109_JSTARS_2025_3602497 crossref_primary_10_1109_JSEN_2025_3593135 crossref_primary_10_3390_agriculture14122324 crossref_primary_10_3390_s25072223 crossref_primary_10_1109_JSTARS_2025_3587701 crossref_primary_10_3390_rs16162878 crossref_primary_10_3390_app14188150 crossref_primary_10_1109_JSTARS_2025_3579292 crossref_primary_10_3390_electronics13224540 crossref_primary_10_1016_j_heliyon_2024_e37605 crossref_primary_10_1109_JSTARS_2025_3574184 crossref_primary_10_3390_app15179380 crossref_primary_10_1016_j_engappai_2025_112348 |
| Cites_doi | 10.3390/rs14236103 10.3390/rs15153771 10.1109/CVPR.2017.106 10.1109/CVPR.2018.00913 10.1007/s11042-020-08976-6 10.1109/TIP.2022.3231126 10.1109/ICCV.2017.324 10.1109/LGRS.2023.3307793 10.1145/2964284.2967274 10.1016/j.neucom.2022.07.042 10.1109/TGRS.2021.3062038 10.1109/TGRS.2020.3018879 10.3390/rs11070765 10.1007/978-3-319-46493-0_22 10.1109/CVPR.2016.90 10.1109/CVPR.2016.91 10.3390/rs14194801 10.3390/rs14061488 10.3390/rs11101206 10.1109/JSTARS.2022.3187009 10.1109/MGRS.2022.3161377 10.3390/rs13214209 10.3390/rs13183690 10.1109/CVPR.2014.81 10.1109/TPAMI.2016.2577031 10.3390/s22093447 10.1109/ACCESS.2020.2964540 10.1109/tgrs.2022.3216532 10.1080/07038992.2001.10854896 10.1049/ip-rsn:20030566 10.1117/12.197337 10.1109/LGRS.2022.3192559 10.1016/j.sigpro.2023.109303 10.1109/83.791978 10.3390/app13179793 10.1109/TGRS.2021.3108585 10.1109/CVPR.2018.00644 10.48550/ARXIV.1807.06521 10.1109/TGRS.2023.3264231 10.1109/igarss46834.2022.9883800 10.1007/978-3-319-46448-0_2 10.1109/ACCESS.2021.3064362 10.1109/JSTARS.2017.2764506 10.1109/JSTARS.2022.3213583 10.1109/JSTARS.2022.3142025 10.48550/arXiv.1911.08287 10.1016/j.ins.2020.09.003 10.1109/TPAMI.2019.2913372 10.5589/m11-054 10.1109/CVPR.2019.00075 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2024.3402540 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 10582 |
| ExternalDocumentID | oai_doaj_org_article_ffa16c4adb584dd4981882d1bf7f6963 10_1109_JSTARS_2024_3402540 10533684 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Inner Mongolia Autonomous Region 2022 Science and Technology Leading Talent Team grantid: 2022LJRC0002 – fundername: National Natural Science Foundation of China grantid: U22A2010 funderid: 10.13039/501100001809 – fundername: Key Industry Development Special Fund Project of Inner Mongolia grantid: JY20220077; JY20220174 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c409t-9efed02cbe4bb3ecbb5a13bb99c8040b7aa29f7f74105c7343e33d24d770fa483 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246279000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:49:14 EDT 2025 Fri Jul 25 10:40:08 EDT 2025 Sat Nov 29 07:50:22 EST 2025 Tue Nov 18 20:45:57 EST 2025 Wed Aug 27 01:41:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-9efed02cbe4bb3ecbb5a13bb99c8040b7aa29f7f74105c7343e33d24d770fa483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0008-5831-9344 0000-0001-7720-1183 0009-0007-8642-9252 0000-0001-9071-9470 0000-0002-3155-6437 0000-0002-8045-8817 |
| OpenAccessLink | https://doaj.org/article/ffa16c4adb584dd4981882d1bf7f6963 |
| PQID | 3066915145 |
| PQPubID | 75722 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10533684 doaj_primary_oai_doaj_org_article_ffa16c4adb584dd4981882d1bf7f6963 crossref_citationtrail_10_1109_JSTARS_2024_3402540 proquest_journals_3066915145 crossref_primary_10_1109_JSTARS_2024_3402540 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Gevorgyan (ref48) 2022 ref51 Wang (ref42) ref46 ref45 ref47 ref41 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Tong (ref50) 2023 Wang (ref23) 2022 ref35 ref34 ref36 ref31 ref30 He (ref38); 34 ref33 ref32 Zhang (ref37) 2023 ref2 ref1 ref39 Siliang (ref49) 2023 ref26 ref25 ref20 ref22 ref21 Wang (ref24) 2024 ref28 ref27 ref29 Redmon (ref44) 2018 |
| References_xml | – ident: ref9 doi: 10.3390/rs14236103 – ident: ref58 doi: 10.3390/rs15153771 – volume: 34 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref38 article-title: Alpha-IoU: A family of power intersection over union losses for bounding box regression – ident: ref39 doi: 10.1109/CVPR.2017.106 – ident: ref40 doi: 10.1109/CVPR.2018.00913 – ident: ref41 doi: 10.1007/s11042-020-08976-6 – ident: ref18 doi: 10.1109/TIP.2022.3231126 – ident: ref22 doi: 10.1109/ICCV.2017.324 – ident: ref59 doi: 10.1109/LGRS.2023.3307793 – ident: ref43 doi: 10.1145/2964284.2967274 – year: 2023 ident: ref50 article-title: Wise-IoU: Bounding box regression loss with dynamic focusing mechanism – ident: ref47 doi: 10.1016/j.neucom.2022.07.042 – ident: ref31 doi: 10.1109/TGRS.2021.3062038 – ident: ref19 doi: 10.1109/TGRS.2020.3018879 – ident: ref54 doi: 10.3390/rs11070765 – ident: ref27 doi: 10.1007/978-3-319-46493-0_22 – ident: ref35 doi: 10.1109/CVPR.2016.90 – ident: ref20 doi: 10.1109/CVPR.2016.91 – ident: ref51 doi: 10.3390/rs14194801 – ident: ref56 doi: 10.3390/rs14061488 – ident: ref4 doi: 10.3390/rs11101206 – ident: ref16 doi: 10.1109/JSTARS.2022.3187009 – ident: ref34 doi: 10.1109/MGRS.2022.3161377 – ident: ref3 doi: 10.3390/rs13214209 – ident: ref55 doi: 10.3390/rs13183690 – ident: ref25 doi: 10.1109/CVPR.2014.81 – ident: ref26 doi: 10.1109/TPAMI.2016.2577031 – ident: ref52 doi: 10.3390/s22093447 – ident: ref29 doi: 10.1109/ACCESS.2020.2964540 – year: 2022 ident: ref48 article-title: SIoU loss: More powerful learning for bounding box regression – ident: ref1 doi: 10.1109/tgrs.2022.3216532 – ident: ref12 doi: 10.1080/07038992.2001.10854896 – ident: ref5 doi: 10.1049/ip-rsn:20030566 – ident: ref6 doi: 10.1117/12.197337 – ident: ref30 doi: 10.1109/LGRS.2022.3192559 – ident: ref11 doi: 10.1016/j.sigpro.2023.109303 – year: 2018 ident: ref44 article-title: YOLOv3: An incremental improvement – ident: ref36 doi: 10.1109/83.791978 – ident: ref10 doi: 10.3390/app13179793 – start-page: 3853 volume-title: Proc. 31st Int. Conf. Mach. Learn. ident: ref42 article-title: Robust distance metric learning via simultaneous 1-norm minimization and maximization – year: 2023 ident: ref49 article-title: MPDIoU: A loss for efficient and accurate bounding box regression – ident: ref7 doi: 10.1109/TGRS.2021.3108585 – ident: ref28 doi: 10.1109/CVPR.2018.00644 – ident: ref32 doi: 10.48550/ARXIV.1807.06521 – year: 2023 ident: ref37 article-title: Inner-IoU: More effective intersection over union loss with auxiliary bounding box – ident: ref53 doi: 10.1109/TGRS.2023.3264231 – ident: ref2 doi: 10.1109/igarss46834.2022.9883800 – ident: ref21 doi: 10.1007/978-3-319-46448-0_2 – year: 2024 ident: ref24 article-title: YOLOv9: Learning what you want to learn using programmable gradient information – ident: ref8 doi: 10.1109/ACCESS.2021.3064362 – ident: ref13 doi: 10.1109/JSTARS.2017.2764506 – ident: ref57 doi: 10.1109/JSTARS.2022.3213583 – ident: ref17 doi: 10.1109/JSTARS.2022.3142025 – ident: ref46 doi: 10.48550/arXiv.1911.08287 – ident: ref15 doi: 10.1016/j.ins.2020.09.003 – ident: ref33 doi: 10.1109/TPAMI.2019.2913372 – ident: ref14 doi: 10.5589/m11-054 – year: 2022 ident: ref23 article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors – ident: ref45 doi: 10.1109/CVPR.2019.00075 |
| SSID | ssj0062793 |
| Score | 2.514441 |
| Snippet | Ship detection in synthetic aperture radar (SAR) images is crucial in both civilian and military fields, offering extensive application prospects. Nonetheless,... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10569 |
| SubjectTerms | Algorithms Aspect ratio Classification algorithms Datasets Deep learning Feature extraction Intersection over union (IOU) loss function Marine vehicles Military applications Radar detection Radar imaging Radar polarimetry SAR (radar) ship detection Synthetic aperture radar synthetic aperture radar (SAR) images Target detection Task analysis YOLO YOLOv5 |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fTxQxEG6EaOKLimI8RdMHHi3ubue2LW8LeEKCaDhI8Knpj9lAYg7CHUb-e6bdHtEYTXxrum22u99M-03bmWFsM4IfB_BK-NhWArTRQqNyAkw6JvMKoXI52YQ6OtJnZ-ZrcVbPvjCImC-f4VYq5rP8eBlu0lYZaTiRk1bDCltRSg3OWstpt21UjrBLhMSIFDOmhBiqK_OBZLw7npIx2MCWhOT_Xf22DOVo_SW9yh9zcl5oJk__c4jP2JPCKHk3iMAae4Cz5-zRp5yx9_YF-3bQid2DL6fbvJvxYQsBI6cKvpMyKtHKRYWf_JBGySe0yCWgODFZPu2O-fT84oqf5MvifA8XODz9nLNOz9fZ6eTjye6-KPkURCArbiEM9hirJngE7yUG78eult4bEzTpslfONaZXvUpXP4OSIFHK2EBUquodaPmSrc4uZ_iKca9NiAGb6M0Y-io4R2ZkxNqAIb5RyxFrlr_XhhJsPOW8-G6z0VEZO2BiEya2YDJi7-87XQ2xNv7dfCfhdt80BcrOFQSILXpn-97VbQAXPTGtGMEQQdFNrD19Z0uTz4itJxB_ed-A34htLMXAFq2eWzKvWkMUCcav_9LtDXuchjjs0Wyw1cX1Db5lD8OPxcX8-l0W2Ds7VuT0 priority: 102 providerName: IEEE |
| Title | IA-CIOU: An Improved IOU Bounding Box Loss Function for SAR Ship Target Detection Methods |
| URI | https://ieeexplore.ieee.org/document/10533684 https://www.proquest.com/docview/3066915145 https://doaj.org/article/ffa16c4adb584dd4981882d1bf7f6963 |
| Volume | 17 |
| WOSCitedRecordID | wos001246279000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQAqmXilfV5SUfOOKSxLOxzS27sIAEtGJBoifLr6hI1YLYbQX_nrGdRaBK7aW3yHHkZGbsmXHG30fIngfbd2AFs74uGEglmQzCMFDxN5kVAQqTyCbE5aW8vVXf3lB9xZqwDA-cBXfQtqasHRhv0VV6Dwo9jKx8aVvR1mg9cfXFqGeeTOU1uK5EgtvF6ESxCCDT4Q2VhTpAg2-uxpgZVvCFQzwMXrzzSQm6v-Na-WOBTl5ntEI-duEibfJrrpKFMFkjyyeJjvd5nXw_a9jw7OvNIW0mNO8PBE-xgQ4iXRK6Jbx4ouc4Kh2hB4taoBim0nFzRcc_7h7odaoEp0dhFvLdi0QpPd0gN6Pj6-Ep68gSmMMUbcZUaIMvKmcDWMuDs7ZvSm6tUk7iRLXCmEqhzESs63SCAw-c-wq8EEVrQPJPZHFyPwmfCbVSOe9C5a3qQ1s4YzBH9KFUoDCYKHmPVHNxadchiUdCi586ZRSF0lnGOspYdzLukf3Xhx4ykMbfuw-iHl67RhTs1IC2oTvb0P-yjR7ZiFp8Mx4Gt7WEHtmeq1V3U3aqMXeqFcY_0N_8H2NvkQ_xe_JuzTZZnD3-Cjtkyf2e3U0fd5O17qbThi8rROjp |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEG8UNfriB2I4Re2DjxT3Y3a79W1BTy4ep-GOBJ-afswGEnIQ7jD63zvt9gjEaOJb022z3f3NtL9pOzOMvfNgKwdWCuvrTECjGtGgNAJUOCazEiEzMdmEnEya42P1LTmrR18YRIyXz3AnFONZvj93V2GrjDScyEndwF12rwIo8t5dazXx1oWMMXaJkigRosakIEN5pt6TlLeHUzIHC9gpIXiAZ7cWohivPyVY-WNWjkvN8Ml_DvIpe5w4JW97IXjG7uB8nT34HHP2_nrOvo9asTf6evSBt3PebyKg51TBd0NOJVq7qPCTj2mUfEjLXICKE5fl0_aQT09OL_gsXhfnH3GJ_dODmHd6scGOhp9me_siZVQQjuy4pVDYoc8KZxGsLdFZW5m8tFYp15A2W2lMoTrZyXD508kSSixLX4CXMusMNOULtjY_n-Mm47ZRzjssvFUVdJkzhgxJj7kCRYwjLwesWP1e7VK48ZD14kxHsyNTusdEB0x0wmTAtq87XfTRNv7dfDfgdt00hMqOFQSITpqnu87ktQPjLXEt70ERRWkKn1v6zpqmnwHbCCDeeF-P34BtrcRAJ71eaDKwakUkCaqXf-n2lj3cnx2M9Xg0-fKKPQrD7Xdsttja8vIKX7P77sfydHH5Jgrvb0wp6Ds |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IA-CIOU%3A+An+Improved+IOU+Bounding+Box+Loss+Function+for+SAR+Ship+Target+Detection+Methods&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Huang%2C+Pingping&rft.au=Tian%2C+Shihao&rft.au=Su%2C+Yun&rft.au=Tan%2C+Weixian&rft.date=2024&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=10569&rft.epage=10582&rft_id=info:doi/10.1109%2FJSTARS.2024.3402540&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2024_3402540 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |