Indoor Localization with an Autoencoder based Convolutional Neural Network

Nowadays, studies on indoor localization systems based on wireless systems are increasing widely. Indoor localization is the process of determining the location of objects or people inside a building. Global Navigation Satellite System (GPS) signals do not provide sufficient location data indoors be...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 12; s. 1
Hlavní autori: Arslantas, Hatice, Okdem, Selcuk
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Nowadays, studies on indoor localization systems based on wireless systems are increasing widely. Indoor localization is the process of determining the location of objects or people inside a building. Global Navigation Satellite System (GPS) signals do not provide sufficient location data indoors because they are interrupted or completely lost in closed areas. For this reason, studies on indoor localization system design with machine learning and deep learning techniques based on Wi-Fi technology are increasing. In this study, we propose a method and training strategy that is entirely based on a Convolutional Neural Network (CNN) and a combined autoencoder that automatically extracts features from Wi-Fi fingerprint samples. In this model, we coupled an autoencoder and a CNN and we trained them simultaneously. Thus, we guarantee that the encoder and the CNN are trained simultaneously. The proposed system was evaluated on the UJIIndoorLoc and Tampere datasets. The experimental results show that the proposed model performs significantly better than the current state-of-the-art methods in terms of location coordinates (x, y) localization. In our study, runtime analysis is also presented to show the real-time performance of the network we proposed.
AbstractList Nowadays, studies on indoor localization systems based on wireless systems are increasing widely. Indoor localization is the process of determining the location of objects or people inside a building. Global Navigation Satellite System (GPS) signals do not provide sufficient location data indoors because they are interrupted or completely lost in closed areas. For this reason, studies on indoor localization system design with machine learning and deep learning techniques based on Wi-Fi technology are increasing. In this study, we propose a method and training strategy that is entirely based on a Convolutional Neural Network (CNN) and a combined autoencoder that automatically extracts features from Wi-Fi fingerprint samples. In this model, we coupled an autoencoder and a CNN and we trained them simultaneously. Thus, we guarantee that the encoder and the CNN are trained simultaneously. The proposed system was evaluated on the UJIIndoorLoc and Tampere datasets. The experimental results show that the proposed model performs significantly better than the current state-of-the-art methods in terms of location coordinates (x, y) localization. In our study, runtime analysis is also presented to show the real-time performance of the network we proposed.
Author Arslantas, Hatice
Okdem, Selcuk
Author_xml – sequence: 1
  givenname: Hatice
  orcidid: 0000-0003-1060-0707
  surname: Arslantas
  fullname: Arslantas, Hatice
  organization: Department of Computer Engineering, Erzincan Binali Yildirim University, Erzincan, Turkey
– sequence: 2
  givenname: Selcuk
  surname: Okdem
  fullname: Okdem, Selcuk
  organization: Department of Computer Engineering, Erciyes University, Kayseri, Turkey
BookMark eNp9UU1v1DAQtVCRaEt_ARwicd6tP9fxcRW1sNWqHApna2JPwEuIi-N0Bb--3k0rVRw6lxmN3nt6M--MnAxxQEI-MLpkjJrLddNc3d0tOeVyKUTNmVBvyClnK7MQSqxOXszvyMU47mipuqyUPiU3m8HHmKptdNCHf5BDHKp9yD8rGKr1lCMOLnpMVQsj-qqJw0PspwMK-uoWp3RseR_Tr_fkbQf9iBdP_Zx8v7761nxZbL9-3jTr7cJJavLCYOdq1G1NtZRoAATrpNKdb305QQivBRW0g9qsEBjv_GEUIJ1cKUWRi3OymXV9hJ29T-E3pL82QrDHRUw_LKQcXI9WcdVq2mmFTsvWmRrQS254y7UXSrZF69OsdZ_inwnHbHdxSuW20RYXTJZH1aqgzIxyKY5jws66kI-vyglCbxm1hyTsnIQ9JGGfkihc8R_32fHrrI8zKyDiC4bUhplaPAKftpZe
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126547
crossref_primary_10_1109_ACCESS_2025_3599785
crossref_primary_10_1007_s11277_024_11300_2
crossref_primary_10_1631_FITEE_2400366
crossref_primary_10_1007_s42979_025_04029_7
crossref_primary_10_1109_ACCESS_2024_3447112
crossref_primary_10_3390_smartcities8050153
Cites_doi 10.1109/jiot.2023.3298603
10.4028/www.scientific.net/amr.926-930.2438
10.1109/icufn.2018.8436598
10.1016/j.eswa.2014.07.042
10.1109/tii.2021.3074153
10.1109/icufn.2016.7537073
10.1109/PERCOM.2019.8767421
10.1145/1067170.1067193
10.1109/access.2019.2933921
10.3390/s22124622
10.1016/j.engappai.2022.105509
10.3390/s23156992
10.1109/ipin.2014.7275492
10.1109/iccnc.2018.8390298
10.1016/j.future.2022.07.021
10.1186/s41044-018-0031-2
10.3390/data2040032
10.1109/candarw53999.2021.00038
10.1109/access.2024.3360228
10.1007/978-3-319-54042-9_57
10.3390/electronics8090989
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3382135
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_525b70f75ec74bc98aed4292b27d354b
10_1109_ACCESS_2024_3382135
10479198
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-9efc8e7b80744e9aa31f457fdbd20233d73030fa896ea12fdfa893a4c46550e23
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001196436300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:46:37 EDT 2025
Mon Jun 30 14:42:50 EDT 2025
Tue Nov 18 20:47:28 EST 2025
Sat Nov 29 06:25:35 EST 2025
Wed Aug 27 02:17:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9efc8e7b80744e9aa31f457fdbd20233d73030fa896ea12fdfa893a4c46550e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1060-0707
OpenAccessLink https://ieeexplore.ieee.org/document/10479198
PQID 3031400885
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_3031400885
crossref_primary_10_1109_ACCESS_2024_3382135
crossref_citationtrail_10_1109_ACCESS_2024_3382135
ieee_primary_10479198
doaj_primary_oai_doaj_org_article_525b70f75ec74bc98aed4292b27d354b
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1109/jiot.2023.3298603
– ident: ref14
  doi: 10.4028/www.scientific.net/amr.926-930.2438
– ident: ref4
  doi: 10.1109/icufn.2018.8436598
– ident: ref13
  doi: 10.1016/j.eswa.2014.07.042
– ident: ref17
  doi: 10.1109/tii.2021.3074153
– ident: ref12
  doi: 10.1109/icufn.2016.7537073
– ident: ref10
  doi: 10.1109/PERCOM.2019.8767421
– ident: ref1
  doi: 10.1145/1067170.1067193
– ident: ref15
  doi: 10.1109/access.2019.2933921
– ident: ref20
  doi: 10.3390/s22124622
– ident: ref5
  doi: 10.1016/j.engappai.2022.105509
– ident: ref11
  doi: 10.3390/s23156992
– ident: ref2
  doi: 10.1109/ipin.2014.7275492
– ident: ref9
  doi: 10.1109/iccnc.2018.8390298
– ident: ref18
  doi: 10.1016/j.future.2022.07.021
– ident: ref19
  doi: 10.1186/s41044-018-0031-2
– ident: ref3
  doi: 10.3390/data2040032
– ident: ref6
  doi: 10.1109/candarw53999.2021.00038
– ident: ref21
  doi: 10.1109/access.2024.3360228
– ident: ref7
  doi: 10.1007/978-3-319-54042-9_57
– ident: ref8
  doi: 10.3390/electronics8090989
SSID ssj0000816957
Score 2.3562818
Snippet Nowadays, studies on indoor localization systems based on wireless systems are increasing widely. Indoor localization is the process of determining the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
autoencoder
Buildings
convolutional neural network
Convolutional neural networks
Deep learning
Encoding
Fingerprint recognition
Floors
Global navigation satellite system
Indoor environment
Indoor localization
Localization
Location awareness
Machine learning
Neural networks
Satellite navigation systems
Systems design
Training
Wi-Fi fingerprint localization
Wireless fidelity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF90YNHq02aNMlxXRQVEQ-K3kKeKEgra_X3m0mjLgh68dRS0qSZmWT6tcn3IXQQGkmED6ZkWMNvRqZL7Ykom0pHj4uGGp82Cl_x62vx8CBvZqS-YE3YQA88GO6YEWZ4FTjzllNjpdDegcSSIdzVjBqYfSsuZ8BUmoMFbiTjmWYIV_J4PJnEHkVASOhRhGUEJ4G371SUGPuzxMqPeTklm7MVtJzfEovx8HSraM63a2hphjtwHV1etK7rpsUVJKO8mbK4f-ofC90W47e-A4ZK56flScxTrph07XuOslgxUHKkQ1oDvoHuzk5vJ-dlFkYobYRjfSl9sMJzA0Q21Eutaxwo48EZB2rotYvDtq6CFrLxGpPg4LTW1AJZWuVJvYnm2671W6iosY2AkHscq6NBOIMtEQ43ptFGG9aMEPm0kbKZNRzEK55VQg-VVINhFRhWZcOO0OHXTS8DacbvxU_A-F9FgfE6XYhxoHIcqL_iYIQ2wHUz7VEusRQjtPvpS5WH56uqgbQ_Bolg2__R9g5ahP4MX2Z20Xw_ffN7aMG-90-v0_0UmR9xmuRu
  priority: 102
  providerName: Directory of Open Access Journals
Title Indoor Localization with an Autoencoder based Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/10479198
https://www.proquest.com/docview/3031400885
https://doaj.org/article/525b70f75ec74bc98aed4292b27d354b
Volume 12
WOSCitedRecordID wos001196436300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21VQ9wAApFXWirHDiSNnbi2D4uq1aA2ooDSL1Z_hhLSCiptrs99rfjcdylEgKpl8SKbMfJG2cyY88bgA-x11xhdLVglpYZha0tclX3jU2Iq75zmAOFL-TVlbq-1t9KsHqOhUHEvPkMT6iY1_LD6NfkKjslWgGdrORt2Jayn4K1Ng4VyiChhSzMQqzRp_PFIj1EsgF5d5IsMc5yTrc_2ieT9JesKn99irN-OX_5xJG9ghflR7KaT8jvwRYOr-H5I3rBN_D1yxDGcVldkL4q8ZYVOV4rO1Tz9WokEsuAy4pUWagW43BXBDF1TKwd-ZS3ie_Dj_Oz74vPdcmdUPtksa1qjdErlI64bjrU1rYsdkLG4AIlTG9DmtltE63SPVrGY6BiaztPfGoN8vYt7AzjgAdQtcwnm1EiS911UQXHPFeB9a63zjrRz4A_vFPjC7E45bf4ZbKB0WgzAWEICFOAmMHHTaObiVfj_9U_EVibqkSKnS8kFEyZY0Zw4WQTpUAvO-e1shgoG5fjMrSiczPYJ-Qe3W8CbQaHD9ibMoNvTUu8_kmolHj3j2bv4RkNcfLHHMLOarnGI9j1d6uft8vjbNyn4-X92XEW1N-kQ-Rf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQaIc-CxioUAOHEkbO3ZiH5cVVQvLikORerP8MZaQUIK2u_399TjuUgmBxClWZCdOnp3JjD3vAbyPneYKo6sls7TMKG1tkau6a2xCXHXCYU4UXvarlbq40N9KsnrOhUHEvPkMj6iY1_LD6LcUKjsmWgGdvOS7cE8KwZspXWsXUiENCS37wi3EGn08XyzSYyQvkIuj5ItxllXdftufTNNfdFX--BhnC3Py-D_79gQelV_Jaj5h_xTu4PAMHt4iGHwOn8-GMI7rakkWq2RcVhR6rexQzbebkWgsA64rMmahWozDVRmK6cLE25EPeaP4AXw_-XS-OK2LekLtk8-2qTVGr7B3xHYjUFvbsihkH4MLJJnehjS32yZapTu0jMdAxdYKT4xqDfL2BewN44AvoWqZT15jjyxdTkQVHPNcBda5zjrrZDcDfvNOjS_U4qRw8dNkF6PRZgLCEBCmADGDD7tGvyZmjX9X_0hg7aoSLXY-kVAwZZYZyaXrm9hL9L1wXiuLgfS4HO9DK4WbwQEhd-t-E2gzOLzB3pQ5fGlaYvZPg0rJV39p9g4enJ5_XZrl2erLa9in7k7RmUPY26y3-Abu-6vNj8v12zxQrwHmTuWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indoor+Localization+With+an+Autoencoder-Based+Convolutional+Neural+Network&rft.jtitle=IEEE+access&rft.au=Arslantas%2C+Hatice&rft.au=Okdem%2C+Selcuk&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=12&rft.spage=46059&rft_id=info:doi/10.1109%2FACCESS.2024.3382135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon