Indoor Localization with an Autoencoder based Convolutional Neural Network
Nowadays, studies on indoor localization systems based on wireless systems are increasing widely. Indoor localization is the process of determining the location of objects or people inside a building. Global Navigation Satellite System (GPS) signals do not provide sufficient location data indoors be...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 1 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Nowadays, studies on indoor localization systems based on wireless systems are increasing widely. Indoor localization is the process of determining the location of objects or people inside a building. Global Navigation Satellite System (GPS) signals do not provide sufficient location data indoors because they are interrupted or completely lost in closed areas. For this reason, studies on indoor localization system design with machine learning and deep learning techniques based on Wi-Fi technology are increasing. In this study, we propose a method and training strategy that is entirely based on a Convolutional Neural Network (CNN) and a combined autoencoder that automatically extracts features from Wi-Fi fingerprint samples. In this model, we coupled an autoencoder and a CNN and we trained them simultaneously. Thus, we guarantee that the encoder and the CNN are trained simultaneously. The proposed system was evaluated on the UJIIndoorLoc and Tampere datasets. The experimental results show that the proposed model performs significantly better than the current state-of-the-art methods in terms of location coordinates (x, y) localization. In our study, runtime analysis is also presented to show the real-time performance of the network we proposed. |
|---|---|
| AbstractList | Nowadays, studies on indoor localization systems based on wireless systems are increasing widely. Indoor localization is the process of determining the location of objects or people inside a building. Global Navigation Satellite System (GPS) signals do not provide sufficient location data indoors because they are interrupted or completely lost in closed areas. For this reason, studies on indoor localization system design with machine learning and deep learning techniques based on Wi-Fi technology are increasing. In this study, we propose a method and training strategy that is entirely based on a Convolutional Neural Network (CNN) and a combined autoencoder that automatically extracts features from Wi-Fi fingerprint samples. In this model, we coupled an autoencoder and a CNN and we trained them simultaneously. Thus, we guarantee that the encoder and the CNN are trained simultaneously. The proposed system was evaluated on the UJIIndoorLoc and Tampere datasets. The experimental results show that the proposed model performs significantly better than the current state-of-the-art methods in terms of location coordinates (x, y) localization. In our study, runtime analysis is also presented to show the real-time performance of the network we proposed. |
| Author | Arslantas, Hatice Okdem, Selcuk |
| Author_xml | – sequence: 1 givenname: Hatice orcidid: 0000-0003-1060-0707 surname: Arslantas fullname: Arslantas, Hatice organization: Department of Computer Engineering, Erzincan Binali Yildirim University, Erzincan, Turkey – sequence: 2 givenname: Selcuk surname: Okdem fullname: Okdem, Selcuk organization: Department of Computer Engineering, Erciyes University, Kayseri, Turkey |
| BookMark | eNp9UU1v1DAQtVCRaEt_ARwicd6tP9fxcRW1sNWqHApna2JPwEuIi-N0Bb--3k0rVRw6lxmN3nt6M--MnAxxQEI-MLpkjJrLddNc3d0tOeVyKUTNmVBvyClnK7MQSqxOXszvyMU47mipuqyUPiU3m8HHmKptdNCHf5BDHKp9yD8rGKr1lCMOLnpMVQsj-qqJw0PspwMK-uoWp3RseR_Tr_fkbQf9iBdP_Zx8v7761nxZbL9-3jTr7cJJavLCYOdq1G1NtZRoAATrpNKdb305QQivBRW0g9qsEBjv_GEUIJ1cKUWRi3OymXV9hJ29T-E3pL82QrDHRUw_LKQcXI9WcdVq2mmFTsvWmRrQS254y7UXSrZF69OsdZ_inwnHbHdxSuW20RYXTJZH1aqgzIxyKY5jws66kI-vyglCbxm1hyTsnIQ9JGGfkihc8R_32fHrrI8zKyDiC4bUhplaPAKftpZe |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126547 crossref_primary_10_1109_ACCESS_2025_3599785 crossref_primary_10_1007_s11277_024_11300_2 crossref_primary_10_1631_FITEE_2400366 crossref_primary_10_1007_s42979_025_04029_7 crossref_primary_10_1109_ACCESS_2024_3447112 crossref_primary_10_3390_smartcities8050153 |
| Cites_doi | 10.1109/jiot.2023.3298603 10.4028/www.scientific.net/amr.926-930.2438 10.1109/icufn.2018.8436598 10.1016/j.eswa.2014.07.042 10.1109/tii.2021.3074153 10.1109/icufn.2016.7537073 10.1109/PERCOM.2019.8767421 10.1145/1067170.1067193 10.1109/access.2019.2933921 10.3390/s22124622 10.1016/j.engappai.2022.105509 10.3390/s23156992 10.1109/ipin.2014.7275492 10.1109/iccnc.2018.8390298 10.1016/j.future.2022.07.021 10.1186/s41044-018-0031-2 10.3390/data2040032 10.1109/candarw53999.2021.00038 10.1109/access.2024.3360228 10.1007/978-3-319-54042-9_57 10.3390/electronics8090989 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3382135 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_525b70f75ec74bc98aed4292b27d354b 10_1109_ACCESS_2024_3382135 10479198 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-9efc8e7b80744e9aa31f457fdbd20233d73030fa896ea12fdfa893a4c46550e23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001196436300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:46:37 EDT 2025 Mon Jun 30 14:42:50 EDT 2025 Tue Nov 18 20:47:28 EST 2025 Sat Nov 29 06:25:35 EST 2025 Wed Aug 27 02:17:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-9efc8e7b80744e9aa31f457fdbd20233d73030fa896ea12fdfa893a4c46550e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1060-0707 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10479198 |
| PQID | 3031400885 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_3031400885 crossref_primary_10_1109_ACCESS_2024_3382135 crossref_citationtrail_10_1109_ACCESS_2024_3382135 ieee_primary_10479198 doaj_primary_oai_doaj_org_article_525b70f75ec74bc98aed4292b27d354b |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref16 doi: 10.1109/jiot.2023.3298603 – ident: ref14 doi: 10.4028/www.scientific.net/amr.926-930.2438 – ident: ref4 doi: 10.1109/icufn.2018.8436598 – ident: ref13 doi: 10.1016/j.eswa.2014.07.042 – ident: ref17 doi: 10.1109/tii.2021.3074153 – ident: ref12 doi: 10.1109/icufn.2016.7537073 – ident: ref10 doi: 10.1109/PERCOM.2019.8767421 – ident: ref1 doi: 10.1145/1067170.1067193 – ident: ref15 doi: 10.1109/access.2019.2933921 – ident: ref20 doi: 10.3390/s22124622 – ident: ref5 doi: 10.1016/j.engappai.2022.105509 – ident: ref11 doi: 10.3390/s23156992 – ident: ref2 doi: 10.1109/ipin.2014.7275492 – ident: ref9 doi: 10.1109/iccnc.2018.8390298 – ident: ref18 doi: 10.1016/j.future.2022.07.021 – ident: ref19 doi: 10.1186/s41044-018-0031-2 – ident: ref3 doi: 10.3390/data2040032 – ident: ref6 doi: 10.1109/candarw53999.2021.00038 – ident: ref21 doi: 10.1109/access.2024.3360228 – ident: ref7 doi: 10.1007/978-3-319-54042-9_57 – ident: ref8 doi: 10.3390/electronics8090989 |
| SSID | ssj0000816957 |
| Score | 2.3562818 |
| Snippet | Nowadays, studies on indoor localization systems based on wireless systems are increasing widely. Indoor localization is the process of determining the... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks autoencoder Buildings convolutional neural network Convolutional neural networks Deep learning Encoding Fingerprint recognition Floors Global navigation satellite system Indoor environment Indoor localization Localization Location awareness Machine learning Neural networks Satellite navigation systems Systems design Training Wi-Fi fingerprint localization Wireless fidelity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF90YNHq02aNMlxXRQVEQ-K3kKeKEgra_X3m0mjLgh68dRS0qSZmWT6tcn3IXQQGkmED6ZkWMNvRqZL7Ykom0pHj4uGGp82Cl_x62vx8CBvZqS-YE3YQA88GO6YEWZ4FTjzllNjpdDegcSSIdzVjBqYfSsuZ8BUmoMFbiTjmWYIV_J4PJnEHkVASOhRhGUEJ4G371SUGPuzxMqPeTklm7MVtJzfEovx8HSraM63a2hphjtwHV1etK7rpsUVJKO8mbK4f-ofC90W47e-A4ZK56flScxTrph07XuOslgxUHKkQ1oDvoHuzk5vJ-dlFkYobYRjfSl9sMJzA0Q21Eutaxwo48EZB2rotYvDtq6CFrLxGpPg4LTW1AJZWuVJvYnm2671W6iosY2AkHscq6NBOIMtEQ43ptFGG9aMEPm0kbKZNRzEK55VQg-VVINhFRhWZcOO0OHXTS8DacbvxU_A-F9FgfE6XYhxoHIcqL_iYIQ2wHUz7VEusRQjtPvpS5WH56uqgbQ_Bolg2__R9g5ahP4MX2Z20Xw_ffN7aMG-90-v0_0UmR9xmuRu priority: 102 providerName: Directory of Open Access Journals |
| Title | Indoor Localization with an Autoencoder based Convolutional Neural Network |
| URI | https://ieeexplore.ieee.org/document/10479198 https://www.proquest.com/docview/3031400885 https://doaj.org/article/525b70f75ec74bc98aed4292b27d354b |
| Volume | 12 |
| WOSCitedRecordID | wos001196436300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21VQ9wAApFXWirHDiSNnbi2D4uq1aA2ooDSL1Z_hhLSCiptrs99rfjcdylEgKpl8SKbMfJG2cyY88bgA-x11xhdLVglpYZha0tclX3jU2Iq75zmAOFL-TVlbq-1t9KsHqOhUHEvPkMT6iY1_LD6NfkKjslWgGdrORt2Jayn4K1Ng4VyiChhSzMQqzRp_PFIj1EsgF5d5IsMc5yTrc_2ieT9JesKn99irN-OX_5xJG9ghflR7KaT8jvwRYOr-H5I3rBN_D1yxDGcVldkL4q8ZYVOV4rO1Tz9WokEsuAy4pUWagW43BXBDF1TKwd-ZS3ie_Dj_Oz74vPdcmdUPtksa1qjdErlI64bjrU1rYsdkLG4AIlTG9DmtltE63SPVrGY6BiaztPfGoN8vYt7AzjgAdQtcwnm1EiS911UQXHPFeB9a63zjrRz4A_vFPjC7E45bf4ZbKB0WgzAWEICFOAmMHHTaObiVfj_9U_EVibqkSKnS8kFEyZY0Zw4WQTpUAvO-e1shgoG5fjMrSiczPYJ-Qe3W8CbQaHD9ibMoNvTUu8_kmolHj3j2bv4RkNcfLHHMLOarnGI9j1d6uft8vjbNyn4-X92XEW1N-kQ-Rf |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BQaIc-CxioUAOHEkbO3ZiH5cVVQvLikORerP8MZaQUIK2u_399TjuUgmBxClWZCdOnp3JjD3vAbyPneYKo6sls7TMKG1tkau6a2xCXHXCYU4UXvarlbq40N9KsnrOhUHEvPkMj6iY1_LD6LcUKjsmWgGdvOS7cE8KwZspXWsXUiENCS37wi3EGn08XyzSYyQvkIuj5ItxllXdftufTNNfdFX--BhnC3Py-D_79gQelV_Jaj5h_xTu4PAMHt4iGHwOn8-GMI7rakkWq2RcVhR6rexQzbebkWgsA64rMmahWozDVRmK6cLE25EPeaP4AXw_-XS-OK2LekLtk8-2qTVGr7B3xHYjUFvbsihkH4MLJJnehjS32yZapTu0jMdAxdYKT4xqDfL2BewN44AvoWqZT15jjyxdTkQVHPNcBda5zjrrZDcDfvNOjS_U4qRw8dNkF6PRZgLCEBCmADGDD7tGvyZmjX9X_0hg7aoSLXY-kVAwZZYZyaXrm9hL9L1wXiuLgfS4HO9DK4WbwQEhd-t-E2gzOLzB3pQ5fGlaYvZPg0rJV39p9g4enJ5_XZrl2erLa9in7k7RmUPY26y3-Abu-6vNj8v12zxQrwHmTuWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indoor+Localization+With+an+Autoencoder-Based+Convolutional+Neural+Network&rft.jtitle=IEEE+access&rft.au=Arslantas%2C+Hatice&rft.au=Okdem%2C+Selcuk&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=12&rft.spage=46059&rft_id=info:doi/10.1109%2FACCESS.2024.3382135&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |