Remotely Sensed Vegetation Green-Up Onset Date on the Tibetan Plateau: Simulations and Future Predictions
Vegetation green-up onset date (VGD) is a key indicator of ecosystem structure and processes. As the largest and highest alpine ecoregion, the Tibetan plateau (TP) has experienced markable climate warming during the past decades and showed substantial changes in VGD. However, the existing process-ba...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 16; S. 8125 - 8134 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Vegetation green-up onset date (VGD) is a key indicator of ecosystem structure and processes. As the largest and highest alpine ecoregion, the Tibetan plateau (TP) has experienced markable climate warming during the past decades and showed substantial changes in VGD. However, the existing process-based phenology models still cannot simulate interannual variations in satellite-derived VGD. In this study, we developed a data-driven VGD model for the TP based on the Long short-term memory neural network (called VGD-LSTM). VGD-LSTM considers the complicated nonlinear relationship between VGD and multiple climatic and environmental drivers, including the time series of temperature (daytime, daily minimum, and daily mean) and precipitation, as well as nonsequential variables (elevation and geolocation). Compared with the benchmark process-based VGD model for the TP (i.e., the hierarchical model), VGD-LSTM greatly improved the simulation of interannual VGD variations. We calculated the correlation coefficients ( R ) between satellite-derived VGDs and VGD simulations during 2000-2018; the percentages of pixels with R values above 0.5 increased from 15% for the hierarchical model to 41% for VGD-LSTM. The advanced trend in the satellite-derived VGD on the entire TP during 2000-2018 (−0.37 day/year) was captured well by VGD-LSTM (−0.33 day/year) but was underestimated by the hierarchical model (−0.08 day/year). According to VGD-LSTM simulations, VGDs on the TP are projected to advance by 8-10 days by 2100 relative to 2015-2020 under high shared socioeconomic pathway scenarios. This study suggests the potential of artificial intelligence in phenology modeling for which the physiological processes are difficult to be fully represented. |
|---|---|
| AbstractList | Vegetation green-up onset date (VGD) is a key indicator of ecosystem structure and processes. As the largest and highest alpine ecoregion, the Tibetan plateau (TP) has experienced markable climate warming during the past decades and showed substantial changes in VGD. However, the existing process-based phenology models still cannot simulate interannual variations in satellite-derived VGD. In this study, we developed a data-driven VGD model for the TP based on the Long short-term memory neural network (called VGD-LSTM). VGD-LSTM considers the complicated nonlinear relationship between VGD and multiple climatic and environmental drivers, including the time series of temperature (daytime, daily minimum, and daily mean) and precipitation, as well as nonsequential variables (elevation and geolocation). Compared with the benchmark process-based VGD model for the TP (i.e., the hierarchical model), VGD-LSTM greatly improved the simulation of interannual VGD variations. We calculated the correlation coefficients ( R ) between satellite-derived VGDs and VGD simulations during 2000–2018; the percentages of pixels with R values above 0.5 increased from 15% for the hierarchical model to 41% for VGD-LSTM. The advanced trend in the satellite-derived VGD on the entire TP during 2000–2018 (−0.37 day/year) was captured well by VGD-LSTM (−0.33 day/year) but was underestimated by the hierarchical model (−0.08 day/year). According to VGD-LSTM simulations, VGDs on the TP are projected to advance by 8–10 days by 2100 relative to 2015–2020 under high shared socioeconomic pathway scenarios. This study suggests the potential of artificial intelligence in phenology modeling for which the physiological processes are difficult to be fully represented. |
| Author | Wang, Weiyi Li, Luchun Liu, Licong Shen, Miaogen Cao, Ruyin Ling, Xiaofang |
| Author_xml | – sequence: 1 givenname: Ruyin orcidid: 0000-0002-8122-9696 surname: Cao fullname: Cao, Ruyin email: cao.ruyin@uestc.edu.cn organization: School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Xiaofang orcidid: 0000-0002-4524-8865 surname: Ling fullname: Ling, Xiaofang email: lingxiaofang@std.uestc.edu.cn organization: School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Licong surname: Liu fullname: Liu, Licong email: liulicong@mail.bnu.edu.cn organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China – sequence: 4 givenname: Weiyi surname: Wang fullname: Wang, Weiyi email: 202221070117@std.uestc.edu.cn organization: School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Luchun surname: Li fullname: Li, Luchun email: 202121070118@std.uestc.edu.cn organization: School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China – sequence: 6 givenname: Miaogen orcidid: 0000-0001-5742-8807 surname: Shen fullname: Shen, Miaogen email: shenmiaogen@bnu.edu.cn organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China |
| BookMark | eNp9kU9P3DAQxa2KSl1oP0E5WOo5W_-Ls-4N0UJBSCB26dWa2BPwKhtvHefAt6_ZUAn10JOl5_d7mpl3TI6GOCAhnzlbcs7M1-v15ux-vRRMyKWUnGnevCMLwWte8VrWR2TBjTQVV0x9IMfjuGVMi8bIBQn3uIsZ-2e6xmFET3_hI2bIIQ70MiEO1cOe3pafTL9DRlrk_IR0E9riGuhdX0SYvtF12E39ARspDJ5eTHlKSO8S-uAO8kfyvoN-xE-v7wl5uPixOf9Z3dxeXp2f3VROMZMrA77pvAPoPHgmvW59bVqutAC1AsVWndLIuJO-KVsaFM60bVNDJ6Tmzjh5Qq7mXB9ha_cp7CA92wjBHoSYHi2kHFyPFlvldS097zSoppMtCOQCSxaHxmgoWV_mrH2Kvyccs93GKQ1lfCtWumaGyaYpLjO7XIrjmLCzLswnzAlCbzmzLy3ZuSX70pJ9bamw8h_278T_p05nKiDiG6LcoNZC_gGMGaHc |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_rs16244733 crossref_primary_10_1016_j_gloplacha_2025_104833 crossref_primary_10_1016_j_gloplacha_2025_105018 crossref_primary_10_1038_s41598_025_94623_9 crossref_primary_10_1016_j_gloplacha_2025_104891 crossref_primary_10_1016_j_agrformet_2025_110586 |
| Cites_doi | 10.22033/esgf/cmip6.1725 10.1029/2021JG006421 10.1016/j.agrformet.2017.11.032 10.1111/nph.14073 10.1111/gcb.12954 10.1016/j.agrformet.2014.01.003 10.1038/nature14539 10.1111/gcb.13619 10.22033/esgf/cmip6.1534 10.1093/jpe/rtw026 10.1016/j.gloplacha.2021.103657 10.1016/j.ecolmodel.2018.12.024 10.1175/JHM560.1 10.1002/joc.4520 10.1073/pnas.1210423110 10.1016/j.agrformet.2020.107943 10.1109/JSTARS.2017.2778076 10.1126/science.329.5989.277-e 10.22033/esgf/cmip6. 621 10.1002/2017JG003949 10.1038/srep27781 10.1029/2011JG001868 10.1016/j.agrformet.2022.109020 10.1111/gcb.13954 10.22033/esgf/cmip6.1303 10.1175/JCLI3790.1 10.22033/esgf/cmip6.881 10.6084/m9.figshare.11397792 10.1109/JSTARS.2022.3196494 10.22033/esgf/cmip6.642 10.1109/JSTARS.2021.3120013 10.1016/j.ecolind.2014.11.004 10.1111/gcb.12961 10.1111/brv.12781 10.1016/j.agrformet.2011.06.016 https://doi.org/10.48550/arXiv.1412.6980 10.1038/ncomms7911 10.22033/esgf/cmip6.181 10.1016/j.agrformet.2012.09.012 10.1111/geb.13374 10.1080/20964471.2021.1920661 10.1073/pnas.1012490107 10.1016/j.rse.2004.03.014 10.1016/j.scitotenv.2020.143903 10.1016/j.agrformet.2019.107832 10.22033/esgf/cmip6.1407 10.1029/2006JG000217 10.1016/j.rse.2020.111716 10.1007/s11430-019-9622-2 10.1016/j.rse.2019.111511 10.1111/j.1461-0248.2009.01402.x 10.1088/1748-9326/9/5/054006 10.1038/s41558-020-0713-4 10.1016/j.ecolind.2018.05.061 10.22033/esgf/cmip6.741 10.1016/S0034-4257(02)00135-9 10.22033/esgf/cmip6.1422 10.1016/j.rse.2018.08.022 10.22033/esgf/cmip6.1783 10.1126/science.1186473 10.1029/2012JG001977 10.1111/gcb.13360 10.1111/gcb.13301 10.1002/2017JG003811 10.22033/esgf/cmip6.506 10.1016/j.agrformet.2022.109001 10.5194/gmd-9-1937-2016 10.1016/j.scitotenv.2022.153386 10.1038/s43017-022-00317-5 10.22033/esgf/cmip6.1423 10.2151/sola.2009-035 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2023.3310617 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 8134 |
| ExternalDocumentID | oai_doaj_org_article_eb4d653d1f6a47f3ba2e12eaf21a796a 10_1109_JSTARS_2023_3310617 10236562 |
| Genre | orig-research |
| GeographicLocations | Tibetan Plateau |
| GeographicLocations_xml | – name: Tibetan Plateau |
| GrantInformation_xml | – fundername: Second Scientific Expedition to the Qinghai-Tibet Plateau grantid: 2019QZKK0307 – fundername: National Natural Science Foundation of China grantid: 42271379 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c409t-9ad7fdcaafdad03d6bd59b1462a48a408f46e01c3d76179e2c9bb75af2361c9c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001068910800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:51:50 EDT 2025 Fri Jul 25 10:33:55 EDT 2025 Sat Nov 29 04:51:18 EST 2025 Tue Nov 18 22:23:55 EST 2025 Wed Aug 27 02:46:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-9ad7fdcaafdad03d6bd59b1462a48a408f46e01c3d76179e2c9bb75af2361c9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8122-9696 0000-0002-4524-8865 0000-0001-5742-8807 |
| OpenAccessLink | https://doaj.org/article/eb4d653d1f6a47f3ba2e12eaf21a796a |
| PQID | 2865090377 |
| PQPubID | 75722 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2023_3310617 doaj_primary_oai_doaj_org_article_eb4d653d1f6a47f3ba2e12eaf21a796a ieee_primary_10236562 proquest_journals_2865090377 crossref_primary_10_1109_JSTARS_2023_3310617 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 lieth (ref1) 2013; 8 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 li (ref67) 2017; 18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 ref33 (ref68) 2022 ref32 ref2 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref21 ref65 ref28 ref27 ref29 jozefowicz (ref66) 2015; 37 ref60 ref62 ref61 |
| References_xml | – ident: ref45 doi: 10.22033/esgf/cmip6.1725 – ident: ref30 doi: 10.1029/2021JG006421 – ident: ref25 doi: 10.1016/j.agrformet.2017.11.032 – ident: ref20 doi: 10.1111/nph.14073 – ident: ref27 doi: 10.1111/gcb.12954 – ident: ref14 doi: 10.1016/j.agrformet.2014.01.003 – ident: ref38 doi: 10.1038/nature14539 – ident: ref10 doi: 10.1111/gcb.13619 – ident: ref53 doi: 10.22033/esgf/cmip6.1534 – ident: ref73 doi: 10.1093/jpe/rtw026 – ident: ref3 doi: 10.1016/j.gloplacha.2021.103657 – ident: ref28 doi: 10.1016/j.ecolmodel.2018.12.024 – ident: ref43 doi: 10.1175/JHM560.1 – ident: ref9 doi: 10.1002/joc.4520 – ident: ref19 doi: 10.1073/pnas.1210423110 – ident: ref15 doi: 10.1016/j.agrformet.2020.107943 – ident: ref58 doi: 10.1109/JSTARS.2017.2778076 – ident: ref16 doi: 10.1126/science.329.5989.277-e – ident: ref56 doi: 10.22033/esgf/cmip6. 621 – volume: 8 year: 2013 ident: ref1 publication-title: Phenology and Seasonality Modeling – ident: ref13 doi: 10.1002/2017JG003949 – ident: ref74 doi: 10.1038/srep27781 – year: 2022 ident: ref68 article-title: Kerastuner – ident: ref2 doi: 10.1029/2011JG001868 – ident: ref72 doi: 10.1016/j.agrformet.2022.109020 – ident: ref34 doi: 10.1111/gcb.13954 – ident: ref46 doi: 10.22033/esgf/cmip6.1303 – ident: ref42 doi: 10.1175/JCLI3790.1 – ident: ref54 doi: 10.22033/esgf/cmip6.881 – ident: ref41 doi: 10.6084/m9.figshare.11397792 – ident: ref70 doi: 10.1109/JSTARS.2022.3196494 – ident: ref48 doi: 10.22033/esgf/cmip6.642 – ident: ref59 doi: 10.1109/JSTARS.2021.3120013 – ident: ref36 doi: 10.1016/j.ecolind.2014.11.004 – ident: ref18 doi: 10.1111/gcb.12961 – ident: ref5 doi: 10.1111/brv.12781 – ident: ref12 doi: 10.1016/j.agrformet.2011.06.016 – ident: ref69 doi: https://doi.org/10.48550/arXiv.1412.6980 – ident: ref22 doi: 10.1038/ncomms7911 – ident: ref47 doi: 10.22033/esgf/cmip6.181 – ident: ref6 doi: 10.1016/j.agrformet.2012.09.012 – ident: ref39 doi: 10.1111/geb.13374 – volume: 37 start-page: 2342 year: 2015 ident: ref66 article-title: An empirical exploration of recurrent network architectures publication-title: Proc 32nd Int Conf Mach Learn – ident: ref65 doi: 10.1080/20964471.2021.1920661 – ident: ref17 doi: 10.1073/pnas.1012490107 – ident: ref61 doi: 10.1016/j.rse.2004.03.014 – ident: ref31 doi: 10.1016/j.scitotenv.2020.143903 – ident: ref21 doi: 10.1016/j.agrformet.2019.107832 – ident: ref50 doi: 10.22033/esgf/cmip6.1407 – ident: ref60 doi: 10.1029/2006JG000217 – ident: ref37 doi: 10.1016/j.rse.2020.111716 – ident: ref71 doi: 10.1007/s11430-019-9622-2 – ident: ref63 doi: 10.1016/j.rse.2019.111511 – ident: ref4 doi: 10.1111/j.1461-0248.2009.01402.x – ident: ref35 doi: 10.1088/1748-9326/9/5/054006 – ident: ref7 doi: 10.1038/s41558-020-0713-4 – ident: ref29 doi: 10.1016/j.ecolind.2018.05.061 – ident: ref55 doi: 10.22033/esgf/cmip6.741 – ident: ref64 doi: 10.1016/S0034-4257(02)00135-9 – ident: ref51 doi: 10.22033/esgf/cmip6.1422 – ident: ref62 doi: 10.1016/j.rse.2018.08.022 – ident: ref49 doi: 10.22033/esgf/cmip6.1783 – ident: ref8 doi: 10.1126/science.1186473 – ident: ref32 doi: 10.1029/2012JG001977 – volume: 18 start-page: 6765 year: 2017 ident: ref67 article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization publication-title: J Mach Learn Res – ident: ref23 doi: 10.1111/gcb.13360 – ident: ref26 doi: 10.1111/gcb.13301 – ident: ref75 doi: 10.1002/2017JG003811 – ident: ref57 doi: 10.22033/esgf/cmip6.506 – ident: ref33 doi: 10.1016/j.agrformet.2022.109001 – ident: ref40 doi: 10.5194/gmd-9-1937-2016 – ident: ref24 doi: 10.1016/j.scitotenv.2022.153386 – ident: ref11 doi: 10.1038/s43017-022-00317-5 – ident: ref52 doi: 10.22033/esgf/cmip6.1423 – ident: ref44 doi: 10.2151/sola.2009-035 |
| SSID | ssj0062793 |
| Score | 2.367809 |
| Snippet | Vegetation green-up onset date (VGD) is a key indicator of ecosystem structure and processes. As the largest and highest alpine ecoregion, the Tibetan plateau... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8125 |
| SubjectTerms | Alpine ecosystem Annual variations Artificial intelligence Biological system modeling Climate change Coefficients Correlation coefficient Correlation coefficients Data models Ecosystem structure Ecosystems Global warming land surface phenology Long short-term memory Neural networks phenological model Phenology Precipitation Qinghai–Tibet plateau Remote sensing Satellites Simulation Springs start of vegetation growing season Temperature sensors Vegetation Vegetation mapping |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagAokLFChiaYt84Ei2SZzYcW_lsXBAZdVtUW-WH-NqpSWt9oHUf8-M461ACCRu0cRWHH_2eMb2fMPYGw9SutK5gtayohHQFh1EWci68cHHaNsha8kXdXraXV7qaQ5WT7EwAJAun8GYHtNZfrj2G9oqOyKaAbQ_UOPeV0oNwVpbtStrlRh20SDRBXHGZIqhqtRHOMZPzmZjyhQ-FoKcIPXbMpTY-nN6lT90clpoJk_-s4m77HG2KPnJMASesnvQP2MPP6WMvbfP2fwMEA1Y3PIZeqwQ-De4ylcMebp0U1zc8K_4Zs0_oN3JUYw2IT-fOyzV8-kChXZzzGfz7znT14rbPvBJIiPh0yWd9CTxHruYfDx__7nI-RUKj17dutA2qBi8tTHYUIogXWi1Q9VZ26azTdnFRkJZeREU9piG2mvnVGsjEbZ47cULttNf9_CSceWkVSFIgfqBctbZroPgvWjQPVVVBSNWb7vb-Ew-TjkwFiY5IaU2A0aGMDIZoxF7e1fpZuDe-Hfxd4TjXVEizk4CBMjkeWjANUG2IlRR2kZF4WwNVQ34T5VVWtoR2yNQf_negOeIHWyHhcmzfGUoqpf2uZR69Zdq--wRNXHYszlgO-vlBg7ZA_9jPV8tX6cB_BNeRu2L priority: 102 providerName: IEEE |
| Title | Remotely Sensed Vegetation Green-Up Onset Date on the Tibetan Plateau: Simulations and Future Predictions |
| URI | https://ieeexplore.ieee.org/document/10236562 https://www.proquest.com/docview/2865090377 https://doaj.org/article/eb4d653d1f6a47f3ba2e12eaf21a796a |
| Volume | 16 |
| WOSCitedRecordID | wos001068910800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA4iCl7EFceNHDxabZs2aby5jR5EB0fFW8gKA2OVmVHw3_uyjCiCXry-pqT98pK8l-X7ENrTllKVK5X5uSyriK2zxjqa0bLSRjsn66hacsWur5vHR977IvXlz4RFeuAI3KFVlaE1MYWjsmKOKFnaorTSlYVknIbQCKKeaTIVx2BagtsljqEi54fg5Me3_QMvFX5AiM-C2Ld5KND1J32VH4NymGm6S2gxhYj4OH7aMpqx7QqavwgSvO-raHBrAV47fMd9SEGtwQ-Q-McNdRxO0WT3L_gGnkzwGQSSGMwQ5OG7gYJSLe4NwShfj3B_8JSku8ZYtgZ3A7sI7o381k0wr6H77vnd6WWWBBMyDWnaJOPSMGe0lM5IkxNDlam5grGwlFUjq7xxFbV5oYlhgAC3peZKsRqwJLTQXJN1NNs-t3YDYaaoZMZQAh3ei9DJprFGa1JBvsmKwnZQOYVP6MQm7kUthiJkFTkXEXPhMRcJ8w7a_3zpJZJp_F78xLfLZ1HPhB0M4B8i-Yf4yz86aM236pf64Gch6Oug7Wkzi9Rtx8Jf0_ULV4xt_kfdW2jB_09csdlGs5PRq91Bc_ptMhiPdoPH7oYbhx9Oe_A4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQAcGFZxELBXzgSLZJ7Ngxt_JYiliWVXeLerP8GKOVlrTaB1L_PWPHW4EQSNyiia04_uzxjO35hpCXDoSwpbVFXMsKzqApWgiiEDV33oVgmj5ryVhOJu3ZmZrmYPUUCwMA6fIZDONjOsv3524bt8oOI80A2h-oca83nNdVH661U7yiloljF00SVUTWmEwyVJXqEEf50clsGHOFDxmLbpD8bSFKfP05wcofWjktNaO7_9nIe-ROtinpUT8I7pNr0D0gNz-knL2XD8niBBAPWF7SGfqs4OlX-JYvGdJ07aY4vaBf8M2GvkPLk6IYrUI6X1gs1dHpEoVm-5rOFt9zrq81NZ2no0RHQqereNaTxPvkdPR-_va4yBkWCod-3aZQxsvgnTHBG18yL6xvlEXlWRveGl62gQsoK8e8xB5TUDtlrWxMiJQtTjn2iOx15x08JlRaYaT3gqGGiFnrTNuCd45xdFBlVcGA1Lvu1i7Tj8csGEud3JBS6R4jHTHSGaMBeXVV6aJn3_h38TcRx6uikTo7CRAgnWeiBsu9aJivgjBcBmZNDVUN-E-VkUqYAdmPoP7yvR7PATnYDQud5_lax7jeuNMl5ZO_VHtBbh3PP4_1-OPk01NyOza338E5IHub1RaekRvux2axXj1Pg_kn3Sfw0g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remotely+Sensed+Vegetation+Green-Up+Onset+Date+on+the+Tibetan+Plateau%3A+Simulations+and+Future+Predictions&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Cao%2C+Ruyin&rft.au=Ling%2C+Xiaofang&rft.au=Liu%2C+Licong&rft.au=Wang%2C+Weiyi&rft.date=2023&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=16&rft.spage=8125&rft.epage=8134&rft_id=info:doi/10.1109%2FJSTARS.2023.3310617&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3310617 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |