Remotely Sensed Vegetation Green-Up Onset Date on the Tibetan Plateau: Simulations and Future Predictions

Vegetation green-up onset date (VGD) is a key indicator of ecosystem structure and processes. As the largest and highest alpine ecoregion, the Tibetan plateau (TP) has experienced markable climate warming during the past decades and showed substantial changes in VGD. However, the existing process-ba...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing Vol. 16; pp. 8125 - 8134
Main Authors: Cao, Ruyin, Ling, Xiaofang, Liu, Licong, Wang, Weiyi, Li, Luchun, Shen, Miaogen
Format: Journal Article
Language:English
Published: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1939-1404, 2151-1535
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vegetation green-up onset date (VGD) is a key indicator of ecosystem structure and processes. As the largest and highest alpine ecoregion, the Tibetan plateau (TP) has experienced markable climate warming during the past decades and showed substantial changes in VGD. However, the existing process-based phenology models still cannot simulate interannual variations in satellite-derived VGD. In this study, we developed a data-driven VGD model for the TP based on the Long short-term memory neural network (called VGD-LSTM). VGD-LSTM considers the complicated nonlinear relationship between VGD and multiple climatic and environmental drivers, including the time series of temperature (daytime, daily minimum, and daily mean) and precipitation, as well as nonsequential variables (elevation and geolocation). Compared with the benchmark process-based VGD model for the TP (i.e., the hierarchical model), VGD-LSTM greatly improved the simulation of interannual VGD variations. We calculated the correlation coefficients ( R ) between satellite-derived VGDs and VGD simulations during 2000-2018; the percentages of pixels with R values above 0.5 increased from 15% for the hierarchical model to 41% for VGD-LSTM. The advanced trend in the satellite-derived VGD on the entire TP during 2000-2018 (−0.37 day/year) was captured well by VGD-LSTM (−0.33 day/year) but was underestimated by the hierarchical model (−0.08 day/year). According to VGD-LSTM simulations, VGDs on the TP are projected to advance by 8-10 days by 2100 relative to 2015-2020 under high shared socioeconomic pathway scenarios. This study suggests the potential of artificial intelligence in phenology modeling for which the physiological processes are difficult to be fully represented.
AbstractList Vegetation green-up onset date (VGD) is a key indicator of ecosystem structure and processes. As the largest and highest alpine ecoregion, the Tibetan plateau (TP) has experienced markable climate warming during the past decades and showed substantial changes in VGD. However, the existing process-based phenology models still cannot simulate interannual variations in satellite-derived VGD. In this study, we developed a data-driven VGD model for the TP based on the Long short-term memory neural network (called VGD-LSTM). VGD-LSTM considers the complicated nonlinear relationship between VGD and multiple climatic and environmental drivers, including the time series of temperature (daytime, daily minimum, and daily mean) and precipitation, as well as nonsequential variables (elevation and geolocation). Compared with the benchmark process-based VGD model for the TP (i.e., the hierarchical model), VGD-LSTM greatly improved the simulation of interannual VGD variations. We calculated the correlation coefficients ( R ) between satellite-derived VGDs and VGD simulations during 2000–2018; the percentages of pixels with R values above 0.5 increased from 15% for the hierarchical model to 41% for VGD-LSTM. The advanced trend in the satellite-derived VGD on the entire TP during 2000–2018 (−0.37 day/year) was captured well by VGD-LSTM (−0.33 day/year) but was underestimated by the hierarchical model (−0.08 day/year). According to VGD-LSTM simulations, VGDs on the TP are projected to advance by 8–10 days by 2100 relative to 2015–2020 under high shared socioeconomic pathway scenarios. This study suggests the potential of artificial intelligence in phenology modeling for which the physiological processes are difficult to be fully represented.
Author Wang, Weiyi
Li, Luchun
Liu, Licong
Shen, Miaogen
Cao, Ruyin
Ling, Xiaofang
Author_xml – sequence: 1
  givenname: Ruyin
  orcidid: 0000-0002-8122-9696
  surname: Cao
  fullname: Cao, Ruyin
  email: cao.ruyin@uestc.edu.cn
  organization: School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Xiaofang
  orcidid: 0000-0002-4524-8865
  surname: Ling
  fullname: Ling, Xiaofang
  email: lingxiaofang@std.uestc.edu.cn
  organization: School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Licong
  surname: Liu
  fullname: Liu, Licong
  email: liulicong@mail.bnu.edu.cn
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
– sequence: 4
  givenname: Weiyi
  surname: Wang
  fullname: Wang, Weiyi
  email: 202221070117@std.uestc.edu.cn
  organization: School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Luchun
  surname: Li
  fullname: Li, Luchun
  email: 202121070118@std.uestc.edu.cn
  organization: School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 6
  givenname: Miaogen
  orcidid: 0000-0001-5742-8807
  surname: Shen
  fullname: Shen, Miaogen
  email: shenmiaogen@bnu.edu.cn
  organization: State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
BookMark eNp9kU9P3DAQxa2KSl1oP0E5WOo5W_-Ls-4N0UJBSCB26dWa2BPwKhtvHefAt6_ZUAn10JOl5_d7mpl3TI6GOCAhnzlbcs7M1-v15ux-vRRMyKWUnGnevCMLwWte8VrWR2TBjTQVV0x9IMfjuGVMi8bIBQn3uIsZ-2e6xmFET3_hI2bIIQ70MiEO1cOe3pafTL9DRlrk_IR0E9riGuhdX0SYvtF12E39ARspDJ5eTHlKSO8S-uAO8kfyvoN-xE-v7wl5uPixOf9Z3dxeXp2f3VROMZMrA77pvAPoPHgmvW59bVqutAC1AsVWndLIuJO-KVsaFM60bVNDJ6Tmzjh5Qq7mXB9ha_cp7CA92wjBHoSYHi2kHFyPFlvldS097zSoppMtCOQCSxaHxmgoWV_mrH2Kvyccs93GKQ1lfCtWumaGyaYpLjO7XIrjmLCzLswnzAlCbzmzLy3ZuSX70pJ9bamw8h_278T_p05nKiDiG6LcoNZC_gGMGaHc
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs16244733
crossref_primary_10_1016_j_gloplacha_2025_104833
crossref_primary_10_1016_j_gloplacha_2025_105018
crossref_primary_10_1038_s41598_025_94623_9
crossref_primary_10_1016_j_gloplacha_2025_104891
crossref_primary_10_1016_j_agrformet_2025_110586
Cites_doi 10.22033/esgf/cmip6.1725
10.1029/2021JG006421
10.1016/j.agrformet.2017.11.032
10.1111/nph.14073
10.1111/gcb.12954
10.1016/j.agrformet.2014.01.003
10.1038/nature14539
10.1111/gcb.13619
10.22033/esgf/cmip6.1534
10.1093/jpe/rtw026
10.1016/j.gloplacha.2021.103657
10.1016/j.ecolmodel.2018.12.024
10.1175/JHM560.1
10.1002/joc.4520
10.1073/pnas.1210423110
10.1016/j.agrformet.2020.107943
10.1109/JSTARS.2017.2778076
10.1126/science.329.5989.277-e
10.22033/esgf/cmip6. 621
10.1002/2017JG003949
10.1038/srep27781
10.1029/2011JG001868
10.1016/j.agrformet.2022.109020
10.1111/gcb.13954
10.22033/esgf/cmip6.1303
10.1175/JCLI3790.1
10.22033/esgf/cmip6.881
10.6084/m9.figshare.11397792
10.1109/JSTARS.2022.3196494
10.22033/esgf/cmip6.642
10.1109/JSTARS.2021.3120013
10.1016/j.ecolind.2014.11.004
10.1111/gcb.12961
10.1111/brv.12781
10.1016/j.agrformet.2011.06.016
https://doi.org/10.48550/arXiv.1412.6980
10.1038/ncomms7911
10.22033/esgf/cmip6.181
10.1016/j.agrformet.2012.09.012
10.1111/geb.13374
10.1080/20964471.2021.1920661
10.1073/pnas.1012490107
10.1016/j.rse.2004.03.014
10.1016/j.scitotenv.2020.143903
10.1016/j.agrformet.2019.107832
10.22033/esgf/cmip6.1407
10.1029/2006JG000217
10.1016/j.rse.2020.111716
10.1007/s11430-019-9622-2
10.1016/j.rse.2019.111511
10.1111/j.1461-0248.2009.01402.x
10.1088/1748-9326/9/5/054006
10.1038/s41558-020-0713-4
10.1016/j.ecolind.2018.05.061
10.22033/esgf/cmip6.741
10.1016/S0034-4257(02)00135-9
10.22033/esgf/cmip6.1422
10.1016/j.rse.2018.08.022
10.22033/esgf/cmip6.1783
10.1126/science.1186473
10.1029/2012JG001977
10.1111/gcb.13360
10.1111/gcb.13301
10.1002/2017JG003811
10.22033/esgf/cmip6.506
10.1016/j.agrformet.2022.109001
10.5194/gmd-9-1937-2016
10.1016/j.scitotenv.2022.153386
10.1038/s43017-022-00317-5
10.22033/esgf/cmip6.1423
10.2151/sola.2009-035
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3310617
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 8134
ExternalDocumentID oai_doaj_org_article_eb4d653d1f6a47f3ba2e12eaf21a796a
10_1109_JSTARS_2023_3310617
10236562
Genre orig-research
GeographicLocations Tibetan Plateau
GeographicLocations_xml – name: Tibetan Plateau
GrantInformation_xml – fundername: Second Scientific Expedition to the Qinghai-Tibet Plateau
  grantid: 2019QZKK0307
– fundername: National Natural Science Foundation of China
  grantid: 42271379
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-9ad7fdcaafdad03d6bd59b1462a48a408f46e01c3d76179e2c9bb75af2361c9c3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001068910800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:51:50 EDT 2025
Fri Jul 25 10:33:55 EDT 2025
Sat Nov 29 04:51:18 EST 2025
Tue Nov 18 22:23:55 EST 2025
Wed Aug 27 02:46:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9ad7fdcaafdad03d6bd59b1462a48a408f46e01c3d76179e2c9bb75af2361c9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8122-9696
0000-0002-4524-8865
0000-0001-5742-8807
OpenAccessLink https://ieeexplore.ieee.org/document/10236562
PQID 2865090377
PQPubID 75722
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2023_3310617
doaj_primary_oai_doaj_org_article_eb4d653d1f6a47f3ba2e12eaf21a796a
ieee_primary_10236562
proquest_journals_2865090377
crossref_primary_10_1109_JSTARS_2023_3310617
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
lieth (ref1) 2013; 8
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
li (ref67) 2017; 18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
ref33
(ref68) 2022
ref32
ref2
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref23
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
jozefowicz (ref66) 2015; 37
ref60
ref62
ref61
References_xml – ident: ref45
  doi: 10.22033/esgf/cmip6.1725
– ident: ref30
  doi: 10.1029/2021JG006421
– ident: ref25
  doi: 10.1016/j.agrformet.2017.11.032
– ident: ref20
  doi: 10.1111/nph.14073
– ident: ref27
  doi: 10.1111/gcb.12954
– ident: ref14
  doi: 10.1016/j.agrformet.2014.01.003
– ident: ref38
  doi: 10.1038/nature14539
– ident: ref10
  doi: 10.1111/gcb.13619
– ident: ref53
  doi: 10.22033/esgf/cmip6.1534
– ident: ref73
  doi: 10.1093/jpe/rtw026
– ident: ref3
  doi: 10.1016/j.gloplacha.2021.103657
– ident: ref28
  doi: 10.1016/j.ecolmodel.2018.12.024
– ident: ref43
  doi: 10.1175/JHM560.1
– ident: ref9
  doi: 10.1002/joc.4520
– ident: ref19
  doi: 10.1073/pnas.1210423110
– ident: ref15
  doi: 10.1016/j.agrformet.2020.107943
– ident: ref58
  doi: 10.1109/JSTARS.2017.2778076
– ident: ref16
  doi: 10.1126/science.329.5989.277-e
– ident: ref56
  doi: 10.22033/esgf/cmip6. 621
– volume: 8
  year: 2013
  ident: ref1
  publication-title: Phenology and Seasonality Modeling
– ident: ref13
  doi: 10.1002/2017JG003949
– ident: ref74
  doi: 10.1038/srep27781
– year: 2022
  ident: ref68
  article-title: Kerastuner
– ident: ref2
  doi: 10.1029/2011JG001868
– ident: ref72
  doi: 10.1016/j.agrformet.2022.109020
– ident: ref34
  doi: 10.1111/gcb.13954
– ident: ref46
  doi: 10.22033/esgf/cmip6.1303
– ident: ref42
  doi: 10.1175/JCLI3790.1
– ident: ref54
  doi: 10.22033/esgf/cmip6.881
– ident: ref41
  doi: 10.6084/m9.figshare.11397792
– ident: ref70
  doi: 10.1109/JSTARS.2022.3196494
– ident: ref48
  doi: 10.22033/esgf/cmip6.642
– ident: ref59
  doi: 10.1109/JSTARS.2021.3120013
– ident: ref36
  doi: 10.1016/j.ecolind.2014.11.004
– ident: ref18
  doi: 10.1111/gcb.12961
– ident: ref5
  doi: 10.1111/brv.12781
– ident: ref12
  doi: 10.1016/j.agrformet.2011.06.016
– ident: ref69
  doi: https://doi.org/10.48550/arXiv.1412.6980
– ident: ref22
  doi: 10.1038/ncomms7911
– ident: ref47
  doi: 10.22033/esgf/cmip6.181
– ident: ref6
  doi: 10.1016/j.agrformet.2012.09.012
– ident: ref39
  doi: 10.1111/geb.13374
– volume: 37
  start-page: 2342
  year: 2015
  ident: ref66
  article-title: An empirical exploration of recurrent network architectures
  publication-title: Proc 32nd Int Conf Mach Learn
– ident: ref65
  doi: 10.1080/20964471.2021.1920661
– ident: ref17
  doi: 10.1073/pnas.1012490107
– ident: ref61
  doi: 10.1016/j.rse.2004.03.014
– ident: ref31
  doi: 10.1016/j.scitotenv.2020.143903
– ident: ref21
  doi: 10.1016/j.agrformet.2019.107832
– ident: ref50
  doi: 10.22033/esgf/cmip6.1407
– ident: ref60
  doi: 10.1029/2006JG000217
– ident: ref37
  doi: 10.1016/j.rse.2020.111716
– ident: ref71
  doi: 10.1007/s11430-019-9622-2
– ident: ref63
  doi: 10.1016/j.rse.2019.111511
– ident: ref4
  doi: 10.1111/j.1461-0248.2009.01402.x
– ident: ref35
  doi: 10.1088/1748-9326/9/5/054006
– ident: ref7
  doi: 10.1038/s41558-020-0713-4
– ident: ref29
  doi: 10.1016/j.ecolind.2018.05.061
– ident: ref55
  doi: 10.22033/esgf/cmip6.741
– ident: ref64
  doi: 10.1016/S0034-4257(02)00135-9
– ident: ref51
  doi: 10.22033/esgf/cmip6.1422
– ident: ref62
  doi: 10.1016/j.rse.2018.08.022
– ident: ref49
  doi: 10.22033/esgf/cmip6.1783
– ident: ref8
  doi: 10.1126/science.1186473
– ident: ref32
  doi: 10.1029/2012JG001977
– volume: 18
  start-page: 6765
  year: 2017
  ident: ref67
  article-title: Hyperband: A novel bandit-based approach to hyperparameter optimization
  publication-title: J Mach Learn Res
– ident: ref23
  doi: 10.1111/gcb.13360
– ident: ref26
  doi: 10.1111/gcb.13301
– ident: ref75
  doi: 10.1002/2017JG003811
– ident: ref57
  doi: 10.22033/esgf/cmip6.506
– ident: ref33
  doi: 10.1016/j.agrformet.2022.109001
– ident: ref40
  doi: 10.5194/gmd-9-1937-2016
– ident: ref24
  doi: 10.1016/j.scitotenv.2022.153386
– ident: ref11
  doi: 10.1038/s43017-022-00317-5
– ident: ref52
  doi: 10.22033/esgf/cmip6.1423
– ident: ref44
  doi: 10.2151/sola.2009-035
SSID ssj0062793
Score 2.367809
Snippet Vegetation green-up onset date (VGD) is a key indicator of ecosystem structure and processes. As the largest and highest alpine ecoregion, the Tibetan plateau...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8125
SubjectTerms Alpine ecosystem
Annual variations
Artificial intelligence
Biological system modeling
Climate change
Coefficients
Correlation coefficient
Correlation coefficients
Data models
Ecosystem structure
Ecosystems
Global warming
land surface phenology
Long short-term memory
Neural networks
phenological model
Phenology
Precipitation
Qinghai–Tibet plateau
Remote sensing
Satellites
Simulation
Springs
start of vegetation growing season
Temperature sensors
Vegetation
Vegetation mapping
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSwMxFA4iCl7EFetGDh6ddmYyk0y8uVUPosW24i1khUIdpa2C_96XTCqKoBevbzJLvrxJ3svyfQgdUVM66o8oM6dUUrhMJaoqIVmxnGlVOvCjQOJ6w25vq8dH3vsi9eX3hDX0wA1wHasKQ0tiMkdlwRxRMrdZbqXLM8k4DaERRD3zZKrpg2kObhc5hrKUd8DJT-_7bS8V3ibEZ0Hs2zgU6PqjvsqPTjmMNN01tBpDRHzafNo6WrD1Blq-ChK875todG8BXjt-x31IQa3BD5D4NwvqOOyiSYYv-A6uzPAFBJIYzBDk4cFIQaka98ZglK8nuD96itJdUyxrg7uBXQT3Jn7pJpi30LB7OTi_TqJgQqIhTZslXBrmjJbSGWlSYqgyJVfQF-ayqGSRVq6gNs00MQwQ4DbXXClWApaEZpprso0W6-fa7iCcGalKGN0UK1ShPYGANRWxuWcYNPCUFsrn8Akd2cS9qMVYhKwi5aLBXHjMRcS8hY4_b3ppyDR-L37m2-WzqGfCDgbwDxH9Q_zlHy205Vv1y_ugshD0tdD-vJlF_G2nwh_T9RNXjO3-x7v30IqvTzNjs48WZ5NXe4CW9NtsNJ0cBo_9AIBr740
  priority: 102
  providerName: Directory of Open Access Journals
Title Remotely Sensed Vegetation Green-Up Onset Date on the Tibetan Plateau: Simulations and Future Predictions
URI https://ieeexplore.ieee.org/document/10236562
https://www.proquest.com/docview/2865090377
https://doaj.org/article/eb4d653d1f6a47f3ba2e12eaf21a796a
Volume 16
WOSCitedRecordID wos001068910800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxwxDI5gRSUuFFqqLqUoB46dZd6ZcNu2bHtAsGKh4hbl4VQrLQPaBxL_HjuTRa2qVupt5ElmMrHHsZ34M2PHtat8TSnKwhuTlD4ziWkqdFZACmsqj3IUQFzPxcVFc3srxzFZPeTCAEA4fAYDugx7-e7erihUdkIwA2h_oMbdFEJ0yVprtVvnIiDsokEiE8KMiRBDWSpPUMaHV5MBVQofFAU5QeK3ZSig9cfyKn_o5LDQjF7_5xB32U60KPmwE4E9tgHtG_bqW6jY-_SWTa8AuQGzJz5BjxUc_wE_4xFDHg7dJDcP_BLvLPlXtDs5ktEm5NdTg61aPp4hUa9O-WR6Fyt9LbhuHR8FMBI-ntNOTyDvs5vR2fWX70msr5BY9OqWidROeGe19k67tHC1cZU0qDpzXTa6TBtf1pBmtnACZ0xCbqUxotKeAFustMU71mvvW3jPeOa0qXAxNKI0pSW8AXBNATkBEjp8Sp_l6-lWNoKPUw2MmQpOSCpVxyNFPFKRR3326aXTQ4e98e_mn4mPL00JODsQkEEq_ocKTOnqqnCZr3UpfGF0DlkO-E2ZFrLWfbZPTP3lfR0_--xwLRYq_uULRVm9FOcS4uAv3T6wbRpiF7M5ZL3lfAUf2ZZ9XE4X86MQADgKYvwMo4zu1g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQAcGFZxELBXzgSLZ5OHHMrTyWIpZl1d2i3iw_xmilJa32gdR_z4zjrUAIJG7RxE4cfxN7xvZ8w9jLxtehoRBlGazNRChsZtsanRVQ0tk6oB5FEtexnEzaszM1TcHqMRYGAOLhMxjSZdzL9-duS0tlh0QzgPYHjrjXayHKog_X2g28TSkjxy6aJCoj1phEMlTk6hC1_OhkNqRc4cOqIjdI_jYRRb7-lGDlj1E5TjWju__ZyHvsTrIp-VGvBPfZNegesJsfYs7ey4dscQKIBywv-Qx9VvD8K3xLhwx5PHaTnV7wL3hnw9-h5clRjFYhny8slur4dIlCs33NZ4vvKdfXmpvO81GkI-HTFe31RPE-Ox29n789zlKGhcyhX7fJlPEyeGdM8MbnlW-sr5XFwbM0ojUib4NoIC9c5SX2mILSKWtlbQJRtjjlqkdsrzvv4DHjhTe2xunQSmGFI8YB8G0FJVESenzKgJW77tYu0Y9TFoyljm5IrnSPkSaMdMJowF5dVbro2Tf-XfwN4XhVlKizowAB0ulP1GCFb-rKF6ExQobKmhKKEvCbCiNVYwZsn0D95X09ngN2sFMLnf7ztaa4XlrpkvLJX6q9YLeO55_Hevxx8ukpu03N7VdwDtjeZrWFZ-yG-7FZrFfPozL_BJAD8Sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remotely+Sensed+Vegetation+Green-Up+Onset+Date+on+the+Tibetan+Plateau%3A+Simulations+and+Future+Predictions&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Cao%2C+Ruyin&rft.au=Ling%2C+Xiaofang&rft.au=Liu%2C+Licong&rft.au=Wang%2C+Weiyi&rft.date=2023&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=16&rft.spage=8125&rft.epage=8134&rft_id=info:doi/10.1109%2FJSTARS.2023.3310617&rft.externalDocID=10236562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon