Enhancing Global Surface Soil Moisture Estimation From ESA CCI and SMAP Product With a Conditional Variational Autoencoder

High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive senso...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 17; s. 9337 - 9359
Hlavní autoři: Shi, Changjiang, Zhang, Zhijie, Xiong, Shengqing, Zhang, Wanchang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1939-1404, 2151-1535
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive sensors. However, the ESA climate change initiative (CCI) SM product, which combines data from multiple sensors, sacrifices spatial-temporal resolution and coverage due to satellite orbit constraints and retrieval algorithms. To address this issue, an SM reconstruction approach based on a conditional variational autoencoder model was developed, leveraging the high spatial resolution of SMAP L4 data and the accuracy of CCI fused products across different land cover types. This method resulted in the creation of a global three-day SM product at 0.0625<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> spanning from 2015 to 2021. The reconstructed SM product underwent rigorous validation against global core SM sites and sparse observation networks. The evaluation employed multiple metrics, including the global unbiased root mean square error (ubRMSE) and correlation coefficient (CC). The validation yielded results, with ubRMSE values of approximately 0.029 and 0.071 m<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>/m<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>, and CC values of around 0.863 and 0.743 for core SM sites and sparse observation networks. This reconstructed product offers global coverage and enhanced accuracy compared to existing benchmarks.
AbstractList High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive sensors. However, the ESA climate change initiative (CCI) SM product, which combines data from multiple sensors, sacrifices spatial-temporal resolution and coverage due to satellite orbit constraints and retrieval algorithms. To address this issue, an SM reconstruction approach based on a conditional variational autoencoder model was developed, leveraging the high spatial resolution of SMAP L4 data and the accuracy of CCI fused products across different land cover types. This method resulted in the creation of a global three-day SM product at 0.0625[Formula Omitted] spanning from 2015 to 2021. The reconstructed SM product underwent rigorous validation against global core SM sites and sparse observation networks. The evaluation employed multiple metrics, including the global unbiased root mean square error (ubRMSE) and correlation coefficient (CC). The validation yielded results, with ubRMSE values of approximately 0.029 and 0.071 m[Formula Omitted]/m[Formula Omitted], and CC values of around 0.863 and 0.743 for core SM sites and sparse observation networks. This reconstructed product offers global coverage and enhanced accuracy compared to existing benchmarks.
High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive sensors. However, the ESA climate change initiative (CCI) SM product, which combines data from multiple sensors, sacrifices spatial-temporal resolution and coverage due to satellite orbit constraints and retrieval algorithms. To address this issue, an SM reconstruction approach based on a conditional variational autoencoder model was developed, leveraging the high spatial resolution of SMAP L4 data and the accuracy of CCI fused products across different land cover types. This method resulted in the creation of a global three-day SM product at 0.0625<tex-math notation="LaTeX">$^{\circ }$</tex-math> spanning from 2015 to 2021. The reconstructed SM product underwent rigorous validation against global core SM sites and sparse observation networks. The evaluation employed multiple metrics, including the global unbiased root mean square error (ubRMSE) and correlation coefficient (CC). The validation yielded results, with ubRMSE values of approximately 0.029 and 0.071 m<tex-math notation="LaTeX">$^{3}$</tex-math>/m<tex-math notation="LaTeX">$^{3}$</tex-math>, and CC values of around 0.863 and 0.743 for core SM sites and sparse observation networks. This reconstructed product offers global coverage and enhanced accuracy compared to existing benchmarks.
High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive sensors. However, the ESA climate change initiative (CCI) SM product, which combines data from multiple sensors, sacrifices spatial-temporal resolution and coverage due to satellite orbit constraints and retrieval algorithms. To address this issue, an SM reconstruction approach based on a conditional variational autoencoder model was developed, leveraging the high spatial resolution of SMAP L4 data and the accuracy of CCI fused products across different land cover types. This method resulted in the creation of a global three-day SM product at 0.0625<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> spanning from 2015 to 2021. The reconstructed SM product underwent rigorous validation against global core SM sites and sparse observation networks. The evaluation employed multiple metrics, including the global unbiased root mean square error (ubRMSE) and correlation coefficient (CC). The validation yielded results, with ubRMSE values of approximately 0.029 and 0.071 m<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>/m<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>, and CC values of around 0.863 and 0.743 for core SM sites and sparse observation networks. This reconstructed product offers global coverage and enhanced accuracy compared to existing benchmarks.
Author Xiong, Shengqing
Zhang, Wanchang
Shi, Changjiang
Zhang, Zhijie
Author_xml – sequence: 1
  givenname: Changjiang
  orcidid: 0000-0001-5738-7910
  surname: Shi
  fullname: Shi, Changjiang
  email: shichangjiang20@mails.ucas.ac.cn
  organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Zhijie
  orcidid: 0000-0002-7276-5649
  surname: Zhang
  fullname: Zhang, Zhijie
  email: zhijiezhang@arizona.edu
  organization: Department of Environment and Society, Quinney College of Natural Resources, Utah State University, Logan, UT, USA
– sequence: 3
  givenname: Shengqing
  orcidid: 0009-0000-4129-9465
  surname: Xiong
  fullname: Xiong, Shengqing
  email: xsqagrs@126.com
  organization: China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing, China
– sequence: 4
  givenname: Wanchang
  orcidid: 0000-0002-2607-4628
  surname: Zhang
  fullname: Zhang, Wanchang
  email: zhangwc@radi.ac.cn
  organization: International Research Center of Big Data for Sustainable Development Goals, Beijing, China
BookMark eNp9kU9v1DAQxS1UJLaFTwAHS5yz-F_i-BhF27KoFRUpcLQce9x6lcbFcQ7w6ck2i4Q4cJrR6P2eZuado7MxjoDQW0q2lBL14VN313zptowwseVc8ZrVL9CG0ZIWtOTlGdpQxVVBBRGv0Pk0HQipmFR8g37txgcz2jDe46sh9mbA3Zy8sYC7GAZ8E8OU5wR4N-XwaHKII75M8RHvuga37R6b0eHuprnFtym62Wb8PeQHbHAbRxeO8sXxm0nBnPpmzhFGGx2k1-ilN8MEb071An293N21H4vrz1f7trkurCAqF0rK0jmoZc_70ngQwpfSA_HMAqjammoZV1Z6B04QLlwlwbGK9QJAONPzC7RffV00B_2UljvSTx1N0M-DmO61STnYATSVzDNlJCWVEbXvVW-sdUwa7sqSCli83q9eTyn-mGHK-hDntBw2aU4WiaS1FItKrSqb4jQl8NqG_PyBnEwYNCX6GJteY9PH2PQptoXl_7B_Nv4_9W6lAgD8RZSk5pzy3_gap54
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1016_j_infgeo_2025_100005
crossref_primary_10_1002_widm_70032
crossref_primary_10_1016_j_scitotenv_2025_180503
Cites_doi 10.1080/01431161.2019.1629503
10.5194/hess-19-3617-2015
10.1016/j.scitotenv.2021.146602
10.1007/s11269-018-1944-2
10.5194/essd-13-1385-2021
10.1016/j.rse.2020.111806
10.1016/j.rse.2019.111364
10.1016/j.advwatres.2017.01.001
10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2
10.1109/TGRS.2017.2734070
10.1080/15481603.2018.1489943
10.5194/hess-14-2605-2010
10.1109/TIP.2003.819861
10.1109/TGRS.2023.3324497
10.1016/S0034-4257(03)00051-8
10.1109/TGRS.2006.876706
10.34133/2022/9871246
10.1016/j.rse.2020.112256
10.1175/2009JCLI2832.1
10.3390/rs11060683
10.1016/j.jhydrol.2012.10.044
10.1016/j.advwatres.2017.09.006
10.1109/tpami.2024.3362475
10.1016/j.rse.2004.02.016
10.1029/JB082i020p03108
10.5194/essd-11-717-2019
10.1002/2016RG000543
10.1029/2018WR023354
10.1109/JSTARS.2021.3066508
10.5194/hess-21-3267-2017
10.1016/S0034-4257(99)00036-X
10.1029/2002jd003292
10.1016/j.jhydrol.2014.02.027
10.1016/j.jhydrol.2019.124351
10.1109/IGARSS.2017.8127507
10.1016/j.rse.2017.11.002
10.1109/JPROC.2010.2043918
10.5194/essd-14-5267-2022
10.1016/j.rse.2023.113856
10.3390/rs11050478
10.1007/s10666-017-9586-y
10.1038/s41597-021-00964-1
10.1016/j.rse.2017.07.037
10.1016/j.advwatres.2017.09.010
10.1016/j.rse.2022.113059
10.5194/essd-13-4349-2021
10.1109/TGRS.2012.2184548
10.1016/j.agrformet.2016.07.007
10.1109/JOE.1980.1145458
10.1109/36.942543
10.1016/j.rse.2021.112377
10.1029/2003JD003823
10.1007/s11430-010-4160-3
10.1038/s41597-021-00925-8
10.1016/j.agrformet.2007.08.006
10.1016/j.rse.2013.02.027
10.1016/j.rse.2017.07.001
10.1109/TGRS.2018.2872131
10.1029/2004wr003208
10.1175/BAMS-D-21-0178.1
10.1109/JSTARS.2017.2651140
10.3389/frai.2021.636234
10.1016/j.jhydrol.2004.01.008
10.1029/2007jd008940
10.1016/j.pce.2015.02.009
10.1175/jhm-d-17-0063.1
10.1029/2002wr001297
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2024.3393828
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 9359
ExternalDocumentID oai_doaj_org_article_172f29a7106a48fb9baccd27a3d5514e
10_1109_JSTARS_2024_3393828
10508331
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2023YFC3209102
– fundername: Construction of distributed non-point source pollution model in the Hulunbuir City basin
  grantid: E2C20529
– fundername: Major Science and Technology Project of Ministry of Water Resources
  grantid: SKS-2022008
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-9775dde87b3b5afe44f57fe0f2cee98ca6b5a6c7fded4034d67ed262b4ee4dab3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001224319800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Oct 03 12:43:57 EDT 2025
Sat Jul 26 00:00:52 EDT 2025
Sat Nov 29 04:51:25 EST 2025
Tue Nov 18 21:51:28 EST 2025
Wed Aug 27 02:05:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-9775dde87b3b5afe44f57fe0f2cee98ca6b5a6c7fded4034d67ed262b4ee4dab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2607-4628
0009-0000-4129-9465
0000-0001-5738-7910
0000-0002-7276-5649
OpenAccessLink https://doaj.org/article/172f29a7106a48fb9baccd27a3d5514e
PQID 3055171874
PQPubID 75722
PageCount 23
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2024_3393828
proquest_journals_3055171874
ieee_primary_10508331
doaj_primary_oai_doaj_org_article_172f29a7106a48fb9baccd27a3d5514e
crossref_primary_10_1109_JSTARS_2024_3393828
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
Imaoka (ref18) 2010; 38
Sohn (ref65) 2015; 28
ref17
ref16
ref19
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
Simonyan (ref66) 2015
ref2
ref1
ref39
ref38
ref71
ref70
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
Masson-Delmotte (ref7) 2021; 2
References_xml – ident: ref53
  doi: 10.1080/01431161.2019.1629503
– ident: ref5
  doi: 10.5194/hess-19-3617-2015
– ident: ref55
  doi: 10.1016/j.scitotenv.2021.146602
– ident: ref48
  doi: 10.1007/s11269-018-1944-2
– ident: ref56
  doi: 10.5194/essd-13-1385-2021
– ident: ref69
  doi: 10.1016/j.rse.2020.111806
– ident: ref43
  doi: 10.1016/j.rse.2019.111364
– ident: ref11
  doi: 10.1016/j.advwatres.2017.01.001
– ident: ref36
  doi: 10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2
– ident: ref34
  doi: 10.1109/TGRS.2017.2734070
– ident: ref54
  doi: 10.1080/15481603.2018.1489943
– ident: ref29
  doi: 10.5194/hess-14-2605-2010
– ident: ref68
  doi: 10.1109/TIP.2003.819861
– ident: ref61
  doi: 10.1109/TGRS.2023.3324497
– ident: ref15
  doi: 10.1016/S0034-4257(03)00051-8
– ident: ref25
  doi: 10.1109/TGRS.2006.876706
– ident: ref51
  doi: 10.34133/2022/9871246
– ident: ref70
  doi: 10.1016/j.rse.2020.112256
– ident: ref10
  doi: 10.1175/2009JCLI2832.1
– ident: ref50
  doi: 10.3390/rs11060683
– ident: ref20
  doi: 10.1016/j.jhydrol.2012.10.044
– ident: ref27
  doi: 10.1016/j.advwatres.2017.09.006
– ident: ref47
  doi: 10.1109/tpami.2024.3362475
– ident: ref62
  doi: 10.1016/j.rse.2004.02.016
– ident: ref14
  doi: 10.1029/JB082i020p03108
– ident: ref35
  doi: 10.5194/essd-11-717-2019
– ident: ref28
  doi: 10.1002/2016RG000543
– ident: ref59
  doi: 10.1029/2018WR023354
– ident: ref67
  doi: 10.1109/JSTARS.2021.3066508
– ident: ref31
  doi: 10.5194/hess-21-3267-2017
– ident: ref26
  doi: 10.1016/S0034-4257(99)00036-X
– volume: 2
  start-page: 2391
  issue: 1
  year: 2021
  ident: ref7
  article-title: IPCC, 2021: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
– ident: ref41
  doi: 10.1029/2002jd003292
– ident: ref38
  doi: 10.1016/j.jhydrol.2014.02.027
– ident: ref45
  doi: 10.1016/j.jhydrol.2019.124351
– ident: ref32
  doi: 10.1109/IGARSS.2017.8127507
– ident: ref63
  doi: 10.1016/j.rse.2017.11.002
– ident: ref17
  doi: 10.1109/JPROC.2010.2043918
– ident: ref49
  doi: 10.5194/essd-14-5267-2022
– ident: ref33
  doi: 10.1016/j.rse.2023.113856
– ident: ref40
  doi: 10.3390/rs11050478
– ident: ref52
  doi: 10.1007/s10666-017-9586-y
– ident: ref58
  doi: 10.1038/s41597-021-00964-1
– ident: ref12
  doi: 10.1016/j.rse.2017.07.037
– ident: ref30
  doi: 10.1016/j.advwatres.2017.09.010
– ident: ref44
  doi: 10.1016/j.rse.2022.113059
– year: 2015
  ident: ref66
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 38
  start-page: 13
  issue: 8
  year: 2010
  ident: ref18
  article-title: Instrument performance and calibration of AMSR-E and AMSR2
  publication-title: Int. Arch. Photogramm. Remote Sens. spatial Inf. Sci.ISPRS Arch.
– ident: ref71
  doi: 10.5194/essd-13-4349-2021
– ident: ref19
  doi: 10.1109/TGRS.2012.2184548
– ident: ref4
  doi: 10.1016/j.agrformet.2016.07.007
– ident: ref21
  doi: 10.1109/JOE.1980.1145458
– ident: ref22
  doi: 10.1109/36.942543
– ident: ref42
  doi: 10.1016/j.rse.2021.112377
– ident: ref37
  doi: 10.1029/2003JD003823
– ident: ref39
  doi: 10.1007/s11430-010-4160-3
– ident: ref60
  doi: 10.1038/s41597-021-00925-8
– ident: ref13
  doi: 10.1016/j.agrformet.2007.08.006
– ident: ref23
  doi: 10.1016/j.rse.2013.02.027
– ident: ref6
  doi: 10.1016/j.rse.2017.07.001
– ident: ref57
  doi: 10.1109/TGRS.2018.2872131
– ident: ref1
  doi: 10.1029/2004wr003208
– ident: ref8
  doi: 10.1175/BAMS-D-21-0178.1
– ident: ref16
  doi: 10.1109/JSTARS.2017.2651140
– ident: ref46
  doi: 10.3389/frai.2021.636234
– ident: ref9
  doi: 10.1016/j.jhydrol.2004.01.008
– volume: 28
  start-page: 3483
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2015
  ident: ref65
  article-title: Learning structured output representation using deep conditional generative models
– ident: ref2
  doi: 10.1029/2007jd008940
– ident: ref24
  doi: 10.1016/j.pce.2015.02.009
– ident: ref64
  doi: 10.1175/jhm-d-17-0063.1
– ident: ref3
  doi: 10.1029/2002wr001297
SSID ssj0062793
Score 2.3555522
Snippet High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9337
SubjectTerms Accuracy
Agricultural management
Algorithms
Benchmarks
Climate change
Conditional variational autoencoder (CVAE)
Correlation coefficient
Correlation coefficients
Data models
Drought
Earth surface
Environmental assessment
Environmental Impact Assessment
Environmental management
Environmental monitoring
ESA climate change initiative (CCI)
Land cover
Land surface
Microwave theory and techniques
Moisture
Moisture content
product reconstruction
Remote sensing
Retrieval
Satellite orbits
Sensors
SMAP L4
Soil moisture
Soil quality
Soil surfaces
Spatial discrimination
Spatial resolution
surface soil moisture (SM)
Temporal resolution
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB60KPjiteJqlfPgo6lpMpNJHuOyq4Iti_HStzCXk3ahJpImgv56z1y2FETBtzDMkCHfuc7kfIexl9ZaUXZYJlwVIuHSpkmphE6UptjCWHJRxrPrf5AnJ-XpabWJxeq-FgYR_c9neOge_V2-HczsjspIwx15uauavillEYq1dma3yKRn2KWApEocZ0ykGDpKq9ck4_XHhpLBjB_meZWXrvf6NTfk2fpje5U_bLJ3NOt7_7nF--xujCihDiLwgN3A_iG7_dZ37P35iP1a9eeOU6M_g8DvD808dsogNMP2Ao4HwnkeEVak66GMEdbj8A1WTQ3L5XtQvYXmuN7AJnDDwtftdA4KloO77PYHifCFEu54qAj1PA2OHNPiuM8-r1eflu-S2HAhMZTmTQnFgoLMXSl1roXqkPNOyA7TLiNXWpVGFTRcGNlZtDzNuS0k2qzINEfkVun8Mdvrhx6fMEBKGyk15RKF5aYS2pJhoNRQKFL5kmcLlu2-f2siG7lrinHR-qwkrdoAWutAayNoC_bqatH3QMbx7-lvHLBXUx2Tth8gxNqomC0FcF1WKQq0CsXLTldaGWMzqXLrgklcsH2H8rX3BYAX7GAnJ21U-8vW0acdSdfm8Olflj1jd9wWwyHOAdubxhmfs1vmx7S9HF94if4N0TrywA
  priority: 102
  providerName: IEEE
Title Enhancing Global Surface Soil Moisture Estimation From ESA CCI and SMAP Product With a Conditional Variational Autoencoder
URI https://ieeexplore.ieee.org/document/10508331
https://www.proquest.com/docview/3055171874
https://doaj.org/article/172f29a7106a48fb9baccd27a3d5514e
Volume 17
WOSCitedRecordID wos001224319800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Li9QwHA6yKHiRVVccXZccPFq30yZNcqzDjAruMlgfewt5ugNrK93Ogv71_vKYZUDQi9eQkra_55c234fQS2st5d7xgqiGFoTZsuCK6kJp6C2MhRJlIrv-B3Z-zi8uxHpP6iv8E5bogdOLO4UC6yuhoBA2inCvhVbG2Iqp2oZi70L2LZnYgamUg5uKRbpd6E5EEQhkMt_QvBSn4PDtxw6QYUVe17WoeRBi36tJkbo_a638kaBj1Vkdoge5XcRtus2H6I7rH6F7b6Mc78_H6NeyvwyEGf03nMj7cbcdvTIOd8PmCp8NYMTt6PASAjmdUcSrcfiOl12LF4v3WPUWd2ftGq8T8Sv-upkuscKLIXzJjruE-Aug6bxjiNvtNATmS-vGI_R5tfy0eFdkNYXCAIabCmj0KOQyznStqfKOEE-Zd6WvoE4KblQDw41h3jpLyprYhjlbNZUmzhGrdP0EHfRD754i7AATAu4kzFFLjKDaQtQD7qMK4pmTaoaq3fuUJlONB8WLKxkhRylkMoIMRpDZCDP06vaiH4lp4-_T3wRD3U4NNNlxAJxHZueR_3KeGToKZt5bL7Dj1_MZOt7ZXeaYvpaBG23Ogobhs_-x9nN0PzxP2s45RgfTuHUv0F1zM22ux5PozifxOOJvmW32ow
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQAcGFZxELBXzgSEo2ceLkGFa7tGJ3tSIFerMce0JXapMqTZDg1zPjeKtKCCRukWUrVr552plvGHtrrU2yGrJA6DQJhLRhkOmkCnSFsYWx6KKMY9dfyvU6Oz3NN75Y3dXCAID7-QwO6dHd5dvWDHRUhhpO5OVUNX2bWmdNx3KtneFNI-k4djEkyQNijfEkQ9Mwf49SXnwuMR2MxGEc53FG3ddvOCLH1-8brPxhlZ2rWTz8z00-Yg98TMmLUQges1vQPGF3P7qevT-fsl_z5oxYNZrvfGT45-XQ1doAL9vtOV-1iPTQAZ-jto-FjHzRtRd8XhZ8NjvmurG8XBUbvhnZYfm3bX_GNZ-1dN3tjhL5V0y5_bEiL4a-JXpMC90--7KYn8yOAt9yITCY6PUBRoMJGrxMVnGV6BqEqBNZQ1hH6EzzzOgUh1MjawtWhLGwqQQbpVElAITVVfyM7TVtA88ZB0wcMTkVEhIrTJ5UFk0DJoeJRqXPRDRh0e77K-P5yKktxrlyeUmYqxE0RaApD9qEvbtedDnScfx7-gcC9noqcWm7AURMedVUGMLVUa4x1Eq1yOoqr7QxNpI6thROwoTtE8o33jcCPGEHOzlRXvGvFBGoTSU1Onzxl2Vv2L2jk9VSLY_Xn16y-7Td8UjngO313QCv2B3zo99eda-ddP8GlMj2Bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Global+Surface+Soil+Moisture+Estimation+From+ESA+CCI+and+SMAP+Product+With+a+Conditional+Variational+Autoencoder&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Shi%2C+Changjiang&rft.au=Zhang%2C+Zhijie&rft.au=Xiong%2C+Shengqing&rft.au=Zhang%2C+Wanchang&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=9337&rft.epage=9359&rft_id=info:doi/10.1109%2FJSTARS.2024.3393828&rft.externalDocID=10508331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon