Enhancing Global Surface Soil Moisture Estimation From ESA CCI and SMAP Product With a Conditional Variational Autoencoder
High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive senso...
Uloženo v:
| Vydáno v: | IEEE journal of selected topics in applied earth observations and remote sensing Ročník 17; s. 9337 - 9359 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1939-1404, 2151-1535 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive sensors. However, the ESA climate change initiative (CCI) SM product, which combines data from multiple sensors, sacrifices spatial-temporal resolution and coverage due to satellite orbit constraints and retrieval algorithms. To address this issue, an SM reconstruction approach based on a conditional variational autoencoder model was developed, leveraging the high spatial resolution of SMAP L4 data and the accuracy of CCI fused products across different land cover types. This method resulted in the creation of a global three-day SM product at 0.0625<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> spanning from 2015 to 2021. The reconstructed SM product underwent rigorous validation against global core SM sites and sparse observation networks. The evaluation employed multiple metrics, including the global unbiased root mean square error (ubRMSE) and correlation coefficient (CC). The validation yielded results, with ubRMSE values of approximately 0.029 and 0.071 m<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>/m<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>, and CC values of around 0.863 and 0.743 for core SM sites and sparse observation networks. This reconstructed product offers global coverage and enhanced accuracy compared to existing benchmarks. |
|---|---|
| AbstractList | High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive sensors. However, the ESA climate change initiative (CCI) SM product, which combines data from multiple sensors, sacrifices spatial-temporal resolution and coverage due to satellite orbit constraints and retrieval algorithms. To address this issue, an SM reconstruction approach based on a conditional variational autoencoder model was developed, leveraging the high spatial resolution of SMAP L4 data and the accuracy of CCI fused products across different land cover types. This method resulted in the creation of a global three-day SM product at 0.0625[Formula Omitted] spanning from 2015 to 2021. The reconstructed SM product underwent rigorous validation against global core SM sites and sparse observation networks. The evaluation employed multiple metrics, including the global unbiased root mean square error (ubRMSE) and correlation coefficient (CC). The validation yielded results, with ubRMSE values of approximately 0.029 and 0.071 m[Formula Omitted]/m[Formula Omitted], and CC values of around 0.863 and 0.743 for core SM sites and sparse observation networks. This reconstructed product offers global coverage and enhanced accuracy compared to existing benchmarks. High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive sensors. However, the ESA climate change initiative (CCI) SM product, which combines data from multiple sensors, sacrifices spatial-temporal resolution and coverage due to satellite orbit constraints and retrieval algorithms. To address this issue, an SM reconstruction approach based on a conditional variational autoencoder model was developed, leveraging the high spatial resolution of SMAP L4 data and the accuracy of CCI fused products across different land cover types. This method resulted in the creation of a global three-day SM product at 0.0625<tex-math notation="LaTeX">$^{\circ }$</tex-math> spanning from 2015 to 2021. The reconstructed SM product underwent rigorous validation against global core SM sites and sparse observation networks. The evaluation employed multiple metrics, including the global unbiased root mean square error (ubRMSE) and correlation coefficient (CC). The validation yielded results, with ubRMSE values of approximately 0.029 and 0.071 m<tex-math notation="LaTeX">$^{3}$</tex-math>/m<tex-math notation="LaTeX">$^{3}$</tex-math>, and CC values of around 0.863 and 0.743 for core SM sites and sparse observation networks. This reconstructed product offers global coverage and enhanced accuracy compared to existing benchmarks. High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural management. Advances in remote sensing technology have enabled the retrieval of near real-time Earth surface SM using both active and passive sensors. However, the ESA climate change initiative (CCI) SM product, which combines data from multiple sensors, sacrifices spatial-temporal resolution and coverage due to satellite orbit constraints and retrieval algorithms. To address this issue, an SM reconstruction approach based on a conditional variational autoencoder model was developed, leveraging the high spatial resolution of SMAP L4 data and the accuracy of CCI fused products across different land cover types. This method resulted in the creation of a global three-day SM product at 0.0625<inline-formula><tex-math notation="LaTeX">^{\circ }</tex-math></inline-formula> spanning from 2015 to 2021. The reconstructed SM product underwent rigorous validation against global core SM sites and sparse observation networks. The evaluation employed multiple metrics, including the global unbiased root mean square error (ubRMSE) and correlation coefficient (CC). The validation yielded results, with ubRMSE values of approximately 0.029 and 0.071 m<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>/m<inline-formula><tex-math notation="LaTeX">^{3}</tex-math></inline-formula>, and CC values of around 0.863 and 0.743 for core SM sites and sparse observation networks. This reconstructed product offers global coverage and enhanced accuracy compared to existing benchmarks. |
| Author | Xiong, Shengqing Zhang, Wanchang Shi, Changjiang Zhang, Zhijie |
| Author_xml | – sequence: 1 givenname: Changjiang orcidid: 0000-0001-5738-7910 surname: Shi fullname: Shi, Changjiang email: shichangjiang20@mails.ucas.ac.cn organization: Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Zhijie orcidid: 0000-0002-7276-5649 surname: Zhang fullname: Zhang, Zhijie email: zhijiezhang@arizona.edu organization: Department of Environment and Society, Quinney College of Natural Resources, Utah State University, Logan, UT, USA – sequence: 3 givenname: Shengqing orcidid: 0009-0000-4129-9465 surname: Xiong fullname: Xiong, Shengqing email: xsqagrs@126.com organization: China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing, China – sequence: 4 givenname: Wanchang orcidid: 0000-0002-2607-4628 surname: Zhang fullname: Zhang, Wanchang email: zhangwc@radi.ac.cn organization: International Research Center of Big Data for Sustainable Development Goals, Beijing, China |
| BookMark | eNp9kU9v1DAQxS1UJLaFTwAHS5yz-F_i-BhF27KoFRUpcLQce9x6lcbFcQ7w6ck2i4Q4cJrR6P2eZuado7MxjoDQW0q2lBL14VN313zptowwseVc8ZrVL9CG0ZIWtOTlGdpQxVVBBRGv0Pk0HQipmFR8g37txgcz2jDe46sh9mbA3Zy8sYC7GAZ8E8OU5wR4N-XwaHKII75M8RHvuga37R6b0eHuprnFtym62Wb8PeQHbHAbRxeO8sXxm0nBnPpmzhFGGx2k1-ilN8MEb071An293N21H4vrz1f7trkurCAqF0rK0jmoZc_70ngQwpfSA_HMAqjammoZV1Z6B04QLlwlwbGK9QJAONPzC7RffV00B_2UljvSTx1N0M-DmO61STnYATSVzDNlJCWVEbXvVW-sdUwa7sqSCli83q9eTyn-mGHK-hDntBw2aU4WiaS1FItKrSqb4jQl8NqG_PyBnEwYNCX6GJteY9PH2PQptoXl_7B_Nv4_9W6lAgD8RZSk5pzy3_gap54 |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_1016_j_infgeo_2025_100005 crossref_primary_10_1002_widm_70032 crossref_primary_10_1016_j_scitotenv_2025_180503 |
| Cites_doi | 10.1080/01431161.2019.1629503 10.5194/hess-19-3617-2015 10.1016/j.scitotenv.2021.146602 10.1007/s11269-018-1944-2 10.5194/essd-13-1385-2021 10.1016/j.rse.2020.111806 10.1016/j.rse.2019.111364 10.1016/j.advwatres.2017.01.001 10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2 10.1109/TGRS.2017.2734070 10.1080/15481603.2018.1489943 10.5194/hess-14-2605-2010 10.1109/TIP.2003.819861 10.1109/TGRS.2023.3324497 10.1016/S0034-4257(03)00051-8 10.1109/TGRS.2006.876706 10.34133/2022/9871246 10.1016/j.rse.2020.112256 10.1175/2009JCLI2832.1 10.3390/rs11060683 10.1016/j.jhydrol.2012.10.044 10.1016/j.advwatres.2017.09.006 10.1109/tpami.2024.3362475 10.1016/j.rse.2004.02.016 10.1029/JB082i020p03108 10.5194/essd-11-717-2019 10.1002/2016RG000543 10.1029/2018WR023354 10.1109/JSTARS.2021.3066508 10.5194/hess-21-3267-2017 10.1016/S0034-4257(99)00036-X 10.1029/2002jd003292 10.1016/j.jhydrol.2014.02.027 10.1016/j.jhydrol.2019.124351 10.1109/IGARSS.2017.8127507 10.1016/j.rse.2017.11.002 10.1109/JPROC.2010.2043918 10.5194/essd-14-5267-2022 10.1016/j.rse.2023.113856 10.3390/rs11050478 10.1007/s10666-017-9586-y 10.1038/s41597-021-00964-1 10.1016/j.rse.2017.07.037 10.1016/j.advwatres.2017.09.010 10.1016/j.rse.2022.113059 10.5194/essd-13-4349-2021 10.1109/TGRS.2012.2184548 10.1016/j.agrformet.2016.07.007 10.1109/JOE.1980.1145458 10.1109/36.942543 10.1016/j.rse.2021.112377 10.1029/2003JD003823 10.1007/s11430-010-4160-3 10.1038/s41597-021-00925-8 10.1016/j.agrformet.2007.08.006 10.1016/j.rse.2013.02.027 10.1016/j.rse.2017.07.001 10.1109/TGRS.2018.2872131 10.1029/2004wr003208 10.1175/BAMS-D-21-0178.1 10.1109/JSTARS.2017.2651140 10.3389/frai.2021.636234 10.1016/j.jhydrol.2004.01.008 10.1029/2007jd008940 10.1016/j.pce.2015.02.009 10.1175/jhm-d-17-0063.1 10.1029/2002wr001297 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
| DOI | 10.1109/JSTARS.2024.3393828 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 9359 |
| ExternalDocumentID | oai_doaj_org_article_172f29a7106a48fb9baccd27a3d5514e 10_1109_JSTARS_2024_3393828 10508331 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2023YFC3209102 – fundername: Construction of distributed non-point source pollution model in the Hulunbuir City basin grantid: E2C20529 – fundername: Major Science and Technology Project of Ministry of Water Resources grantid: SKS-2022008 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c409t-9775dde87b3b5afe44f57fe0f2cee98ca6b5a6c7fded4034d67ed262b4ee4dab3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001224319800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1939-1404 |
| IngestDate | Fri Oct 03 12:43:57 EDT 2025 Sat Jul 26 00:00:52 EDT 2025 Sat Nov 29 04:51:25 EST 2025 Tue Nov 18 21:51:28 EST 2025 Wed Aug 27 02:05:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-9775dde87b3b5afe44f57fe0f2cee98ca6b5a6c7fded4034d67ed262b4ee4dab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2607-4628 0009-0000-4129-9465 0000-0001-5738-7910 0000-0002-7276-5649 |
| OpenAccessLink | https://doaj.org/article/172f29a7106a48fb9baccd27a3d5514e |
| PQID | 3055171874 |
| PQPubID | 75722 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2024_3393828 proquest_journals_3055171874 ieee_primary_10508331 doaj_primary_oai_doaj_org_article_172f29a7106a48fb9baccd27a3d5514e crossref_primary_10_1109_JSTARS_2024_3393828 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Imaoka (ref18) 2010; 38 Sohn (ref65) 2015; 28 ref17 ref16 ref19 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 Simonyan (ref66) 2015 ref2 ref1 ref39 ref38 ref71 ref70 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 Masson-Delmotte (ref7) 2021; 2 |
| References_xml | – ident: ref53 doi: 10.1080/01431161.2019.1629503 – ident: ref5 doi: 10.5194/hess-19-3617-2015 – ident: ref55 doi: 10.1016/j.scitotenv.2021.146602 – ident: ref48 doi: 10.1007/s11269-018-1944-2 – ident: ref56 doi: 10.5194/essd-13-1385-2021 – ident: ref69 doi: 10.1016/j.rse.2020.111806 – ident: ref43 doi: 10.1016/j.rse.2019.111364 – ident: ref11 doi: 10.1016/j.advwatres.2017.01.001 – ident: ref36 doi: 10.1175/1525-7541(2004)005<0430:GSMFSO>2.0.CO;2 – ident: ref34 doi: 10.1109/TGRS.2017.2734070 – ident: ref54 doi: 10.1080/15481603.2018.1489943 – ident: ref29 doi: 10.5194/hess-14-2605-2010 – ident: ref68 doi: 10.1109/TIP.2003.819861 – ident: ref61 doi: 10.1109/TGRS.2023.3324497 – ident: ref15 doi: 10.1016/S0034-4257(03)00051-8 – ident: ref25 doi: 10.1109/TGRS.2006.876706 – ident: ref51 doi: 10.34133/2022/9871246 – ident: ref70 doi: 10.1016/j.rse.2020.112256 – ident: ref10 doi: 10.1175/2009JCLI2832.1 – ident: ref50 doi: 10.3390/rs11060683 – ident: ref20 doi: 10.1016/j.jhydrol.2012.10.044 – ident: ref27 doi: 10.1016/j.advwatres.2017.09.006 – ident: ref47 doi: 10.1109/tpami.2024.3362475 – ident: ref62 doi: 10.1016/j.rse.2004.02.016 – ident: ref14 doi: 10.1029/JB082i020p03108 – ident: ref35 doi: 10.5194/essd-11-717-2019 – ident: ref28 doi: 10.1002/2016RG000543 – ident: ref59 doi: 10.1029/2018WR023354 – ident: ref67 doi: 10.1109/JSTARS.2021.3066508 – ident: ref31 doi: 10.5194/hess-21-3267-2017 – ident: ref26 doi: 10.1016/S0034-4257(99)00036-X – volume: 2 start-page: 2391 issue: 1 year: 2021 ident: ref7 article-title: IPCC, 2021: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change – ident: ref41 doi: 10.1029/2002jd003292 – ident: ref38 doi: 10.1016/j.jhydrol.2014.02.027 – ident: ref45 doi: 10.1016/j.jhydrol.2019.124351 – ident: ref32 doi: 10.1109/IGARSS.2017.8127507 – ident: ref63 doi: 10.1016/j.rse.2017.11.002 – ident: ref17 doi: 10.1109/JPROC.2010.2043918 – ident: ref49 doi: 10.5194/essd-14-5267-2022 – ident: ref33 doi: 10.1016/j.rse.2023.113856 – ident: ref40 doi: 10.3390/rs11050478 – ident: ref52 doi: 10.1007/s10666-017-9586-y – ident: ref58 doi: 10.1038/s41597-021-00964-1 – ident: ref12 doi: 10.1016/j.rse.2017.07.037 – ident: ref30 doi: 10.1016/j.advwatres.2017.09.010 – ident: ref44 doi: 10.1016/j.rse.2022.113059 – year: 2015 ident: ref66 article-title: Very deep convolutional networks for large-scale image recognition – volume: 38 start-page: 13 issue: 8 year: 2010 ident: ref18 article-title: Instrument performance and calibration of AMSR-E and AMSR2 publication-title: Int. Arch. Photogramm. Remote Sens. spatial Inf. Sci.ISPRS Arch. – ident: ref71 doi: 10.5194/essd-13-4349-2021 – ident: ref19 doi: 10.1109/TGRS.2012.2184548 – ident: ref4 doi: 10.1016/j.agrformet.2016.07.007 – ident: ref21 doi: 10.1109/JOE.1980.1145458 – ident: ref22 doi: 10.1109/36.942543 – ident: ref42 doi: 10.1016/j.rse.2021.112377 – ident: ref37 doi: 10.1029/2003JD003823 – ident: ref39 doi: 10.1007/s11430-010-4160-3 – ident: ref60 doi: 10.1038/s41597-021-00925-8 – ident: ref13 doi: 10.1016/j.agrformet.2007.08.006 – ident: ref23 doi: 10.1016/j.rse.2013.02.027 – ident: ref6 doi: 10.1016/j.rse.2017.07.001 – ident: ref57 doi: 10.1109/TGRS.2018.2872131 – ident: ref1 doi: 10.1029/2004wr003208 – ident: ref8 doi: 10.1175/BAMS-D-21-0178.1 – ident: ref16 doi: 10.1109/JSTARS.2017.2651140 – ident: ref46 doi: 10.3389/frai.2021.636234 – ident: ref9 doi: 10.1016/j.jhydrol.2004.01.008 – volume: 28 start-page: 3483 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2015 ident: ref65 article-title: Learning structured output representation using deep conditional generative models – ident: ref2 doi: 10.1029/2007jd008940 – ident: ref24 doi: 10.1016/j.pce.2015.02.009 – ident: ref64 doi: 10.1175/jhm-d-17-0063.1 – ident: ref3 doi: 10.1029/2002wr001297 |
| SSID | ssj0062793 |
| Score | 2.3555522 |
| Snippet | High-quality soil moisture (SM) estimation is crucial for various applications, including drought monitoring, environmental assessment, and agricultural... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9337 |
| SubjectTerms | Accuracy Agricultural management Algorithms Benchmarks Climate change Conditional variational autoencoder (CVAE) Correlation coefficient Correlation coefficients Data models Drought Earth surface Environmental assessment Environmental Impact Assessment Environmental management Environmental monitoring ESA climate change initiative (CCI) Land cover Land surface Microwave theory and techniques Moisture Moisture content product reconstruction Remote sensing Retrieval Satellite orbits Sensors SMAP L4 Soil moisture Soil quality Soil surfaces Spatial discrimination Spatial resolution surface soil moisture (SM) Temporal resolution |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFB60KPjiteJqlfPgo6lpMpNJHuOyq4Iti_HStzCXk3ahJpImgv56z1y2FETBtzDMkCHfuc7kfIexl9ZaUXZYJlwVIuHSpkmphE6UptjCWHJRxrPrf5AnJ-XpabWJxeq-FgYR_c9neOge_V2-HczsjspIwx15uauavillEYq1dma3yKRn2KWApEocZ0ykGDpKq9ck4_XHhpLBjB_meZWXrvf6NTfk2fpje5U_bLJ3NOt7_7nF--xujCihDiLwgN3A_iG7_dZ37P35iP1a9eeOU6M_g8DvD808dsogNMP2Ao4HwnkeEVak66GMEdbj8A1WTQ3L5XtQvYXmuN7AJnDDwtftdA4KloO77PYHifCFEu54qAj1PA2OHNPiuM8-r1eflu-S2HAhMZTmTQnFgoLMXSl1roXqkPNOyA7TLiNXWpVGFTRcGNlZtDzNuS0k2qzINEfkVun8Mdvrhx6fMEBKGyk15RKF5aYS2pJhoNRQKFL5kmcLlu2-f2siG7lrinHR-qwkrdoAWutAayNoC_bqatH3QMbx7-lvHLBXUx2Tth8gxNqomC0FcF1WKQq0CsXLTldaGWMzqXLrgklcsH2H8rX3BYAX7GAnJ21U-8vW0acdSdfm8Olflj1jd9wWwyHOAdubxhmfs1vmx7S9HF94if4N0TrywA priority: 102 providerName: IEEE |
| Title | Enhancing Global Surface Soil Moisture Estimation From ESA CCI and SMAP Product With a Conditional Variational Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10508331 https://www.proquest.com/docview/3055171874 https://doaj.org/article/172f29a7106a48fb9baccd27a3d5514e |
| Volume | 17 |
| WOSCitedRecordID | wos001224319800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 1939-1404 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Li9QwHA6yKHiRVVccXZccPFq30yZNcqzDjAruMlgfewt5ugNrK93Ogv71_vKYZUDQi9eQkra_55c234fQS2st5d7xgqiGFoTZsuCK6kJp6C2MhRJlIrv-B3Z-zi8uxHpP6iv8E5bogdOLO4UC6yuhoBA2inCvhVbG2Iqp2oZi70L2LZnYgamUg5uKRbpd6E5EEQhkMt_QvBSn4PDtxw6QYUVe17WoeRBi36tJkbo_a638kaBj1Vkdoge5XcRtus2H6I7rH6F7b6Mc78_H6NeyvwyEGf03nMj7cbcdvTIOd8PmCp8NYMTt6PASAjmdUcSrcfiOl12LF4v3WPUWd2ftGq8T8Sv-upkuscKLIXzJjruE-Aug6bxjiNvtNATmS-vGI_R5tfy0eFdkNYXCAIabCmj0KOQyznStqfKOEE-Zd6WvoE4KblQDw41h3jpLyprYhjlbNZUmzhGrdP0EHfRD754i7AATAu4kzFFLjKDaQtQD7qMK4pmTaoaq3fuUJlONB8WLKxkhRylkMoIMRpDZCDP06vaiH4lp4-_T3wRD3U4NNNlxAJxHZueR_3KeGToKZt5bL7Dj1_MZOt7ZXeaYvpaBG23Ogobhs_-x9nN0PzxP2s45RgfTuHUv0F1zM22ux5PozifxOOJvmW32ow |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQAcGFZxELBXzgSEo2ceLkGFa7tGJ3tSIFerMce0JXapMqTZDg1zPjeKtKCCRukWUrVr552plvGHtrrU2yGrJA6DQJhLRhkOmkCnSFsYWx6KKMY9dfyvU6Oz3NN75Y3dXCAID7-QwO6dHd5dvWDHRUhhpO5OVUNX2bWmdNx3KtneFNI-k4djEkyQNijfEkQ9Mwf49SXnwuMR2MxGEc53FG3ddvOCLH1-8brPxhlZ2rWTz8z00-Yg98TMmLUQges1vQPGF3P7qevT-fsl_z5oxYNZrvfGT45-XQ1doAL9vtOV-1iPTQAZ-jto-FjHzRtRd8XhZ8NjvmurG8XBUbvhnZYfm3bX_GNZ-1dN3tjhL5V0y5_bEiL4a-JXpMC90--7KYn8yOAt9yITCY6PUBRoMJGrxMVnGV6BqEqBNZQ1hH6EzzzOgUh1MjawtWhLGwqQQbpVElAITVVfyM7TVtA88ZB0wcMTkVEhIrTJ5UFk0DJoeJRqXPRDRh0e77K-P5yKktxrlyeUmYqxE0RaApD9qEvbtedDnScfx7-gcC9noqcWm7AURMedVUGMLVUa4x1Eq1yOoqr7QxNpI6thROwoTtE8o33jcCPGEHOzlRXvGvFBGoTSU1Onzxl2Vv2L2jk9VSLY_Xn16y-7Td8UjngO313QCv2B3zo99eda-ddP8GlMj2Bw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Global+Surface+Soil+Moisture+Estimation+From+ESA+CCI+and+SMAP+Product+With+a+Conditional+Variational+Autoencoder&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Shi%2C+Changjiang&rft.au=Zhang%2C+Zhijie&rft.au=Xiong%2C+Shengqing&rft.au=Zhang%2C+Wanchang&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=9337&rft.epage=9359&rft_id=info:doi/10.1109%2FJSTARS.2024.3393828&rft.externalDocID=10508331 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |