Data Driven Surrogate Modeling of Phase Array Antennas Using Deep Learning for Millimetric Band Applications
Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and satellite or any application which requires wide bandwidth and high gain. However, achieving such design is a difficult and complex task that requires an accurate calculation and combination of results obta...
Uloženo v:
| Vydáno v: | IEEE access Ročník 11; s. 114415 - 114423 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and satellite or any application which requires wide bandwidth and high gain. However, achieving such design is a difficult and complex task that requires an accurate calculation and combination of results obtained for varying phase and amplitude of each unit and coupling effects between these elements of the PAA structure is a task that can only be obtained using full wave EM simulation tools. This comes at the price of a significant increase for the computational cost of the design process which is a well-known drawback of forward EM modeling of microwave stages most especially in case of repetitive analysis's such as yield analyses or optimization tasks. Data-driven surrogate models have emerged as a powerful and versatile solution that bridges the gap between computationally expensive simulations and rapid, reliable prediction models suitable for deployment in applications such as optimization and/or yield analyses. Herein, for having a high-performance broadband PAA for millimeter band in a computationally efficient manner, artificial intelligence based surrogate model assisted optimization approach is deployed. A series of state-of-the-art surrogate modeling algorithms are deployed to create a surrogate model of the studied PAA design for the prediction of radiation pattern characteristic with respect to the input phase values of each array element. As a result, a drastic reduction in computational time of almost 90% for the optimization of three PAA designs is achieved. Thus, the proposed approach offers promising avenues for further exploration in computational electromagnetics, most especially in simulation expensive problems with complex designs. |
|---|---|
| AbstractList | Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and satellite or any application which requires wide bandwidth and high gain. However, achieving such design is a difficult and complex task that requires an accurate calculation and combination of results obtained for varying phase and amplitude of each unit and coupling effects between these elements of the PAA structure is a task that can only be obtained using full wave EM simulation tools. This comes at the price of a significant increase for the computational cost of the design process which is a well-known drawback of forward EM modeling of microwave stages most especially in case of repetitive analysis's such as yield analyses or optimization tasks. Data-driven surrogate models have emerged as a powerful and versatile solution that bridges the gap between computationally expensive simulations and rapid, reliable prediction models suitable for deployment in applications such as optimization and/or yield analyses. Herein, for having a high-performance broadband PAA for millimeter band in a computationally efficient manner, artificial intelligence based surrogate model assisted optimization approach is deployed. A series of state-of-the-art surrogate modeling algorithms are deployed to create a surrogate model of the studied PAA design for the prediction of radiation pattern characteristic with respect to the input phase values of each array element. As a result, a drastic reduction in computational time of almost 90% for the optimization of three PAA designs is achieved. Thus, the proposed approach offers promising avenues for further exploration in computational electromagnetics, most especially in simulation expensive problems with complex designs. |
| Author | Tulum, Mehmet Akif Turk, Ahmet Serdar Mahouti, Peyman |
| Author_xml | – sequence: 1 givenname: Mehmet Akif orcidid: 0000-0003-2844-7798 surname: Tulum fullname: Tulum, Mehmet Akif email: akif.tulum@std.yildiz.edu.tr organization: Department of Electronic and Communication Engineering, Yıldız Technical University, Istanbul, Turkey – sequence: 2 givenname: Ahmet Serdar orcidid: 0000-0002-7806-5467 surname: Turk fullname: Turk, Ahmet Serdar organization: Department of Electronic and Communication Engineering, Yıldız Technical University, Istanbul, Turkey – sequence: 3 givenname: Peyman orcidid: 0000-0002-3351-4433 surname: Mahouti fullname: Mahouti, Peyman organization: Department of Electronic and Communication Engineering, Yıldız Technical University, Istanbul, Turkey |
| BookMark | eNqFUU1rGzEQFSWFpkl-QXoQ9Gx3Je2H9ri10zbgkIKTsxhJs67MRtpKciD_vutsKCGXCKTRfLw3w7zP5MQHj4RcsmLJWNF-61arq-12yQsulkLwshHiAznlrG4XohL1yav_J3KR0r6YjpxCVXNKhjVkoOvoHtHT7SHGsIOM9CZYHJzf0dDT338gIe1ihCfa-YzeQ6L36ZhdI450gxD90etDpDduGNwD5ugM_Q7e0m4cB2cgu-DTOfnYw5Dw4sWekfsfV3erX4vN7c_rVbdZmLJo86Jl2JcauOgBsLEFK6dHotZYSyOZNnUvUFuwHJgwLfJGCi6ZFbaWjekrcUauZ14bYK_G6B4gPqkATj0HQtwpiNmZAZWui8ZUlltZY8l0qRF0LfrKCpSVlGbi-jpzjTH8PWDKah8O0U_jKy6bVkg23alKzFUmhpQi9v-7skIdVVKzSuqoknpRaUK1b1DG5edV5QhueAf7ZcY6RHzVjU9j11L8A1HKoyg |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3446313 crossref_primary_10_1109_ACCESS_2024_3377219 crossref_primary_10_1109_TAP_2025_3553761 crossref_primary_10_1002_mop_34132 crossref_primary_10_3390_telecom6030053 crossref_primary_10_1109_ACCESS_2024_3478812 |
| Cites_doi | 10.1109/TAP.2022.3216548 10.1109/ACCESS.2019.2920945 10.1109/TAP.2023.3249348 10.1109/EuCAP.2016.7481156 10.1016/j.paerosci.2005.02.001 10.1109/APUSNCURSINRSM.2019.8888720 10.1109/EuCAP.2016.7481625 10.1109/TAP.2021.3060142 10.1007/s00339-022-05312-7 10.1007/s11276-022-02937-7 10.1109/CAMA56352.2022.10002651 10.1109/RADAR.2016.8059451 10.1016/j.knosys.2022.109388 10.1109/TAP.2023.3260585 10.1109/TAP.2022.3191442 10.1109/IWSSC.2008.4656772 10.1109/TENCON.2016.7848170 10.1109/IMS37964.2023.10188047 10.1109/iWAT57058.2023.10171658 10.1016/j.engstruct.2021.113399 10.1109/TAP.2015.2449894 10.1109/ICECE51594.2020.9353013 10.1109/TAP.2021.3138517 10.1109/TAP.2014.2360219 10.1109/TAP.2021.3069491 10.1109/ICCEM47450.2020.9219539 10.1007/978-981-16-6246-1_1 10.1109/ICEICT51264.2020.9334191 10.1109/TAP.2023.3240239 10.1109/TAP.2021.3118796 10.1109/TMTT.2022.3218024 10.1109/TMTT.2013.2286968 10.1109/CSRSWTC50769.2020.9372652 10.1109/RADAR.2006.1631793 10.1109/APS/URSI47566.2021.9704357 10.1109/APS/URSI47566.2021.9704748 10.1002/mop.33702 10.1016/j.eswa.2022.119328 10.1109/TAP.2023.3248446 10.1109/TAP.2021.3137248 10.1109/IWCMC58020.2023.10182537 10.1109/TMTT.2016.2623902 10.1109/TELSKS.2007.4375980 10.1049/iet-map.2018.5184 10.1109/TAP.2018.2870338 10.1109/TAP.2013.2255576 10.1109/ANTEM51107.2021.9519003 10.1109/TAI.2022.3192505 10.23919/EuCAP.2017.7928682 10.1109/LMWC.2018.2819427 10.1109/TAP.2023.3263929 10.1016/j.heliyon.2022.e09317 10.1109/ICEST49890.2020.9232673 10.1109/ICEPT50128.2020.9202652 10.1109/TMTT.2022.3193405 10.23919/ACES-China52398.2021.9582101 10.1109/LAWP.2016.2609739 10.1109/InCAP52216.2021.9726386 10.1109/ICET.2011.6048452 10.1109/TMC.2023.3298888 10.1016/j.eswa.2022.118910 10.1109/LMWC.2017.2701334 10.1109/TMTT.2014.2376559 10.1109/TAP.2018.2823775 10.3390/s23167089 10.1109/NEMO56117.2023.10202461 10.1109/ISNCC55209.2022.9851742 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2023.3324733 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 114423 |
| ExternalDocumentID | oai_doaj_org_article_b607c5d2d86e41b4beab63f5d3e8588c 10_1109_ACCESS_2023_3324733 10285868 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Scientific and Technological Research Council of Turkey (TUBITAK) grantid: 3221353 funderid: 10.13039/501100004410 – fundername: NETA Electronics Inc., for the production and measurement |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-91ef4ba23faae7d0147d08ebbe68c81bc6f3ebdad2a13c9e2783281d3d687cf53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001091309100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:19 EDT 2025 Mon Jun 30 07:24:08 EDT 2025 Tue Nov 18 21:49:03 EST 2025 Sat Nov 29 06:25:10 EST 2025 Wed Aug 27 02:35:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-91ef4ba23faae7d0147d08ebbe68c81bc6f3ebdad2a13c9e2783281d3d687cf53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7806-5467 0000-0002-3351-4433 0000-0003-2844-7798 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10285868 |
| PQID | 2879381938 |
| PQPubID | 4845423 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2879381938 crossref_primary_10_1109_ACCESS_2023_3324733 ieee_primary_10285868 doaj_primary_oai_doaj_org_article_b607c5d2d86e41b4beab63f5d3e8588c crossref_citationtrail_10_1109_ACCESS_2023_3324733 |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 afzal (ref27) 2011 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 sielck (ref23) 2022 ref34 ref37 ref36 ref31 ref30 ref33 ref32 wang (ref49) 2019; 13 ref2 ref1 ref39 ref38 ref71 ref70 ref24 ref68 ref67 ref26 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 casta ner (ref25) 2016 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref48 doi: 10.1109/TAP.2022.3216548 – ident: ref55 doi: 10.1109/ACCESS.2019.2920945 – ident: ref47 doi: 10.1109/TAP.2023.3249348 – ident: ref20 doi: 10.1109/EuCAP.2016.7481156 – ident: ref60 doi: 10.1016/j.paerosci.2005.02.001 – ident: ref18 doi: 10.1109/APUSNCURSINRSM.2019.8888720 – ident: ref3 doi: 10.1109/EuCAP.2016.7481625 – ident: ref69 doi: 10.1109/TAP.2021.3060142 – ident: ref35 doi: 10.1007/s00339-022-05312-7 – start-page: 1 year: 2011 ident: ref27 article-title: Modeling and simulation of an X-band planar phased array antenna publication-title: Proc China-Japan Joint Microw Conf – ident: ref42 doi: 10.1007/s11276-022-02937-7 – ident: ref12 doi: 10.1109/CAMA56352.2022.10002651 – ident: ref6 doi: 10.1109/RADAR.2016.8059451 – ident: ref29 doi: 10.1016/j.knosys.2022.109388 – ident: ref66 doi: 10.1109/TAP.2023.3260585 – ident: ref13 doi: 10.1109/TAP.2022.3191442 – start-page: 172 year: 2022 ident: ref23 article-title: Self-diplexing, dual-polarized Ka-band SIW slot antenna with integrated K-band patch publication-title: Proc 14th German Microw Conf (GeMiC) – ident: ref15 doi: 10.1109/IWSSC.2008.4656772 – ident: ref24 doi: 10.1109/TENCON.2016.7848170 – ident: ref38 doi: 10.1109/IMS37964.2023.10188047 – ident: ref57 doi: 10.1109/iWAT57058.2023.10171658 – ident: ref32 doi: 10.1016/j.engstruct.2021.113399 – ident: ref50 doi: 10.1109/TAP.2015.2449894 – ident: ref16 doi: 10.1109/ICECE51594.2020.9353013 – ident: ref44 doi: 10.1109/TAP.2021.3138517 – ident: ref52 doi: 10.1109/TAP.2014.2360219 – ident: ref67 doi: 10.1109/TAP.2021.3069491 – ident: ref8 doi: 10.1109/ICCEM47450.2020.9219539 – ident: ref34 doi: 10.1007/978-981-16-6246-1_1 – start-page: 128 year: 2016 ident: ref25 article-title: Ka band active array antenna for mobile satellite communications publication-title: Proc Int Symp Antennas Propag (ISAP) – ident: ref10 doi: 10.1109/ICEICT51264.2020.9334191 – ident: ref64 doi: 10.1109/TAP.2023.3240239 – ident: ref70 doi: 10.1109/TAP.2021.3118796 – ident: ref37 doi: 10.1109/TMTT.2022.3218024 – ident: ref51 doi: 10.1109/TMTT.2013.2286968 – ident: ref11 doi: 10.1109/CSRSWTC50769.2020.9372652 – ident: ref4 doi: 10.1109/RADAR.2006.1631793 – ident: ref22 doi: 10.1109/APS/URSI47566.2021.9704357 – ident: ref2 doi: 10.1109/APS/URSI47566.2021.9704748 – ident: ref43 doi: 10.1002/mop.33702 – ident: ref68 doi: 10.1016/j.eswa.2022.119328 – ident: ref65 doi: 10.1109/TAP.2023.3248446 – ident: ref71 doi: 10.1109/TAP.2021.3137248 – ident: ref45 doi: 10.1109/IWCMC58020.2023.10182537 – ident: ref59 doi: 10.1109/TMTT.2016.2623902 – volume: 13 start-page: 1762 year: 2019 ident: ref49 article-title: Efficient gradient-based optimization of pixel antenna with large-scale connections publication-title: IET Microw Antennas Propag – ident: ref17 doi: 10.1109/TELSKS.2007.4375980 – ident: ref56 doi: 10.1049/iet-map.2018.5184 – ident: ref54 doi: 10.1109/TAP.2018.2870338 – ident: ref28 doi: 10.1109/TAP.2013.2255576 – ident: ref19 doi: 10.1109/ANTEM51107.2021.9519003 – ident: ref41 doi: 10.1109/TAI.2022.3192505 – ident: ref7 doi: 10.23919/EuCAP.2017.7928682 – ident: ref62 doi: 10.1109/LMWC.2018.2819427 – ident: ref46 doi: 10.1109/TAP.2023.3263929 – ident: ref40 doi: 10.1016/j.heliyon.2022.e09317 – ident: ref5 doi: 10.1109/ICEST49890.2020.9232673 – ident: ref1 doi: 10.1109/ICEPT50128.2020.9202652 – ident: ref30 doi: 10.1109/TMTT.2022.3193405 – ident: ref21 doi: 10.23919/ACES-China52398.2021.9582101 – ident: ref53 doi: 10.1109/LAWP.2016.2609739 – ident: ref9 doi: 10.1109/InCAP52216.2021.9726386 – ident: ref26 doi: 10.1109/ICET.2011.6048452 – ident: ref58 doi: 10.1109/TMC.2023.3298888 – ident: ref33 doi: 10.1016/j.eswa.2022.118910 – ident: ref63 doi: 10.1109/LMWC.2017.2701334 – ident: ref61 doi: 10.1109/TMTT.2014.2376559 – ident: ref31 doi: 10.1109/TAP.2018.2823775 – ident: ref36 doi: 10.3390/s23167089 – ident: ref39 doi: 10.1109/NEMO56117.2023.10202461 – ident: ref14 doi: 10.1109/ISNCC55209.2022.9851742 |
| SSID | ssj0000816957 |
| Score | 2.3109488 |
| Snippet | Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and satellite or any application which requires wide bandwidth and... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114415 |
| SubjectTerms | Algorithms Antenna arrays Antennas Artificial intelligence Broadband Broadband antennas Computational efficiency Computational electromagnetics Computational modeling Computing costs Computing time data driven modelling Data models Deep learning High gain Machine learning Modelling Optimization phased array antenna Phased arrays Prediction models Radar antennas Simulation surrogate modelling |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOqEARS0vlA0e2TeL467jdbcUBVZUAqTfLH2OoVLJVdovUf9-ZxK2CkODCJQfLseOxPZ7n2O8x9kFANLby7Vz6oBCg-Dz30AqceAKszsFCHC4Kf9bn5-by0l5MpL7oTNhIDzwa7jioSkeZmmQUtHVoA2ChIsskwEhjInnfStsJmBp8sKmVlbrQDNWVPV4sl9iiI1ILPxIYRWghfluKBsb-IrHyh18eFpuzXfaiRIl8MX7dS_YEulfs-YQ78DW7Xvmt56uevBX_ctv3a9oQ46RtRjfM-Trzix-4RGEhvb_jCzqq3vkNH84I8BXADS_cqt85Bq6cLgVe_SR9rchPfJf4YvJre499Ozv9uvw0L9IJ84iAbYsuDHIbfCOy96AT4iB8GAgBlIkYqUaVBYTkU-NrES2Q3kaDoatIyuiYpXjDdrp1B28ZT3VOOgpEihjdSTBeVyC9bFUU6CdlnLHmwYouFl5xkre4dgO-qKwbTe_I9K6YfsY-Pr50M9Jq_D37CXXPY1bixB4ScKS4MlLcv0bKjO1R507qazBdmRk7eOhtVybwxiGQtARmhXn3P-reZ8-oPePezQHb2fa38J49jb-2V5v-cBi799AC8f0 priority: 102 providerName: Directory of Open Access Journals |
| Title | Data Driven Surrogate Modeling of Phase Array Antennas Using Deep Learning for Millimetric Band Applications |
| URI | https://ieeexplore.ieee.org/document/10285868 https://www.proquest.com/docview/2879381938 https://doaj.org/article/b607c5d2d86e41b4beab63f5d3e8588c |
| Volume | 11 |
| WOSCitedRecordID | wos001091309100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPItYKJUPHNltNo5fx-1uKw5QVQKk3iw_JlCpzVbZXSQu_HZmHHe1CIHExYoiO3Hy2eOZsWc-xt4KiMZWvhlLHxQaKL4de2gETjwBVrfBQsyBwh_0-bm5vLQXJVg9x8IAQD58BhO6zHv5aRk35Co7psVQGmX22J7WagjW2jpUiEHCSl0yC00rezybz_EjJkQQPhGoOGghflt9cpL-wqryhyjO68vZ4__s2RP2qCiSfDYg_5Tdg-4Ze7iTXvA5u174teeLngQa_7Tp-yX5zDjRn1EQOl-2_OIbrmL4kN7_4DM6zd75Fc_HCPgC4JaX9KtfOeq2nOIGr26IgivyE98lPtvZ_T5gX85OP8_fjwu7wjiiTbdGKQdtE3wtWu9BJzSVsDAQAigTUZmNqhUQkk-1n4pogSg5atRuRVJGx1aKF2y_W3bwkvE0bZOOAo1JVAAlGK8rkF42KgoUpTKOWH33110sqceJAePaZROksm6AyhFUrkA1Yu-2jW6HzBv_rn5CcG6rUtrsfANxcmUWuqAqHWWqk1HQTEMTAEeoaGUSgPAZ7OgBYbvzvgHWETu8Gx2uzPGVQ1vTkr0rzKu_NHvNHlAXB4_NIdtf9xt4w-7H7-urVX-UzX8sP_48PcpD-RerdPD2 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgIAEPXIcoDPADj7RL4zi2H7uWaYhSTWJIe7N8ORmTRjqlLRL_nnMcrypCIPESRZGTOPnsc7PP-Rh7JyBoU7hqKJ2v0UFxzdBBJXDiCTCq8QZCShSeq8VCn5-b05ysnnJhACBtPoMRnaa1_LgMGwqVHZIylLrWt9kdWVVl0adrbUMqxCFhpMq1hcaFOZxMp_gZI6IIHwk0HZQQv-mfVKY_86r8IYyThjl-9J99e8weZlOST3rsn7Bb0D5lD3YKDD5jVzO3dnzWkUjjXzZdt6SoGScCNEpD58uGn35DPYYP6dxPPqH97K1b8bSRgM8ArnkuwHrB0brllDl4-Z1IuAI_cm3kk53173329fjD2fRkmPkVhgG9ujXKOWgq70rROAcqorOEBw3eQ60DmrOhbgT46GLpxiIYIFKOEu1bEWutQiPFc7bXLlt4wXgcN1EFge4kmoAStFMFSCerOggUpjIMWHnz123IxceJA-PKJiekMLaHyhJUNkM1YO-3N133tTf-3fyI4Nw2pcLZ6QLiZPM8tL4uVJCxjLqGauwrDzhGRSOjAIRPY0f3Cdud9_WwDtjBzeiweZavLHqbhjxeoV_-5ba37N7J2ee5nX9cfHrF7lN3-_jNAdtbdxt4ze6GH-vLVfcmDeVf-xHyFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Driven+Surrogate+Modeling+of+Phase+Array+Antennas+Using+Deep+Learning+for+Millimetric+Band+Applications&rft.jtitle=IEEE+access&rft.au=Tulum%2C+Mehmet+Akif&rft.au=Turk%2C+Ahmet+Serdar&rft.au=Mahouti%2C+Peyman&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=114415&rft.epage=114423&rft_id=info:doi/10.1109%2FACCESS.2023.3324733&rft.externalDocID=10285868 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |