Data Driven Surrogate Modeling of Phase Array Antennas Using Deep Learning for Millimetric Band Applications

Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and satellite or any application which requires wide bandwidth and high gain. However, achieving such design is a difficult and complex task that requires an accurate calculation and combination of results obta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 11; s. 114415 - 114423
Hlavní autoři: Tulum, Mehmet Akif, Turk, Ahmet Serdar, Mahouti, Peyman
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and satellite or any application which requires wide bandwidth and high gain. However, achieving such design is a difficult and complex task that requires an accurate calculation and combination of results obtained for varying phase and amplitude of each unit and coupling effects between these elements of the PAA structure is a task that can only be obtained using full wave EM simulation tools. This comes at the price of a significant increase for the computational cost of the design process which is a well-known drawback of forward EM modeling of microwave stages most especially in case of repetitive analysis's such as yield analyses or optimization tasks. Data-driven surrogate models have emerged as a powerful and versatile solution that bridges the gap between computationally expensive simulations and rapid, reliable prediction models suitable for deployment in applications such as optimization and/or yield analyses. Herein, for having a high-performance broadband PAA for millimeter band in a computationally efficient manner, artificial intelligence based surrogate model assisted optimization approach is deployed. A series of state-of-the-art surrogate modeling algorithms are deployed to create a surrogate model of the studied PAA design for the prediction of radiation pattern characteristic with respect to the input phase values of each array element. As a result, a drastic reduction in computational time of almost 90% for the optimization of three PAA designs is achieved. Thus, the proposed approach offers promising avenues for further exploration in computational electromagnetics, most especially in simulation expensive problems with complex designs.
AbstractList Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and satellite or any application which requires wide bandwidth and high gain. However, achieving such design is a difficult and complex task that requires an accurate calculation and combination of results obtained for varying phase and amplitude of each unit and coupling effects between these elements of the PAA structure is a task that can only be obtained using full wave EM simulation tools. This comes at the price of a significant increase for the computational cost of the design process which is a well-known drawback of forward EM modeling of microwave stages most especially in case of repetitive analysis's such as yield analyses or optimization tasks. Data-driven surrogate models have emerged as a powerful and versatile solution that bridges the gap between computationally expensive simulations and rapid, reliable prediction models suitable for deployment in applications such as optimization and/or yield analyses. Herein, for having a high-performance broadband PAA for millimeter band in a computationally efficient manner, artificial intelligence based surrogate model assisted optimization approach is deployed. A series of state-of-the-art surrogate modeling algorithms are deployed to create a surrogate model of the studied PAA design for the prediction of radiation pattern characteristic with respect to the input phase values of each array element. As a result, a drastic reduction in computational time of almost 90% for the optimization of three PAA designs is achieved. Thus, the proposed approach offers promising avenues for further exploration in computational electromagnetics, most especially in simulation expensive problems with complex designs.
Author Tulum, Mehmet Akif
Turk, Ahmet Serdar
Mahouti, Peyman
Author_xml – sequence: 1
  givenname: Mehmet Akif
  orcidid: 0000-0003-2844-7798
  surname: Tulum
  fullname: Tulum, Mehmet Akif
  email: akif.tulum@std.yildiz.edu.tr
  organization: Department of Electronic and Communication Engineering, Yıldız Technical University, Istanbul, Turkey
– sequence: 2
  givenname: Ahmet Serdar
  orcidid: 0000-0002-7806-5467
  surname: Turk
  fullname: Turk, Ahmet Serdar
  organization: Department of Electronic and Communication Engineering, Yıldız Technical University, Istanbul, Turkey
– sequence: 3
  givenname: Peyman
  orcidid: 0000-0002-3351-4433
  surname: Mahouti
  fullname: Mahouti, Peyman
  organization: Department of Electronic and Communication Engineering, Yıldız Technical University, Istanbul, Turkey
BookMark eNqFUU1rGzEQFSWFpkl-QXoQ9Gx3Je2H9ri10zbgkIKTsxhJs67MRtpKciD_vutsKCGXCKTRfLw3w7zP5MQHj4RcsmLJWNF-61arq-12yQsulkLwshHiAznlrG4XohL1yav_J3KR0r6YjpxCVXNKhjVkoOvoHtHT7SHGsIOM9CZYHJzf0dDT338gIe1ihCfa-YzeQ6L36ZhdI450gxD90etDpDduGNwD5ugM_Q7e0m4cB2cgu-DTOfnYw5Dw4sWekfsfV3erX4vN7c_rVbdZmLJo86Jl2JcauOgBsLEFK6dHotZYSyOZNnUvUFuwHJgwLfJGCi6ZFbaWjekrcUauZ14bYK_G6B4gPqkATj0HQtwpiNmZAZWui8ZUlltZY8l0qRF0LfrKCpSVlGbi-jpzjTH8PWDKah8O0U_jKy6bVkg23alKzFUmhpQi9v-7skIdVVKzSuqoknpRaUK1b1DG5edV5QhueAf7ZcY6RHzVjU9j11L8A1HKoyg
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3446313
crossref_primary_10_1109_ACCESS_2024_3377219
crossref_primary_10_1109_TAP_2025_3553761
crossref_primary_10_1002_mop_34132
crossref_primary_10_3390_telecom6030053
crossref_primary_10_1109_ACCESS_2024_3478812
Cites_doi 10.1109/TAP.2022.3216548
10.1109/ACCESS.2019.2920945
10.1109/TAP.2023.3249348
10.1109/EuCAP.2016.7481156
10.1016/j.paerosci.2005.02.001
10.1109/APUSNCURSINRSM.2019.8888720
10.1109/EuCAP.2016.7481625
10.1109/TAP.2021.3060142
10.1007/s00339-022-05312-7
10.1007/s11276-022-02937-7
10.1109/CAMA56352.2022.10002651
10.1109/RADAR.2016.8059451
10.1016/j.knosys.2022.109388
10.1109/TAP.2023.3260585
10.1109/TAP.2022.3191442
10.1109/IWSSC.2008.4656772
10.1109/TENCON.2016.7848170
10.1109/IMS37964.2023.10188047
10.1109/iWAT57058.2023.10171658
10.1016/j.engstruct.2021.113399
10.1109/TAP.2015.2449894
10.1109/ICECE51594.2020.9353013
10.1109/TAP.2021.3138517
10.1109/TAP.2014.2360219
10.1109/TAP.2021.3069491
10.1109/ICCEM47450.2020.9219539
10.1007/978-981-16-6246-1_1
10.1109/ICEICT51264.2020.9334191
10.1109/TAP.2023.3240239
10.1109/TAP.2021.3118796
10.1109/TMTT.2022.3218024
10.1109/TMTT.2013.2286968
10.1109/CSRSWTC50769.2020.9372652
10.1109/RADAR.2006.1631793
10.1109/APS/URSI47566.2021.9704357
10.1109/APS/URSI47566.2021.9704748
10.1002/mop.33702
10.1016/j.eswa.2022.119328
10.1109/TAP.2023.3248446
10.1109/TAP.2021.3137248
10.1109/IWCMC58020.2023.10182537
10.1109/TMTT.2016.2623902
10.1109/TELSKS.2007.4375980
10.1049/iet-map.2018.5184
10.1109/TAP.2018.2870338
10.1109/TAP.2013.2255576
10.1109/ANTEM51107.2021.9519003
10.1109/TAI.2022.3192505
10.23919/EuCAP.2017.7928682
10.1109/LMWC.2018.2819427
10.1109/TAP.2023.3263929
10.1016/j.heliyon.2022.e09317
10.1109/ICEST49890.2020.9232673
10.1109/ICEPT50128.2020.9202652
10.1109/TMTT.2022.3193405
10.23919/ACES-China52398.2021.9582101
10.1109/LAWP.2016.2609739
10.1109/InCAP52216.2021.9726386
10.1109/ICET.2011.6048452
10.1109/TMC.2023.3298888
10.1016/j.eswa.2022.118910
10.1109/LMWC.2017.2701334
10.1109/TMTT.2014.2376559
10.1109/TAP.2018.2823775
10.3390/s23167089
10.1109/NEMO56117.2023.10202461
10.1109/ISNCC55209.2022.9851742
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3324733
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 114423
ExternalDocumentID oai_doaj_org_article_b607c5d2d86e41b4beab63f5d3e8588c
10_1109_ACCESS_2023_3324733
10285868
Genre orig-research
GrantInformation_xml – fundername: Scientific and Technological Research Council of Turkey (TUBITAK)
  grantid: 3221353
  funderid: 10.13039/501100004410
– fundername: NETA Electronics Inc., for the production and measurement
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-91ef4ba23faae7d0147d08ebbe68c81bc6f3ebdad2a13c9e2783281d3d687cf53
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001091309100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:19 EDT 2025
Mon Jun 30 07:24:08 EDT 2025
Tue Nov 18 21:49:03 EST 2025
Sat Nov 29 06:25:10 EST 2025
Wed Aug 27 02:35:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-91ef4ba23faae7d0147d08ebbe68c81bc6f3ebdad2a13c9e2783281d3d687cf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7806-5467
0000-0002-3351-4433
0000-0003-2844-7798
OpenAccessLink https://ieeexplore.ieee.org/document/10285868
PQID 2879381938
PQPubID 4845423
PageCount 9
ParticipantIDs proquest_journals_2879381938
crossref_primary_10_1109_ACCESS_2023_3324733
ieee_primary_10285868
doaj_primary_oai_doaj_org_article_b607c5d2d86e41b4beab63f5d3e8588c
crossref_citationtrail_10_1109_ACCESS_2023_3324733
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
afzal (ref27) 2011
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
sielck (ref23) 2022
ref34
ref37
ref36
ref31
ref30
ref33
ref32
wang (ref49) 2019; 13
ref2
ref1
ref39
ref38
ref71
ref70
ref24
ref68
ref67
ref26
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
casta ner (ref25) 2016
ref29
ref60
ref62
ref61
References_xml – ident: ref48
  doi: 10.1109/TAP.2022.3216548
– ident: ref55
  doi: 10.1109/ACCESS.2019.2920945
– ident: ref47
  doi: 10.1109/TAP.2023.3249348
– ident: ref20
  doi: 10.1109/EuCAP.2016.7481156
– ident: ref60
  doi: 10.1016/j.paerosci.2005.02.001
– ident: ref18
  doi: 10.1109/APUSNCURSINRSM.2019.8888720
– ident: ref3
  doi: 10.1109/EuCAP.2016.7481625
– ident: ref69
  doi: 10.1109/TAP.2021.3060142
– ident: ref35
  doi: 10.1007/s00339-022-05312-7
– start-page: 1
  year: 2011
  ident: ref27
  article-title: Modeling and simulation of an X-band planar phased array antenna
  publication-title: Proc China-Japan Joint Microw Conf
– ident: ref42
  doi: 10.1007/s11276-022-02937-7
– ident: ref12
  doi: 10.1109/CAMA56352.2022.10002651
– ident: ref6
  doi: 10.1109/RADAR.2016.8059451
– ident: ref29
  doi: 10.1016/j.knosys.2022.109388
– ident: ref66
  doi: 10.1109/TAP.2023.3260585
– ident: ref13
  doi: 10.1109/TAP.2022.3191442
– start-page: 172
  year: 2022
  ident: ref23
  article-title: Self-diplexing, dual-polarized Ka-band SIW slot antenna with integrated K-band patch
  publication-title: Proc 14th German Microw Conf (GeMiC)
– ident: ref15
  doi: 10.1109/IWSSC.2008.4656772
– ident: ref24
  doi: 10.1109/TENCON.2016.7848170
– ident: ref38
  doi: 10.1109/IMS37964.2023.10188047
– ident: ref57
  doi: 10.1109/iWAT57058.2023.10171658
– ident: ref32
  doi: 10.1016/j.engstruct.2021.113399
– ident: ref50
  doi: 10.1109/TAP.2015.2449894
– ident: ref16
  doi: 10.1109/ICECE51594.2020.9353013
– ident: ref44
  doi: 10.1109/TAP.2021.3138517
– ident: ref52
  doi: 10.1109/TAP.2014.2360219
– ident: ref67
  doi: 10.1109/TAP.2021.3069491
– ident: ref8
  doi: 10.1109/ICCEM47450.2020.9219539
– ident: ref34
  doi: 10.1007/978-981-16-6246-1_1
– start-page: 128
  year: 2016
  ident: ref25
  article-title: Ka band active array antenna for mobile satellite communications
  publication-title: Proc Int Symp Antennas Propag (ISAP)
– ident: ref10
  doi: 10.1109/ICEICT51264.2020.9334191
– ident: ref64
  doi: 10.1109/TAP.2023.3240239
– ident: ref70
  doi: 10.1109/TAP.2021.3118796
– ident: ref37
  doi: 10.1109/TMTT.2022.3218024
– ident: ref51
  doi: 10.1109/TMTT.2013.2286968
– ident: ref11
  doi: 10.1109/CSRSWTC50769.2020.9372652
– ident: ref4
  doi: 10.1109/RADAR.2006.1631793
– ident: ref22
  doi: 10.1109/APS/URSI47566.2021.9704357
– ident: ref2
  doi: 10.1109/APS/URSI47566.2021.9704748
– ident: ref43
  doi: 10.1002/mop.33702
– ident: ref68
  doi: 10.1016/j.eswa.2022.119328
– ident: ref65
  doi: 10.1109/TAP.2023.3248446
– ident: ref71
  doi: 10.1109/TAP.2021.3137248
– ident: ref45
  doi: 10.1109/IWCMC58020.2023.10182537
– ident: ref59
  doi: 10.1109/TMTT.2016.2623902
– volume: 13
  start-page: 1762
  year: 2019
  ident: ref49
  article-title: Efficient gradient-based optimization of pixel antenna with large-scale connections
  publication-title: IET Microw Antennas Propag
– ident: ref17
  doi: 10.1109/TELSKS.2007.4375980
– ident: ref56
  doi: 10.1049/iet-map.2018.5184
– ident: ref54
  doi: 10.1109/TAP.2018.2870338
– ident: ref28
  doi: 10.1109/TAP.2013.2255576
– ident: ref19
  doi: 10.1109/ANTEM51107.2021.9519003
– ident: ref41
  doi: 10.1109/TAI.2022.3192505
– ident: ref7
  doi: 10.23919/EuCAP.2017.7928682
– ident: ref62
  doi: 10.1109/LMWC.2018.2819427
– ident: ref46
  doi: 10.1109/TAP.2023.3263929
– ident: ref40
  doi: 10.1016/j.heliyon.2022.e09317
– ident: ref5
  doi: 10.1109/ICEST49890.2020.9232673
– ident: ref1
  doi: 10.1109/ICEPT50128.2020.9202652
– ident: ref30
  doi: 10.1109/TMTT.2022.3193405
– ident: ref21
  doi: 10.23919/ACES-China52398.2021.9582101
– ident: ref53
  doi: 10.1109/LAWP.2016.2609739
– ident: ref9
  doi: 10.1109/InCAP52216.2021.9726386
– ident: ref26
  doi: 10.1109/ICET.2011.6048452
– ident: ref58
  doi: 10.1109/TMC.2023.3298888
– ident: ref33
  doi: 10.1016/j.eswa.2022.118910
– ident: ref63
  doi: 10.1109/LMWC.2017.2701334
– ident: ref61
  doi: 10.1109/TMTT.2014.2376559
– ident: ref31
  doi: 10.1109/TAP.2018.2823775
– ident: ref36
  doi: 10.3390/s23167089
– ident: ref39
  doi: 10.1109/NEMO56117.2023.10202461
– ident: ref14
  doi: 10.1109/ISNCC55209.2022.9851742
SSID ssj0000816957
Score 2.3109488
Snippet Phased Array Antenna (PAA) technology plays an important role in fields such as radar, 5G and satellite or any application which requires wide bandwidth and...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114415
SubjectTerms Algorithms
Antenna arrays
Antennas
Artificial intelligence
Broadband
Broadband antennas
Computational efficiency
Computational electromagnetics
Computational modeling
Computing costs
Computing time
data driven modelling
Data models
Deep learning
High gain
Machine learning
Modelling
Optimization
phased array antenna
Phased arrays
Prediction models
Radar antennas
Simulation
surrogate modelling
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOqEARS0vlA0e2TeL467jdbcUBVZUAqTfLH2OoVLJVdovUf9-ZxK2CkODCJQfLseOxPZ7n2O8x9kFANLby7Vz6oBCg-Dz30AqceAKszsFCHC4Kf9bn5-by0l5MpL7oTNhIDzwa7jioSkeZmmQUtHVoA2ChIsskwEhjInnfStsJmBp8sKmVlbrQDNWVPV4sl9iiI1ILPxIYRWghfluKBsb-IrHyh18eFpuzXfaiRIl8MX7dS_YEulfs-YQ78DW7Xvmt56uevBX_ctv3a9oQ46RtRjfM-Trzix-4RGEhvb_jCzqq3vkNH84I8BXADS_cqt85Bq6cLgVe_SR9rchPfJf4YvJre499Ozv9uvw0L9IJ84iAbYsuDHIbfCOy96AT4iB8GAgBlIkYqUaVBYTkU-NrES2Q3kaDoatIyuiYpXjDdrp1B28ZT3VOOgpEihjdSTBeVyC9bFUU6CdlnLHmwYouFl5xkre4dgO-qKwbTe_I9K6YfsY-Pr50M9Jq_D37CXXPY1bixB4ScKS4MlLcv0bKjO1R507qazBdmRk7eOhtVybwxiGQtARmhXn3P-reZ8-oPePezQHb2fa38J49jb-2V5v-cBi799AC8f0
  priority: 102
  providerName: Directory of Open Access Journals
Title Data Driven Surrogate Modeling of Phase Array Antennas Using Deep Learning for Millimetric Band Applications
URI https://ieeexplore.ieee.org/document/10285868
https://www.proquest.com/docview/2879381938
https://doaj.org/article/b607c5d2d86e41b4beab63f5d3e8588c
Volume 11
WOSCitedRecordID wos001091309100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoxQEOPItYKJUPHNltNo5fx-1uKw5QVQKk3iw_JlCpzVbZXSQu_HZmHHe1CIHExYoiO3Hy2eOZsWc-xt4KiMZWvhlLHxQaKL4de2gETjwBVrfBQsyBwh_0-bm5vLQXJVg9x8IAQD58BhO6zHv5aRk35Co7psVQGmX22J7WagjW2jpUiEHCSl0yC00rezybz_EjJkQQPhGoOGghflt9cpL-wqryhyjO68vZ4__s2RP2qCiSfDYg_5Tdg-4Ze7iTXvA5u174teeLngQa_7Tp-yX5zDjRn1EQOl-2_OIbrmL4kN7_4DM6zd75Fc_HCPgC4JaX9KtfOeq2nOIGr26IgivyE98lPtvZ_T5gX85OP8_fjwu7wjiiTbdGKQdtE3wtWu9BJzSVsDAQAigTUZmNqhUQkk-1n4pogSg5atRuRVJGx1aKF2y_W3bwkvE0bZOOAo1JVAAlGK8rkF42KgoUpTKOWH33110sqceJAePaZROksm6AyhFUrkA1Yu-2jW6HzBv_rn5CcG6rUtrsfANxcmUWuqAqHWWqk1HQTEMTAEeoaGUSgPAZ7OgBYbvzvgHWETu8Gx2uzPGVQ1vTkr0rzKu_NHvNHlAXB4_NIdtf9xt4w-7H7-urVX-UzX8sP_48PcpD-RerdPD2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgIAEPXIcoDPADj7RL4zi2H7uWaYhSTWJIe7N8ORmTRjqlLRL_nnMcrypCIPESRZGTOPnsc7PP-Rh7JyBoU7hqKJ2v0UFxzdBBJXDiCTCq8QZCShSeq8VCn5-b05ysnnJhACBtPoMRnaa1_LgMGwqVHZIylLrWt9kdWVVl0adrbUMqxCFhpMq1hcaFOZxMp_gZI6IIHwk0HZQQv-mfVKY_86r8IYyThjl-9J99e8weZlOST3rsn7Bb0D5lD3YKDD5jVzO3dnzWkUjjXzZdt6SoGScCNEpD58uGn35DPYYP6dxPPqH97K1b8bSRgM8ArnkuwHrB0brllDl4-Z1IuAI_cm3kk53173329fjD2fRkmPkVhgG9ujXKOWgq70rROAcqorOEBw3eQ60DmrOhbgT46GLpxiIYIFKOEu1bEWutQiPFc7bXLlt4wXgcN1EFge4kmoAStFMFSCerOggUpjIMWHnz123IxceJA-PKJiekMLaHyhJUNkM1YO-3N133tTf-3fyI4Nw2pcLZ6QLiZPM8tL4uVJCxjLqGauwrDzhGRSOjAIRPY0f3Cdud9_WwDtjBzeiweZavLHqbhjxeoV_-5ba37N7J2ee5nX9cfHrF7lN3-_jNAdtbdxt4ze6GH-vLVfcmDeVf-xHyFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Driven+Surrogate+Modeling+of+Phase+Array+Antennas+Using+Deep+Learning+for+Millimetric+Band+Applications&rft.jtitle=IEEE+access&rft.au=Tulum%2C+Mehmet+Akif&rft.au=Turk%2C+Ahmet+Serdar&rft.au=Mahouti%2C+Peyman&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=114415&rft.epage=114423&rft_id=info:doi/10.1109%2FACCESS.2023.3324733&rft.externalDocID=10285868
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon