Guidance Design for Escape Flight Vehicle Using Evolution Strategy Enhanced Deep Reinforcement Learning
Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals, thus guidance design constitutes a typical sequential decision problem and satisfies the basic conditions for using the deep reinforcement learning (DRL) technique. In this paper, we consider t...
Uložené v:
| Vydané v: | IEEE access Ročník 12; s. 48210 - 48222 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals, thus guidance design constitutes a typical sequential decision problem and satisfies the basic conditions for using the deep reinforcement learning (DRL) technique. In this paper, we consider the scenario where the escape flight vehicle (EFV) generates guidance commands based on the DRL technique and the pursuit flight vehicle (PFV) generates guidance commands based on the proportional navigation method. Evasion distance is described as the minimum distance between the EFV and the PFV during the escape-and-pursuit process. For the EFV, the objective of the guidance design entails progressively maximizing the residual velocity, which is described as the EFV's velocity when the evasion distance occurs, subject to the constraint imposed by the given evasion distance. Thus an irregular dynamic max-min problem of extremely large-scale is formulated. In this problem, the time instant when the optimal solution (i.e., the maximum residual velocity satisfying the evasion distance constraint) can be attained is uncertain and the optimum solution is dependent on all the intermediate guidance commands generated before. For solving this challenging problem, a two-step strategy is conceived. In the first step, we use the proximal policy optimization (PPO) algorithm to generate the guidance commands of the EFV. The results obtained by PPO in the global search space are coarse, despite the fact that the reward function, the neural network parameters and the learning rate are designed elaborately. Therefore, in the second step, we propose to invoke the evolution strategy (ES) based algorithm, which uses the result of PPO as the initial value, to further improve the quality of the solution by searching in the local space. Extensive simulation results demonstrate that the proposed guidance design method based on the PPO algorithm is capable of achieving a residual velocity of 67.24 m/s, higher than the residual velocities achieved by the benchmark soft actor-critic and deep deterministic policy gradient algorithms. Furthermore, the proposed ES-enhanced PPO algorithm outperforms the PPO algorithm by 2.7%, achieving a residual velocity of 69.04 m/s. |
|---|---|
| AbstractList | Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals, thus guidance design constitutes a typical sequential decision problem and satisfies the basic conditions for using the deep reinforcement learning (DRL) technique. In this paper, we consider the scenario where the escape flight vehicle (EFV) generates guidance commands based on the DRL technique and the pursuit flight vehicle (PFV) generates guidance commands based on the proportional navigation method. Evasion distance is described as the minimum distance between the EFV and the PFV during the escape-and-pursuit process. For the EFV, the objective of the guidance design entails progressively maximizing the residual velocity, which is described as the EFV’s velocity when the evasion distance occurs, subject to the constraint imposed by the given evasion distance. Thus an irregular dynamic max-min problem of extremely large-scale is formulated. In this problem, the time instant when the optimal solution (i.e., the maximum residual velocity satisfying the evasion distance constraint) can be attained is uncertain and the optimum solution is dependent on all the intermediate guidance commands generated before. For solving this challenging problem, a two-step strategy is conceived. In the first step, we use the proximal policy optimization (PPO) algorithm to generate the guidance commands of the EFV. The results obtained by PPO in the global search space are coarse, despite the fact that the reward function, the neural network parameters and the learning rate are designed elaborately. Therefore, in the second step, we propose to invoke the evolution strategy (ES) based algorithm, which uses the result of PPO as the initial value, to further improve the quality of the solution by searching in the local space. Extensive simulation results demonstrate that the proposed guidance design method based on the PPO algorithm is capable of achieving a residual velocity of 67.24 m/s, higher than the residual velocities achieved by the benchmark soft actor-critic and deep deterministic policy gradient algorithms. Furthermore, the proposed ES-enhanced PPO algorithm outperforms the PPO algorithm by 2.7%, achieving a residual velocity of 69.04 m/s. |
| Author | Yang, Shaoshi Wang, Tianshu Gong, Min Hu, Xiao |
| Author_xml | – sequence: 1 givenname: Xiao surname: Hu fullname: Hu, Xiao organization: School of Aerospace Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Tianshu surname: Wang fullname: Wang, Tianshu organization: School of Aerospace Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Min orcidid: 0009-0007-3011-7858 surname: Gong fullname: Gong, Min organization: China Academy of Launch Vehicle Technology, Beijing, China – sequence: 4 givenname: Shaoshi orcidid: 0000-0003-2395-1637 surname: Yang fullname: Yang, Shaoshi email: shaoshi.yang@bupt.edu.cn organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China |
| BookMark | eNqFkU1rGzEQhkVJoWmaX5AeBD3b1dd-6BjczQcYCnWaq9BqR2uZjeRKciH_vtpsKKGXzkXDMO8zo3k_ojMfPCB0RcmaUiK_Xm823W63ZoSJNect54y9Q-eM1nLFK16fvck_oMuUDqREW0pVc47G25MbtDeAv0Fyo8c2RNwlo4-AbyY37jN-hL0zE-CfyfkRd7_DdMoueLzLUWcYn3Hn9zNhKAg44h_gfIEYeAKf8RZ09EX3Cb23ekpw-fpeoIeb7mFzt9p-v73fXG9XRhCZV23fkh6M7GFoCaFmELyCVjZ2YFoYEDW1pm30AJWRQCSXFmppiSXGmt5afoHuF-wQ9EEdo3vS8VkF7dRLIcRR6Zjn76hGNIJxQ3pb0KyxsjJga02JIZW0DS2sLwvrGMOvE6SsDuEUfdleccJ5TSWr5i6-dJkYUopg_06lRM3-qMUfNfujXv0pKvmPyris57OWo7rpP9rPi9YBwJtpoq0EJfwPmKyhLw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1109_JMASS_2024_3420893 crossref_primary_10_1016_j_cja_2024_103368 |
| Cites_doi | 10.1016/j.ast.2021.106776 10.1109/TNNLS.2020.3029475 10.1109/ACCESS.2020.3022600 10.1023/A:1015059928466 10.1016/j.cam.2006.04.037 10.1109/TAES.2020.3015321 10.1038/nature24270 10.1109/TAC.2018.2828088 10.1016/j.ast.2018.10.013 10.13140/RG.2.2.18893.74727 10.1016/j.ast.2020.105746 10.48550/arXiv.1812.05905 10.1016/j.cja.2019.12.009 10.1109/ACCESS.2019.2909579 10.1109/CGNCC.2016.7828936 10.2514/1.50923 10.5430/air.v4n1p60 10.1109/TCOMM.2022.3170458 10.1109/TWC.2020.3016024 10.1038/s41586-019-1724-z 10.1016/j.ast.2022.107651 10.1109/TAES.2022.3178770 10.1109/ICUS50048.2020.9274975 10.1016/j.ast.2018.09.004 10.2514/1.G004446 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
| DOI | 10.1109/ACCESS.2024.3383322 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 48222 |
| ExternalDocumentID | oai_doaj_org_article_747423c0bf2a427f95cef6a10c059f71 10_1109_ACCESS_2024_3383322 10485410 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Beijing Municipal Natural Science Foundation grantid: Z220004; L202012 funderid: 10.13039/501100004826 – fundername: Fundamental Research Funds for the Central Universities grantid: 2023ZCJH02 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c409t-8b80bec9bed8001cd435e897fd2a4ce461fc87ade5c9e0939fe69f0f0cfcbff3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001197766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Tue Oct 14 18:52:18 EDT 2025 Sun Jun 29 16:39:19 EDT 2025 Tue Nov 18 22:38:28 EST 2025 Sat Nov 29 06:25:35 EST 2025 Wed Aug 27 02:17:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c409t-8b80bec9bed8001cd435e897fd2a4ce461fc87ade5c9e0939fe69f0f0cfcbff3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0007-3011-7858 0000-0003-2395-1637 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10485410 |
| PQID | 3033619251 |
| PQPubID | 4845423 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3383322 crossref_citationtrail_10_1109_ACCESS_2024_3383322 proquest_journals_3033619251 doaj_primary_oai_doaj_org_article_747423c0bf2a427f95cef6a10c059f71 ieee_primary_10485410 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref37 Huang (ref4) 2006; 24 ref31 ref30 ref11 ref10 ref32 Goodfellow (ref13) 2016 ref17 Schulman (ref15) 2015 ref19 ref18 Qian (ref33) 2014 Liu (ref2) 2010; 31 Wang (ref16) 2019 ref24 ref23 ref26 ref25 ref20 ref21 Lillicrap (ref36) 2015 ref28 Zhang (ref22) 2020; 42 ref27 ref29 Chen (ref1) 2009; 30 ref8 Fu (ref35) 2019 ref7 ref9 Schulman (ref34) 2017 ref3 ref6 ref5 Sutton (ref14) 2019 |
| References_xml | – ident: ref8 doi: 10.1016/j.ast.2021.106776 – ident: ref21 doi: 10.1109/TNNLS.2020.3029475 – year: 2015 ident: ref36 article-title: Continuous control with deep reinforcement learning publication-title: arXiv:1509.02971 – ident: ref26 doi: 10.1109/ACCESS.2020.3022600 – ident: ref17 doi: 10.1023/A:1015059928466 – year: 2015 ident: ref15 article-title: Trust region policy optimization publication-title: arXiv:1502.05477 – ident: ref3 doi: 10.1016/j.cam.2006.04.037 – ident: ref29 doi: 10.1109/TAES.2020.3015321 – ident: ref19 doi: 10.1038/nature24270 – year: 2017 ident: ref34 article-title: Proximal policy optimization algorithms publication-title: arXiv:1707.06347 – year: 2019 ident: ref14 publication-title: Reinforcement Learning – ident: ref5 doi: 10.1109/TAC.2018.2828088 – ident: ref9 doi: 10.1016/j.ast.2018.10.013 – ident: ref18 doi: 10.13140/RG.2.2.18893.74727 – ident: ref25 doi: 10.1016/j.ast.2020.105746 – ident: ref37 doi: 10.48550/arXiv.1812.05905 – ident: ref6 doi: 10.1016/j.cja.2019.12.009 – ident: ref23 doi: 10.1109/ACCESS.2019.2909579 – ident: ref11 doi: 10.1109/CGNCC.2016.7828936 – ident: ref12 doi: 10.2514/1.50923 – volume: 42 start-page: 414 issue: 2 year: 2020 ident: ref22 article-title: Q-learning reinforcement learning guidance law publication-title: Syst. Eng. Electron. – ident: ref24 doi: 10.5430/air.v4n1p60 – year: 2019 ident: ref35 article-title: Guidance design for the interception of hypersonic boost glide vehicles – ident: ref31 doi: 10.1109/TCOMM.2022.3170458 – volume: 24 start-page: 11 issue: 6 year: 2006 ident: ref4 article-title: A linear quadratic optimal guidance method for lunar soft landing publication-title: Aerosp. Control – ident: ref32 doi: 10.1109/TWC.2020.3016024 – volume: 30 start-page: 1583 issue: 9 year: 2009 ident: ref1 article-title: Guidance based on zero effort miss for super-range exoatmospheric intercept publication-title: Acta Aeronautica et Astronautica Sinica – year: 2019 ident: ref16 article-title: Truly proximal policy optimization publication-title: arXiv:1903.07940 – ident: ref20 doi: 10.1038/s41586-019-1724-z – ident: ref7 doi: 10.1016/j.ast.2022.107651 – year: 2014 ident: ref33 publication-title: Missile Flight Aerodynamics – ident: ref30 doi: 10.1109/TAES.2022.3178770 – ident: ref27 doi: 10.1109/ICUS50048.2020.9274975 – ident: ref28 doi: 10.1016/j.ast.2018.09.004 – ident: ref10 doi: 10.2514/1.G004446 – volume: 31 start-page: 1768 issue: 7 year: 2010 ident: ref2 article-title: A zero-effort miss distance-based guidance law for endoatmoshperic interceptor publication-title: J. Astronaut. – year: 2016 ident: ref13 publication-title: Deep Learning |
| SSID | ssj0000816957 |
| Score | 2.3069117 |
| Snippet | Guidance commands of flight vehicles can be regarded as a series of data sets having fixed time intervals, thus guidance design constitutes a typical... |
| SourceID | doaj proquest crossref ieee |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 48210 |
| SubjectTerms | Algorithms Commands Deep learning Deep reinforcement learning Differential games Earth Evolution evolution strategy (ES) Evolutionary computation Flight Flight vehicles guidance design Machine learning max-min problem Minimax techniques Navigation Neural networks Optimization Proportional navigation proximal policy optimization (PPO) Real-time systems Vectors Velocity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4iHvQg_pg4nZKDR6tJmv7Icc5NDzJERHYLXfqig1HHNgX_e1_SOCqCXoSeStI0770m3xdev0fImS0lCANlVCBbQIJSJFEugUUcsS2Gj1Wilsy_y4bDfDRS941SXy4nrJYHrg13iXAXd3zDxlYUUmRWJQZsWnBmEBhY__e4QNTTIFN-Dc55qpIsyAxxpi67vR7OCAmhkBeOlsVCfNuKvGJ_KLHyY132m81gh2wHlEi79dvtkjWo9shWQztwnzzfvE1K5zJ67ZMwKKJP2l-4fCY6mDrKTZ_gxXWnPi2A9t9DlNGgSPtB-9WLTwDAR8CMPoBXUTX-wJAG4dXnFnkc9B97t1GomhAZ5GrLKB_nDB2jxlAiGOSmREAEucpsiQY0IFNuTZ4VJSRGAVOxspAqyywz1oytjQ_IevVawSGhUGQKGY-y0uKVFYrH3CgpCylZKXnWJuLLftoERXFX2GKqPbNgStdG187oOhi9Tc5XnWa1oMbvza-cY1ZNnRq2v4ExokOM6L9ipE1azq2N8WSeSM7apPPlZx0-3YXGPT12rDLhR_8x9jHZdPOpT206ZH05f4MTsmHel5PF_NRH7SfGEO3p priority: 102 providerName: Directory of Open Access Journals |
| Title | Guidance Design for Escape Flight Vehicle Using Evolution Strategy Enhanced Deep Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/10485410 https://www.proquest.com/docview/3033619251 https://doaj.org/article/747423c0bf2a427f95cef6a10c059f71 |
| Volume | 12 |
| WOSCitedRecordID | wos001197766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4qHvTgb3H-IgePVpM2XZqjzk4POkREvIUuedHB2MRtghf_dl_SOCaiIJRSStMm_V6a96Uv3yPkyFkBqQGbVMgWkKBUeVIIYAlH3xbNx6m0lsy_lp1O8fiobuNi9bAWBgBC8Bmc-MPwL98OzcRPlWEPF0Uu_IKqeSllvVhrOqHiM0ioXEZlIc7U6VmrhY1ADpiKE8_EsjT9NvoEkf6YVeXHpziML-3Vf9ZsjaxER5Ke1civkzkYbJDlGXnBTfJ0OelZjyq9CHEaFB1UWo58yBNt9z0rpw_w7IvTEDlAy7doiDSK1r7TcvAcYgTwFvBC7yAIrZowp0ijNuvTFrlvl_etqyQmVkgM0rlxUnQLhtipLlj0F7mx6DNBoaSzaSUMiCZ3ppCVhdwoYCpTDprKMceMM13nsm2yMBgOYIdQqKRCUqSccLjJSvGMGyVEJQSzgssGSb_etzZRdNznvujrQD6Y0jVI2oOkI0gNcjwt9FJrbvx9-bkHcnqpF8wOJxAhHfufRtaEjqNhXYdNTKVTuQHXrDgz6F86yRtky6M687wa0AbZ_7ILHXv3SOOwn3nimfPdX4rtkSVfxXquZp8sjF8ncEAWzdu4N3o9DMQf9zcf5WEw4k8vM-3y |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5NMAn2sF-A6GCbH_ZIwHacOn6Erh3TumqaKsSbldrngoQKoi0S__3OjqlAE5Mm5SGK7MTOd47vc87fAXwJXqF06IuG2AIRlKYqaoW8EOTbkvkEI1vJ_KEejerzc_Mrb1ZPe2EQMQWf4WE8Tf_y_bVbxqUyGuGqrlTcULVeKSVFu11rtaQSc0iYSmdtIcHN0XGvR90gFijVYeRipZRP5p8k05_zqvz1MU4zzODNf7btLbzOriQ7brF_By9w9h5ePRIY3ILpt-Wlj7iyrylSg5GLyvrzGPTEBleRl7MzvIjVWYodYP27bIosy9bes_7sIkUJ0C3whv3GJLXq0qoiy-qs020YD_rj3mmRUysUjgjdoqgnNSf0zAQ9eYzCefKasDY6eNkoh6orgqt147FyBrkpTcCuCTxwF9wkhHIH1mbXM9wFho02RItMUIEO3RhRCmeUapTiXgndAfnwvq3LsuMx-8WVTfSDG9uCZCNINoPUgYNVpZtWdePfxU8ikKuiUTI7XSCEbB6BlngTuY6OTwJ1UepgKoeh2wjuyMMMWnRgO6L66HktoB3Yf7ALm8f33NLEX0bqWYkPz1T7DBun459DO_w--rEHm7G57crNPqwtbpf4EV66u8Xl_PZTMuI_eoDvEw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidance+Design+for+Escape+Flight+Vehicle+Using+Evolution+Strategy+Enhanced+Deep+Reinforcement+Learning&rft.jtitle=IEEE+access&rft.au=Hu%2C+Xiao&rft.au=Wang%2C+Tianshu&rft.au=Gong%2C+Min&rft.au=Yang%2C+Shaoshi&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=48210&rft.epage=48222&rft_id=info:doi/10.1109%2FACCESS.2024.3383322&rft.externalDocID=10485410 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |